Influence of Oxidation Inhibitor on Carbon-Carbon Composites:

Soo-Jin Park¹, Min-Kang Seo, and Jae-Rock Lee
Advanced Materials Division, Korea Research Institute of Chemical Technology,
P.O. Box 107, Yusong, Taejon 305-600, Korea
¹e-mail: pssjm@paro.krict.re.kr
(Received August 11, 2000)

요약: 산화억제제를 사용한 이구화 물리브레텐 (MoSi₂)의 함량에 따른 일방형 탄소/탄소 복합재료의 마찰 및 마모 특성에 관한 연구.
탄소/탄소 복합재료에 마찰손상이 150~180 °C에서 급격한 마찰계수의 전이, 즉 normal wear 영역에서의 낮은 마찰계수 (μ=0.15~0.2)에서 dusting wear 영역에서의 높은 마찰계수 (μ=0.5~0.6)로의 전이를 나타내었다.
이렇게 마찰계수가 전이하는 온도범위의 존재는 탄소/탄소 복합재료로 만든 브레이크가 복합재료의 열거 특성에 큰 영향을 받는다는 것을 의미한다.
그리고 산화억제제인 MoSi₂를 가지는 탄소/탄소 복합재료는 이를 함유하지 않은 복합재료에 비해 약 1.5배 정도의 낮은 평균마찰계수와 마모율을 나타내었으며, 특히 4 wt% MoSi₂ 함량을 가진 복합재료가 가장 큰 마모활성화 예외자 값을 나타내었다.

ABSTRACT: The friction and wear properties of carbon-carbon composites made with different weight percent of MoSi₂ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment.
The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior (μ=0.15~0.2) during normal wear regime to the high-friction behavior (μ=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180 °C.
The existence of temperature-dependent friction and wear regimes implied that the performance of specimens made with carbon-carbon composites was markedly affected by the thermal properties of the composites.
The carbon-carbon composites filled with MoSi₂ exhibited two times lower coefficient of friction and wear rate in comparison with the composites without MoSi₂.
especially, the composites containing 4 wt% MoSi₂ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without MoSi₂.

Keywords: carbon-carbon composites, MoSi₂, friction and wear, powdery debris film, morphology.
탄소섬유강화 탄소메트릭스 복합재료(이하 탄소/탄소 복합재료)는 보강섬유머티릭스가 모두 동일한 탄소소재로 되어 있는 특이한 재료로서 주로 특성은 탄소재료의 우수한 특성인 내열성(활동온도가 높음), 고온에서 강도 유지, 내열촉성, 내약성품 및 화학적 불활성 등의 특성을 가지고 있을 뿐만 아니라 전기전도성, 높은 열전도도, 높은 열팽창계수 및 바깥도의 비강성 측면에서 매우 우수한 특성을 나타내는 첨단 복합재료이다.12

이러한 탄소/탄소 복합재료는 현연 분위기 하에서 높은 2000℃까지 물결 강소가 나타나지 않으며, 3000℃으로 가는 기계적 성질을 유지하는 유일한 고온재료로서 1960년대 말부터 주로 미국에서 우주·항공분야의 내열구조재료로 연구 개발이 시작되어 항공기에 브레이크 디스크에 의한 현재 로켓의 노즐이나 미사일의 노즐로, 대기권 제거용 우주왕복선의 열차단 구조물(leading edge) 등 우주·항공기의 소재로서 실용화되어 각광을 받고 있음 뿐만 아니라, 타 분야의 용도로는 생체 적합성 및 내 화학성이 뛰어나 인공십자관 동맥이나 인공뼈 등과 같은 생체재료, 심바인 엔진의 고온부위, 고온용 물질 및 원자료용 재료로도 그 적응분야가 확대되고 있다.3,6

특히 첨단 항공기에 사용되는 브레이크 디스크 재료가 갖추어야 할 가장 기본적인 특성인 내열성, 우수한 열 충격저항성, 순간의 고온 마찰열을 흡수하기 위한 열 홀수능력 및 내마모성 등이 우수하게 저작의 브레이크 디스크의 소재로 평가받고 있으며 현재까지 개발된 탄소/탄소 복합재료의 약 60~70%는 항공기에 브레이크 디스크의 재료로 사용되어 왔다.7

탄소/탄소 브레이크 디스크는 전주선 탄소/탄소 복합재료의 유용한 성질을 활용하여 재료의 항공기 브레이크보다 경량일 뿐 아니라 마찰 및 마모특성이 우수하고, 그 용접이 높으며(3000℃ 이상에서 숭화), 비열(철의 2배)과 열전도도(철의 4배)가 높은 반면에 선행계수와 작고(철의 1/2), 단위 중량당 흡수에너지가 크며 고온에서의 브레이크 제동이 일어난 장점을 가지고 있으며 수명도 훨씬 길다. 이러한 탄소/탄소 복합재료 브레이크 디스크는 1949년 도입된 금속 디스크에 부착되어 사용된 cerametallic brake lining 개념을 뒤欤어 1972년부터 군용기 및 민항기에 이용되고 있으며, 현재는 항공기뿐만 아니라 고속철, 중대형 전투차량 등에도 사용되고 있다.8

항공기 브레이크가 갖추어야 할 가장 큰 특성 중 하나는 heat-sink 역할이다. 즉 작동시 발생하는 높은 운동에너지에 의한 고온의 마찰열을 단지 브레이크 디스크만으로 흡수하여야 하며, 정상 작동조건 하에서 디스크의 온도는 대략 400~500℃ 정도이지만 이상작용 시는 2000℃ 이상으로 높은 온도가 발생하고, 따라서 적절적인 산화에 의한 많은 마모가 발생한다. 즉 탄소/탄소 복합재료는 약 600℃ 이상의 온도에서 산소와의 접촉에 의한 산화가 현저하게 나타나므로 탄소/탄소 브레이크 디스크를 산화로부터 보호하기 위해 내식성 및 복합재료의 기밀과의 적합성이 좋고 산소 투과도 또한 적은 산소 차단재를 사용하여 산소와의 접촉을 차단하고 있다. 이를 위한 방법으로서 비마찰면에 glassy film을 적용하여 산화가 복합재료 내부로의 침입을 막는 내산화 코팅처리 방법과 복합재료 제조시 메트릭스에 산화항거제를 첨가하여 산화의 활성화를 억제시키는 방법이 있다.5,10 그러나 내산화 코팅처리는 마찰면에 적용하기가 실질적으로 불가능하여 봉상화 코팅 방법이 아닌 복합재료 성형시 메트릭스에 산화항거제(SiC)를 첨가하는 연구가 일부 진행되어 왔으나 현재까지의 결과로는 산화항거제에 의하여 내산화 저항성은 증가했지만 산화항거제가 고온에서 산소와 반응하여 glass 침윤을 형성시키고 형성된 glass 침윤들은 탄소/탄소 브레이크 디스크에 연약세포를 일으키 마모율 증가하는 문제점 및 재료와 브레이크의 제동 성능 저하를 되는 fading 현상을 일으킨다고 보고되었다.11,12

따라서 본 연구에서는 PAN계 탄소섬유와 탄화 메트릭스의 전구체로 사용된 내활수지에, 높은 용접 (2100℃)과 우수한 고온 산화 저항성을 가지고 있으며 특히 900℃ 전후에서 취성-연성 전이 작용 (brittle-to-ductile transition, BDT) 특성을 보이는 세라믹 산화계체인 이 규화 모聆브리드(MoSi2)를 13,14 참가하여 수 차 정도에 견인 재합계-재탄화 공정을 통한 고밀도화 공정을 실현 단일공정의 일관성 항공기 브레이크 디스크용 탄소/탄소 복합재료를 제조한
후 이의 함단에 따른 마찰 및 마모특성과 복합재료의 표면 모플로지와의 관계를 알아보고자 하였다.

실 험

재료. 본 연구에서 보강재로 쓰인 탄소섬유는 태광산업(주)에서 생산된 polyacrylonitrile (PAN) 계 고강도 탄소섬유 (TZ-307, 12K) 제품으로 표면처리 및 사이징 처리를 하지 않은 정섬유를 사용하였다. 탄소/탄소 복합재료의 탄소 메트릭스의 진구체로서는 강남화성(주)에서 생산된 해충형 폐축수지 (CB-8057)를 사용하였다. 단일공정 처리와 산화액체 목질로 사용된 이구형 퓨리誂 (MoSi₂)은 Aldrich Co.로부터 제공받은 논바로 6.310 g/cm³이고 입자 크기는 섬유직경 6.85 μm보다 작은 약 2 μm의 분말을 비포면적 등의 증가에 의한 물리적 결합력의 증가를 통한 산화액체계로의 목적이 충분히 달성하기 위하여 freeze/mill (Spexcertiprep Co, spex 6700)을 이용하여 0.34 μm 정도의 분말로 분쇄하여 사용하였다.

시편 제조. 탄소/탄소 복합재료의 제조공정은 우선 폐축수지를 MoSi₂를 0, 4, 12, 20 %의 중량비로 첨가하여 각각 고르게 교반시킨 후, 여기에 준비된 탄소섬유를 함성시키는 도입 외연등 기계를 이용한 연속공정에 의하여 일방향 블라운트 외연등법을 이용하여 프리프레그를 제조하였다. 이렇게 제작된 프리프레그를 적층하여 hot-press를 이용한 진공 bagging 방법으로서 성형압력과 온도에 의하여 경화시킨 후 초발 (green) 복합재료를 성형하였다. 이렇게 제작된 각각의 복합재료를 가열로 상의 복합화 분위기 하에서 1100 ℃까지 시간당 10 ℃의 속도로 승온시킨 후 2시간 동안 탄화시켜 일방향 탄소/탄소 복합재료를 제조하였다. 제조된 복합재료는 마찰 및 마모 특성 시험을 위하여 2.5 x 2.5 x 0.6 cm의 크기로 가공하였으며, 섬유 체적비는 60 % (±2 %), open porosity는 12 % (±3 %)이었다.

마찰 및 마모특성. 제조된 탄소/탄소 복합재료의 MoSi₂ 첨가율에 따른 마찰 및 마모특성은 대기상태 하에서 pin-on-disk 형태를 가지는 정측마찰 시험기를 이용하여 KS-R 4024에 준하여 시행하였다. 마찰 회전반의 속도는 8 m/s로 하였으며, 일정 무게의 고정식 하중을 pin과 disk의 접촉면에 가한 후 상온에서 350 ℃까지 마찰면의 온도를 변화시키면서 마찰계수 및 마모율을 측정하였다.

마찰 활성화 에너지. 동일 실험조건 하에서 브레이크 디스크에 탄소/탄소 복합재료의 마찰 활성화 에너지는 마찰면 온도 100, 200, 그리고 300 ℃에서의 시험별의 평균 마모율을 각각 구한 후 Arrhenius 방정식을 이용하여 구하였다.

미세구조 관찰. 제조된 탄소/탄소 복합재료의 MoSi₂ 첨가량에 따른 표면과 마찰면의 형상을 관찰하기 위하여 표면을 평복시 수지에 고정한 후 polished하여 Au 코팅 후 주사전자미경 (SEM, Hitachi S-2400)을 사용하여 관찰하였다. 마찰면 SEM 사진과 마찰 후 SEM 사진은 서로 다른 방향의 상태를 관찰하였는데, 이는 MoSi₂를 함유한 greenbody를 1100 ℃에서 탄화시켜 제조된 탄소/탄소 복합재료의 탄화시 형성된 기공에 MoSi₂의 침투현상을 관찰하고 이렇게 열린 기공에 침투한 MoSi₂의 특성 (BDT 특성) 및 함량에 따라 복합재료의 마찰 및 마모특성에 미치는 영향을 형태학적으로 고찰하기 위해서이다.

결과 및 고찰

이론적 고찰. 복합재료의 마찰 및 마모이론은1~6 주로 고분자 메트릭스 복합재료에 관하여 설명되어져 있으나 이를 근거로 탄소/탄소 복합재료의 마찰 및 마모거동을 이해할 수 있으며, 일방향 복합재료에서의 마찰방향은 섬유축 방향을 기준으로 수직방향, 평행한 방향, 그리고 반 평행한 방향으로 주로 표시하게 된다.

일방향으로 섬유가 보강된 복합재료가 수직각 N, 그리고 복합재료와 마찰면간의 접촉력을 F라 할 때, 이상적인 경우 수직측방을 설계 및 메트릭스가 지지하기 되므로 마찰의 가장 기본적인 관계식인 Amonton의 식으로1~6 다음과 같이 표현된다.

\[\mu = \frac{F}{N} = (F_i + F_m)/(N_i + N_m) \] \hspace{1cm} (1)

여기에서, 아래첨자 i와 m은 섬유와 메트릭스를 나타낸다.

마찰에 의하여 복합재료가 전단변형될 때 메트릭스
로부터 섬유의 빼짐(peeking-off) 현상이 발생되지 않는다면 전반 변형률, \(\tau_F \)와 \(\tau_m \)은 같고, 만약 마찰면 바로 밑의 재료의 강성을 \(G_A \)와 \(G_m \)이 같다면 전단응력 \(\tau \)은 일정한 값이며 \(\tau_1 = F_t / A_t = \tau_m = F_m / A_m \)이 된다. \(A \)는 공정접촉면적 (nominal area of contact), \(V_t \)와 \(V_m \)은 각각 섬유와 메트릭스의 체적분율, \(A_t = V_t A_t, A_m = V_m A_m (1 - V_t) A \)을 나타낸다. 이 식으로부터 복합재료의 마찰계수는 다음과 같은 식으로 표현될 수 있다.

\[
\mu = \frac{\mu_t \cdot \mu_m}{(V_t \cdot \mu_t + V_m \cdot \mu_m)}
\]

그러나 위 식 (2)는 실제 실험치와 정확하게 일치하지는 않는다. 이러한 불일치는 실제 마찰시 마찰면 에서의 마찰열동 등의 형성에 의하여 섬유 및 메트릭스가 완전히 노출되지 않으므로, 따라서 독립적으 로 마찰 및 마모여부로 인하지 않기 때문이라 사료된다.

마찰 및 마모여부는 종속마찰 시험기의 사용하여 탄소/탄소 복합재료의 마찰시험시 마찰거리에 따른 복합재료의 마찰계수와 마찰운도와의 상관관계를 Figure 1에 나타내었다. 마찰거리가 증가하면 복합재료의 표면은 마찰에 의해 마모조각을 형성하고 이는 마찰 점을 확산한다. 이와의 마찰계수는 Figure 1에 나타낸 것처럼 약 0.1~0.2 정도의 낮은 값을 가지나 복합재료의 표면보다 175 °C 이상 다르면 마찰계수의 전이가 일어나 처음에 형성된 것의 조각들이 분해되게 되어 그 성분이 결합된 상태로 형 성되어 마찰계수와 마모운도는 극히 증가한다. 그 후 과도한 상태의 조각들은 고피철과 같이 부드러워져 마찰계수와 마모운도를 감소시키는 기계적으로 안정한 반대방향 운동을 가지는 점을 형성하는가, 가혹한 조건은 계속되면 전이에 의한 응력을 형성되지 않아 복합재료는 심각한 구조적 손상을 입게 된다. 이는 탄소/탄소 복합재료의 마찰성인 마찰력의 마찰적 현상으로 이용할 수 있는 과정들이라 알려져 있다.

그림 1을 의식적으로 고려한 실험치의 경우 마찰운도가 증가할수록 실험온도 범위 안에서 12 wt% MoSi_2가 있는 것이 가장 급격한 마찰력을 나타내었다. 특히 MoSi_2를 4 wt% 첨가하여 만든 경우에는 가장 큰 점으로 마찰력을 나타내었다. 그러나 20 wt% MoSi_2를 첨가한 경우에는 오히려 평균 마찰력이 감소하는 경향을 나타내었는데, 이는 세라믹 재료인 MoSi_2가 일정량 이상 사용되면 마찰시 자세 운동작용을 하는 조각들의 형성을 억제하고 섬유와 메트릭스의 세로운 기공을 형성하여 계면결합력을 저하시키는 인자로 작용하여 더 이상의 마찰력 증가를 억제하지 않았기 때문이라 사료된다.

또한 동일 조건에서 탄소/탄소 복합재료의 마찰 계수는 Figure 3에 나타내었다. 본 결과에서 알 수
이때 마찰계수와 마모율은 낮아지는 상태를 type III라 한다. 마찰시험시 위와 같은 순서로 전이가 일어나는 이유는 압착된 재질이 충돌하는 수분이 증가되기 때문이라 사료된다. 본 실험에서 마찰에 의한 표면의 전이가 150~180℃ 사이에서 일어났으며, 이는 마찰계수를 측정한 온도가 100℃ 이상의 값이면 표면온도는 전이에 의해 대략 10℃ 정도 올라간다는 것으로 설명되어질 수 있다.

탄소/탄소 복합재료에 세라믹 격판인 MoSi2가 첨가되면 편평하게 발생한 기공물은 MoSi2가 효과적으로 채워주나 그 양이 많으면 오히려 마찰을 보다 큰 마찰을 발생하여 마찰계수가 커지며, 반대로 MoSi2를 함유하지 않은 경우에는 큰 기공이 발생하고 MoSi2가 존재하지 않으므로 이들 효과적으로 채워지 못하고 또한 마찰시 형성되는 조각물로도 그 환 경계를 가지 마찰력과 마찰계수에 있어서 좋지 않은 결과를 나타내었다고 사료된다.

일반적으로 항공기용 브레이크 디스크의 마모과정은 새로운 마찰면에서 마모조각들이 일어지고 임차이어 마찰물이 형성되며 이것이 반복적인 미끄러짐 운동을 하게 되면 마찰물질 중 일부가 파괴되고 완전 파괴된 부분에서 새로운 표면이 노출되어 연장 및 그 밖의 마모기구에 의해서 새로운 마모조각이 형성된다. 이러한 새로운 마모조각의 대부분은 다시 형성되고 이들조각물로 형성시키거나 일부는 대기로 빠져나와 마모를 일으킨다.

이 또한 마찰 중에 마찰열로 인한 디스크간에 생성함으로써 인하여 마모면에는 접촉 면기가 형성되고 이러한 접촉 면기는 초기에 국부적인 접촉면이 이루어지므로 국부적인 평장이 발생한다. 따라서 형성된 접촉면에 의하여 고리모양의 면자가 발생하여 마모가 발생되고, 이러한 접촉점은 일부 흐름, 접촉 면에서의 마모 및 기계적 하중이 인접 디스크로부터 전해져 새로운 접촉 면법이 형성될 때까지 계속된 후에 또 다른 접촉 면가 발생되고 이러한 과정이 반복되면서 마모가 발생한다고 알려져 있다.

Figure 6은 MoSi2의 첨가량에 따른 각각의 마찰은도에서의 탄소/탄소 복합재료의 마모율을 나타낸 것으로, 마찰계수의 동일한 경향을 나타내었다. 즉, 과다한 MoSi2의 첨가는 마찰면의 마찰열을 증가시키며, 마찰시 오히려 마모율을 증가시켰으며, 특히
Figure 4. Morphology of MoSi₂ impregnated C/C composites on heat-treatment temperature (1100 ℃). (a) 0 wt% MoSi₂, (b) 4 wt% MoSi₂, (c) 12 wt% MoSi₂, and (d) 20 wt% MoSi₂.

Figure 5. Sliding surfaces of MoSi₂ impregnated C/C composites after dry friction test. (a) 0 wt% MoSi₂, (b) 4 wt% MoSi₂, (c) 12 wt% MoSi₂, and (d) 20 wt% MoSi₂.

MoSi₂ 첨가량이 20 wt%인 경우 MoSi₂를 함유한 시편들에 있어 가장 큰 마모가 발생하였다. 그리고 마모판도가 증가함수록 마모도 또한 증가를 하였는데 이는 마찰시 시험판의 표면에서 발생하는 수분이 증발되어 시험판과 마찰면과의 마찰열이 증가하여 마찰 표면은 거칠어지고 불균일한 형태가 되어 마찰에 의해 발생하는 펌뮴 중 일부가 파괴되어 마모율이 증가하였다고 사료된다.
신태예제 청가에 의한 탄소/탄소 복합재료의 물성에 관한 연구. 6.

Figure 6. Wear rate for MoSi₂ impregnated C/C composites as a function of temperature.

Figure 7. Wear rate for MoSi₂ impregnated C/C composites as a function of open porosity.

Figure 7은 복합재료의 기공률에 따른 마모특성을 나타낸 것입니다. 그 결과 MoSi₂를 함유할수록 복합재료의 기공률은 감소하였으며, 이에 따라 복합재료의 마모율 또한 감소를 하였다. 그러나 파던한 사용, 즉 20 wt% MoSi₂를 함유한 복합재료의 경우에는 기공률이 오히려 커졌으며 이에 따라 마모율 또한 증가를 하였다. 이러한 결과가 나타난 것은 앞서 고찰한 것과 동일한 이유로 사료된다.

마찰 활성화 에너지. 일반적으로 마찰 에너지가 낮을 때에는 마모된 표면에 임차형을 갖는 마모조각이 많이 존재하고 원활형태의 마모조각은 적게 존재하게 된다. 이러한 임차형의 마모조각은 연삭마모를 일으켜 이로 인하여 마찰 에너지가 낮으면 높은 마찰계수와 마모율이 약간된다. 마찰 에너지가 높을 때에는 임차형의 마모조각의 양은 적고 데그리온 원활형태의 마모조각이 많이 생성되어 자체 활성계로 작용하여 높은 마찰계수와 마모율을 나타낸다.

마찰 에너지가 높을 때 마찰필름이 잘 형성되는 것은 마찰시의 에너지가 증가할수록 마찰표면상에 작용하는 압력이 높아지므로, 그 결과 마모입자가 변형되어 마찰필름으로 바뀌기 때문이다. 또한 마찰 에너지가 높아질수록 마찰표면의 운도가 높아지고 이로 인하여 마모입자의 소성변형을 촉진시키며 마찰필름의 형성이 유의해진다. 이와 같이 형성된 마찰필름은 마찰면간의 적정적인 접촉을 방지하여 디스크의 마모를 줄이고 제동 시 탄소침음의 역할하여 산화에 의한 마모 및 산화에 의해 발생하는 재료의 약화현상을 방지하여 마모를 줄일 수가 있다.

따라서 본 실험에서는 아래의 식 (3)을 이용하여 탄소/탄소 복합재료의 MoSi₂ 청가에 따른 마찰 활성화 에너지를 구한 후 마모율과의 상관관계를 알아보았다.

\[
\ln(1 - w) = - \frac{E_r}{RT} + C
\]

여기에서 \(E_r\)는 마찰 활성화 에너지, \(w\)는 마찰에 의한 절량 손실, \(R\)은 기체상수, \(T\)는 마찰시 시면온도, 그리고 \(C\)는 실형상수이다.

Figure 8에 식 (3)을 이용하여 구한 마찰에 대한 활성화 에너지 값을 나타내었다. 그 결과, MoSi₂가 청가되면 마찰 활성화 에너지 값은 증가하였으며, MoSi₂ 얇이 4 wt%인 경우에는 가장 큰 마찰 활성화 에너지 값을 나타내었다. 이처럼 MoSi₂의 청가가 탄소/탄소 복합재료의 마찰 활성화 에너지 값을 크게 증가하여 내마모성을 향상시키는 이유는 탄소/탄소 복합재료의 마찰시험시의 가속형태의 조각필름이 형성되어 이러한 조각필름은 내마모성을 향상시켜 발생한 열적 기공 내로 축적하여 미세기공을 효과적으로 차단하고 산화예제에 역할을 하는 MoSi₂의 청가로 인하여 마찰에 의한 탄소/탄소 복합재료의 내마모를 억제하는 즉 산화현상을 방지하여 내마모성을 향상한 결과가 나타나기 때문에 사료된다. 그러나 MoSi₂ 청가 양이 일정량 이상 증가하면 내마모성이 감소하는 경향을 나타내는데, 이는 MoSi₂의 파다 청가가 탄화시키
성유와 수지간의 적절적인 결합을 저하시킴과 동시에 세라믹 재질인 MoSi₂가 마찰시 파우더 형태의 조각 필요에 흡착되어 있어 이것에 의해 시험된 표면이 거칠어지며, 마찰시 표면의 미끄럼 현상은 방해하여 마모율을 증가시켜 내마모특성이 향상되지 않았다고 사료된다. 따라서 MoSi₂의 일정량 이상의 첨가는 MoSi₂에 의해 성유와 메트릭스가 마모되기 시작하여 성유의 약아짐 현상 및 마찰력에 의하여 성유와 메트릭스간의 계면분리 현상이 일부 발생하고 성유의 부가 절이 일어난 후 메트릭스로부터 성유가 흘러지는 현상이 발생되어 복합재료의 마모율이 증가하게 된 다. 즉 마찰시 탄소성유가 쉽게 흘러지지 마찰력의 형상을 어렵게 함은 물론 마찰력이 퍼져서는 것으로 알려져 있다.

따라서 성유와 메트릭스간의 물리적 거친 결합력이 탄소/탄소 복합재료를 이용한 브레이크 라이닝의 제조에 가장 중요한 요소로 작용하며 제조공정에서 제어해야 할 필요소리 사료된다.

마찰시험. 마찰시험 후 시험한 표면의 파우더 형태의 조각 필요는 일반적으로 복합재료의 마찰 및 마모기등과 관련이 있다.

Figure 8. Friction activation energies for MoSi₂-impregnated C/C composites.

이에 이들 조각들이 채워지게 되는 것을 알 수가 있다.

결론

고온에서 취성-연성 전이가동을 나타내는 이성화 물리조건 (MoSi₂)을 신화적재료로 사용하여 일방향 탄소/탄소 복합재료를 제조한 후 이의 함량변화에 따른 마찰 및 마모특성과 복합재료의 표면 모양 및 형성 과정의 관찰한 결과 다음과 같은 결론을 얻을 수가 있었다. 탄소/탄소 복합재료는 마찰은도 150~180°C에서 급격한 마찰계수의 전이, 즉 낮은 마찰계수 (μ=0.15~0.2)에서 높은 마찰계수 (μ=0.5~0.6)로의 마찰계수의 급격한 변화가 나타났으며, 이 때 마찰모양의 모양을 또한 변화하였다. MoSi₂가 함유된 탄소/탄소 복합재료는 이를 함유하지 않은 복합재료에 비해 낮은 마모율을 나타내었으며, 특히 MoSi₂ 함량이 4 wt%인 경우가 가장 우수하였다. 마찰후 마모율로부터 구한 활성화 에너지 값에 있어서도 MoSi₂ 함량이 4 wt%인 경우가 가장 큰 값을 나타내었다. 이는 신화적재료로 사용한 MoSi₂가 마찰시 공기와 접촉하여 발생되는 신화현상을 방지하여 내마모성을 향상시키는데 작용하였다. 탄소/탄소 복합재료의 마찰 및 마모특성은 마찰은도에 민감하며 마찰면에 존재하는 파우더 형태의 마모조각과 MoSi₂의 부착정도에 큰 영향을 받는다 사료된다.

참고 문헌

Polymer(Korea) Vol. 25, No. 1, January 2001