The Effects of the Thermal Degradation of Cellulose/MMNO Dope on the Physical Properties of Cellulose Fibers

Dong-bok Kim, Wha-Seop Lee*, and Ho-Jong Kang†
Department of Polymer Sci. and Eng., Dankook University, #8 Hannam-dong, Yongsan-ku, Seoul, Korea
*Polymer Hybrid Center, Korea Institute of Science and Technology, Seoul, Korea
†e-mail: dbkim@kistmail.kist.re.kr
(Received March 25, 1998)

ABSTRACT: The thermal degradation of newly developed MMNO/cellulose pre-dope was investigated to understand the degradation mechanism of molecular weight and α-cellulose content in the processing of cellulose fiber. The effects of thermal degradation on the physical properties of fiber were also studied. The variations of molecular weight and α-cellulose content of cellulose fiber decrease by the thermal degradation depend on the basis of the dope concentration and the processing temperature. These results, the mechanism of thermal degradation in MMNO/cellulose dope was explained. The thermal degradation led to the decrease in chain orientation of cellulose fiber. It was found that this caused the reduction of fibrillation and the mechanical properties of cellulose fiber significantly.

Keywords: cellulose fiber, N-methylmorpholine N-oxide, thermal degradation, molecular weight, fibrillation.

서론

N-methylmorpholine N-oxide (MMNO)는 미국의 Enka사에서 개발된 이후 셀룰로스에 대한 우수한 용해성과 지독성이라는 장점을 갖고 있어 Lenzing* 및 Courtaulds사† 그리고 한국과학기술연구원‡ 등에 의하여 비스코스 공정을 대체하는 새로운 셀룰로스 섬유 제조공정의 용매로서 사용되고 있다. 셀룰로스 섬유를 제조할 때 가능성을 높이기 위하여 인위적인 셀룰로스의 분자량 조절이 필요하며 그로 인해 비스코스 공정에서는 NaOH 수용액에 의한 가수분해를 하나의 공정으로 도입하여 분자량 조절하고

Cellulose/MMNO Dope의 염분해에 의한 셀룰로스 섬유 물성 변화에 대한 고찰

김동복, 이화섭, 강호종
단국대학교 고분자공학과, 한국과학기술연구원 고분자하이브리드
(1998년 3월 25일 접수)
Cellulose/MMNO dope의 일반화에 의한 셀룰로오스 섬유 물성 변화에 대한 고찰

있으나 MMNO를 이용한 선면 제조공정은 상대적으로 상업화된 기간이 짧아 현재까지 분자량 조절에 대한 연구가 진행된 바 없다.

우선적으로 고려할 수 있는 분자량 조절 방법으로 셀룰로오스 섬유 방식에 사용되는 dope를 제조할 때 셀룰로오스 분자량을 조절하는 방법을 생각할 수 있다. 기존 MMNO/셀룰로스 dope를 만드는 방법은5 7 과 랑의 수분을 함유한 MMNO 수용액에 벨프를 폐온시킨 후 이를 김압증류하여 방식에 적합한 MMNO monohydrate/셀룰로스 dope로 만드는 공정을 사용하고 있다. 이 과정은 셀룰로스의 완전유해를 위하여 오랜 시간이 소요되고 산화성 분해가 일어나 셀룰로스 분자량이 급격히 감소되며 이와 동시에 셀룰로스 섬유의 물성을 크게 좌우하는 알파 셀룰로스의 함량 역시 급격히 감소되어 분자량 조절이 용이하지 못한 단점을 갖는다. 최근 monohydrate MMNO분말과 벨프 분말을 분산기에서 혼합하여 pre-dope를 만든 후 이를 적정온도에서 용액시키는 연구가8 또 다른 dope의 제조 방법으로 보고된 바 있다. 이 경우 짧은 시간에 셀룰로스가 MMNO용매에 완전히 용해되어 제조된 dope가 높은 분자량과 알파 셀룰로스 함량을 유지함으로 dope가 방사기 및 노즐을 통과하는 동안 방사온도, 제제시간 조절에 의한 열분해를 이용한 셀룰로스 분자량 조절이 가능할 것으로 예측된다.

따라서 본 연구에서는 새로운 방법에8 의하여 제조된 MMNO/셀룰로스 dope의 제조과정과 방사온도 및 dope의 방사기 내에서의 제제시간에 의한 열분해에 따른 분자량 및 알파 셀룰로스의 변화를 살펴보고 이들의 변화가 제조된 셀룰로스 섬유 물성에 미치는 영향에 대하여 살펴보았다.

실

본 연구에서 사용한 벨프는 중합도가 940이고 알파 셀룰로스의 함량이 93%인 IIT Rayonier사의 Rayonex-P였으며 이를 분해하여 분말성으로 사용하였다. MMNO는 Aldrich사의 49.6 wt% MMNO수용액을 농축시켜 86.7 wt%의 monohydrate MMNO로 만든 후 이를 분말화하여 사용하였다. 셀룰로오스/MMNO 용액은 이를 분말을 무게비로 6-18%로 혼합하여 분말을 제조하고 이로 120℃에서 40분간 진공하에 고받아서 셀룰로스의 섬유수가 완전히 용해된 dope를 제조하였다.

셀룰로스 섬유를 얻기 위하여 Instron사 모세관 점도계 (Model 3211)에 L/D가 60이고 직경이 0.7 mm의 capillary die를 장착하여 dope를 110℃과 130℃에서 방사하고 중류수에 통과시켜 용고하여 섬유를 제조하였다. 이때 방사 전인비는 130배, die와 용고액과의 거리거리는 20 cm였다. 방사된 셀룰로스 섬유의 분자량 및 알파셀룰로스 함량을 변화시키기 위하여 방사 전 dope를 모세관 점도계 barrel 에서 각각 10분, 40분, 70분 및 100분간 제제시간 후 이를 각각 방사하였다. 전히 후 섬유를 중류수에 떨어져 방사하여 섬유에 포함되어 있는 용액을 완전히 제거한 다음 50℃ 공기온에서 4시간 이상 건조하여 섬유의 분자량 및 알파 셀룰로스의 함량 그리고 물성 측정 시료로 사용하였다.

얻어진 섬유의 분자량은 ASTM (D 1795-62)의 방법에 따라 제조된 M Cuene용액을 첨가하여 셀룰로스를 완전히 용해시킨 후 Ubbelohde type 점도계를 사용하여 고유점도를 측정하였다. 얻어진 고유점도를 사용하여 아래의 Mark-Houwink-Sakurada 식8 9 을 이용하여 중합도를 구하여 분자량을 측정하였다.

\[[\eta] = 0.98 \times 10^{-2} [DP]^{9/2} \]

섬유의 피브릴화 실험은10 Branson sonifier 450을 이용하여 섬유 표면에 강력한 초음파를 8분동안 가한 후 미세구조를 광학현미경으로 관찰하여 측정하였다. 이때 섬유의 길이는 15 mm이고 중류수에 10 분간 침지하여 실험을 수행하였다.

셀룰로스 섬유의 복광성능은 Nikon polarizing microscope (Type 104)상에서 quartz wedge와 senarmont를 이용하여 retardation과 섬유의 두께를 측정하여 다음 식으로부터 계산하였다.

\[\Delta n = \frac{\Gamma}{d} \]

여기서 \(\Delta n \) : 복광질량, \(\Gamma \) : retardation (nm), \(d \) : 시료의 두께 (nm)이다.
식유의 인장강도, 탄성계수 및 심율을 측정하기 위하여 Instron 4201 인장시험기를 이용하여 시험길이 25 mm, 인장속도를 10 mm/min으로 하여 인장시험을 수행하였다.

결과 및 고찰

MMNO/셀룰로스 Dope의 암분해 메카니즘

Fig. 1에 monohydrate MMNO 분말과 월프 분말을 분쇄기에서 혼합하여 pre-dope를 만든 후 이를 적정 온도에서 용해시킨 후 제조한 MMNO/셀룰로스 dope 분자량 변화와 이들 dope의 성분으로부터 분자량 변화를 함께 나타내었다. 그림에서 보는 바와 같이 분자량으로 표현되는 종합도 940인 월프와 monohydrate MMNO의 혼합분말로 만들어진 pre-dope 분말이 완전히 용해되는 과정에서 10%, 15% dope 농도에 따라 각각 710과 750 정도로 감소함을 보이고 있다. 이는 기존의 dope 제조 방법에 의하여 제조된 dope의 종합도가 400 정도인 것에 비교하면 월등히 높은 분자량을 갖고 있음을 확인할 수 있었다. 따라서 이러한 dope를 이용하여 셀룰로스 심유를 제조할 경우, 방사 가공성을 높이기 위해서는 dope의 분자량 조절이 필수적임을 알 수 있다. 하지만 나머진 분자량 감소는 심유물성 저하를 초래함으로써 이에 대한 적절한 조절이 필요하다.

셀룰로스의 분자량을 조절하기 위하여 방사기 내에서 110 ℃와 130 ℃로 dope를 채취시켜, 채취시간에 따른 MMNO/셀룰로스 dope의 분자량 변화를 살펴보았다. 채취시간이 증가할수록 셀룰로스 심유의 분자량이 감소하며 100분 경과시, 최저 360 정도로 감소하여 전에 비하여 50%이상 감소함을 알 수 있었다. 이러한 분자량 변화는 열처리 초기에 급격히 일어나며 채취시간 40분 이후에는 분자량의 변화는 상대적으로 작은을 확인할 수 있다. 또한 농도 15% dope의 경우 10%에 비하여 분자량 감소가 적은 것을 알 수 있으며 이는 고농도에서 상대적으로 일부분 속도가 느리고, 일부분에 의한 분자량 변화가 적은 것으로 사료된다. 하지만 일부분 속도는 130 ℃로 하였을 경우 일부분 속도가 빠르다 셀룰로스 속도에 관계 없이 분자량 감소가 유실율을 알 수 있다. 이는 130 ℃에서는 셀룰로스의 분해와 동시에 용매인 MMNO의 분해도 함께 발생하여 셀룰로스의 분해가 가속화되어 농도에 의한 영향이 적은 것으로 생각된다. 따라서 분자량 조절을 위한 가공온도 즉, 열분해 온도는 110 ℃가 적절함을 확인할 수 있었다.

셀룰로스 중합도와 함께 셀룰로스 심유의 기체적 물성을 좌우하는 또 하나의 중요한 인자는 알파 셀룰로스 함량이다. 알파 셀룰로스 함량이 높을수록 분자량은 17.5 wt% NaOH 용해에 녹지 않는 상태여야 한다. 알파 셀룰로스의 함량이 높은 것은 셀룰로스의 분자량이 높기 때문에, 즉, 셀룰로스의 분자량이 높을수록, 분자채제 분포가 활동을 의미한다. 알파 셀룰로스 함량이 높은 심유는 상대적으로 유수한 물성을 나타내고 따라서 방사 가공성을 높이기 위하여 평균분자량을 조절할 때 이로 인한 알파 셀룰로스 함량의 감소를 최소화할 필요가 있다. Fig. 2는 가공기기 내의 채취시간에 따른 심유의 알파 셀룰로스 함량의 변화를 나타내었다. 방사기 내에서의 채취시간이 길어도 dope로 만들어진 심유의 알파 셀룰로스 함량을 실험적으로 측정하기 위해서는 일정량 이상의 심유가 필요하지 않아지는 심유는 심유가공의 연속성에 의해 각기 다른 채취시간을 거치는.
서 제조된 섬유의 직접적인 알파 샘플로스 함량 측정이 불가능하여 Fig. 3의 샘플로스 분자량과 알파 샘플로스 함량의 상관관계 곡선으로부터 알파 샘플로스의 함량을 계산하였다. Fig. 3은 섬유의 가공 조건과 같은 조건에서 열분해된 샘플로스 dope의 분자량과 알파 샘플로스의 함량을 실험적으로 직접 측정하여 이들의 상관관계를 나타낸 master curve이다. 이에 알파 샘플로스의 함량 측정방법은 ASTM (T4291m-84)을 사용하였다.

Fig. 2에서 보는 바와 같이 Fig. 1의 샘플로스 분자량의 변화와는 달리 샘플로스를 MMNO 용액에 용해시키는 dope 제조 과정에서 알파 샘플로스의 함량 변화는 93%에서 91%로 그 변화가 크지 않음을 알 수 있다. 즉, 새로운 방법의 dope 제조 과정은 분자량의 변화는 분자량이 큰 분자체의 분해에 의하여 가인되는 것이 아니라 상대적으로 분자량이 작은 샘플로스 메타 및 알파 샘플로스에 의하여 발생됨을 의미한다. Pre-dope의 샘플로스 섬유소를 MMNO 용액에 완전히 용해시키기 위해 수행되는 혼합 및 용해과정은 진공상태에서 이루어짐에 따라 산화에 의한 열분해가 작아 상대적으로 분자량이 작은 샘플로스 분자체가 우선적으로 분해된다. 따라서 새로운 방법에 의한 샘플로스 dope의

제조 방법은 기존의 dope 제조 방법에 비하여 높은 분자량과 동시에 많은 양의 알파 샘플로스를 갖고 있음을 확인할 수 있었다. 결과적으로 이를 이용하여 제조된 샘플로스 섬유의 물성은 기존의 방법으로 제조된 dope를 사용하여 제조된 섬유에 비하여 물성을 우수할 것으로 예측할 수 있다.

제조된 dope가 병사기에서 일정시간 체류할 경우, 분자량 변화와 함께 열분해에 의한 알파 샘플로스의 변화가 발생한다. Fig. 2에서 보는 바와 같이 기 존은 110℃의 경우 병사기에서 체류하는 초기에 84% 동안 알파 샘플로스의 함량이 92%에서 최저 80% 정도로 급격히 감소되고 그 이후에는 변화가 적을 것으로 예상한다. 따라서 dope의 열처리에 따른 분해 메커니즘은 본 연구에서 분자량이 큰 샘플로스가 열분해되어 Fig. 1에서 나타난 평균분자량 변화를 주도하나 체류시간이 증가함수록 분자량이 작은 샘플로스 분자체의 분해가 일어나 알파 샘플로스의 함량 변화는 적은 반면 이로 인하여 평균분자량은 지속적으로 감소함을 알 수 있다. 또한 평균분자량 변화는 달리 10% 농도 dope에 의하여 제조된 섬유의 알파 샘플로스 함량이 15%에 의하여 제조된
섬유의 알파 설탕로오스 함량보다 더 많은음을 알 수 있다. 이는 10%의 경우, Fig. 1과 같이 분자량 저하를 일으키는 이유가 분자량이 작은 즉, 베타 및 감마 설탕로오스에 의하여 발현되는 반면 15%에 있어서는 이와는 반대로 분자량이 큰 알파 설탕로오스의 분해에 의하여 평균분자량 감소가 일어남을 의미한다. 가공온도가 130 ℃ 경우에는 이러한 농도에 따른 선택적인 분해가 더 심화됨을 알 수 있다. 즉 농도가 다르고 같은 체류시간의 dope에 의하여 제조된 섬유는 Fig. 1에서 보는 바와 같이 평균분자량은 유사하나 저농도 dope를 이용하여 제조된 섬유의 알파 설탕로오스의 함량이 비등히 높을음을 알 수 있다. 이러한 결과는 MMNO에 의한 분자량 변화의 가속화에 의한 영향으로 유사된다. 이를 결과는 선택적인 일본체 에에서는 섬유의 분자량 분포에 절대적인 영향을 미칠 수 있다. 따라서 가공을 높이기 위하여 평균분자량을 낮추면서 동시에 우수한 기계적 용성을 갖도록 많은 양의 알파 설탕로오스를 유지하기 위해서는 가공온도 110 ℃에서 저농도 dope를 이용하는 것이 가장 효과적임을 확인할 수 있었다.

설탕로오스의 알부분에 섬유 피브릴화 현상에 미치는 영향(세 규선 MMNO/설탕로오스 dope를 이용한 인견 섬유 공정)24 가장 큰 문제점으로 지적되고 있는 섬유질은 제조된 성유류 제작공정에 적용할 때 발현하는 섬유의 피브릴화 현상이다. 이를 고찰하기 위하여 Fig. 4에 보여 준 농도 10% 설탕로오스/MMNO dope를 사용하여 130 ℃에서 방사성 섬유를 초음파 처리한 후, 섬유 표면에 발생한 피브릴화 현상을 관찰하기 위한 실험을 나타내었다. Fig. 4에서 보는 바와 같이 10분동안 알부분한 중합도가 510이고 알파 설탕로오스의 함량이 88%인 섬유(Fig. 4(a))가 100분동안 열처리에 의하여 중합도가 380이 고 알파 설탕로오스의 함량이 83%로 감소한 섬유(Fig. 4(b))의 비하하여 피브릴화 현상이 심한을 알 수 있다. 즉 섬유의 분자량과 알파 설탕로오스의 함량은 섬유의 피브릴화 현상을 최우하는 중요한 요인임을 알 수 있다.

일반적으로 섬유의 피브릴화 현상은 섬유의 microfibril과 microfibril 사이에 발현하는 micro void에 의하여 발현된다고 알려져 있다. Micro void가 발현된 원인으로서는 방사 dope에 함유되어 있
Cellulose/MMNO Dope의 열분해에 의한 설탕로스 섬유 물질 변화에 대한 고찰

Figure 5. Variation of birefringence of cellulose fibers due to the thermal degradation at 110 °C : The concentration of dope : 10% (○) and 15% (△).

브릴❧ 현상의 원인은 되는 micro void를 감소시키기 위하여 섬유 복합질 측, 배합성의 적절한 조절이 필요하고 이는 분자량 조절로서 가능함을 알 수 있다. 섬유 복합질을 조절하는 또 하나의 방법은 dope의 농도를 조절하는 방법이다. Fig. 5에서 알 수 있듯이 방사기에서의 추세가 급속한 dope에 의하여 발생된 섬유는 상대적으로 dope농도가 높은 15%용액을 이용하여 방사한 경우 고점도에 의하여 연신 응력을 많이 가해져 10% 농도에 비하여 복합질이 매우 높음을 알 수 있다. 열처리에 의하여 분자량이 감소되면 그 차이가 현저히 줄어드나 복합질은 저농도에 비하여 전반적으로 높음을 알 수 있다. 섬유의 배향성을 줄이는 또 다른 방법으로서 방사온도를 증가시키는 방법이 있으나 앞에서 언급한 바와 같이 130 °C에서의 MMNO의 분해로 인하여 이를 이용한 방법은 현제가 있다. 이상의 결과로 보아 발생되는 피브릴화 현상을 감소시키기 위해서는 배향성의 감소가 필수적이고 따라서 저농도를 이용한 섬유 방사 혹은 열분해에 의한 분자량 감소를 통하여 배향성을 조절하여 피브릴화 현상을 효과적으로 줄일 수 있을 것으로 사료된다.

설탕로스스의 열분해가 섬유의 기계적 특성에 미치는 영향. MMNO/설탕로스 dope 섬유가공 시, 가공성을 높이고 피브릴화 현상을 줄이기 위하여 설탕로스의 분자량을 조절하는 경우 이로 인하여 섬유의 기계적 특성 감소라는 문제점을 가질 수 있다. 따라서

Figure 6. The effect of thermal degradation on tensile strength of cellulose fibers. (a) Degree of polymerization and (b) α-cellulose content; Closed symbols for data at 130 °C and open symbols for data at 110 °C : The concentration of dope : 10% (○) and 15% (△).

분자량의 조절은 섬유의 기계적 물성을 유지하는 범위에서 이루어져야 한다. Figs. 6-8은 각기 다른 dope의 농도, 가공온도에서 제조된 섬유의 분자량 및 알파 설탕로스의 함량과 이들의 기계적 특성의 관계를 나타낸다. 설탕로스스를 49.6 wt% MMNO에 넣고 교반 및 장시간동안 물을 제거하면서 mono-
hydrate MMNO 상업의 천연세로스 용액을 얻는 기존의 dope제조 방법을 사용하는 경우 고농도의 dope제조가 어렵고 제조 시 분자량 저하라는 한계점을 갖는다. 이러한 방법으로 제조된 6% dope를 이용하여 병사된 섬유의 인장강도가 1.6 g/d 정도인 반면 본 연구에서 사용한 dope제조 방법을 사용하는 경우 최대 25%의 농도를 갖는 dope를 만들 수 있으며, 본 실험에서 사용한 10% dope를 사용하여 얻은 천연세로스 섬유의 인장강도는 Fig. 6(a)에서 보는 바와 같이 최고 5.3 g/d를 얻을 수 있었다. 이는 1.65 g/d 정도의 인장강도를 갖는 비스코스 공정으로 얻은 인간 섬유에 비해도 월등히 우수한 기계적 특성을 갖았음을 알 수 있다. 아울러 가공성을 높이고 피브릴화 현상을 줄이기 위하여 알부베로 분자량이 감소된 저농도 dope를 이용하여 병사된 섬유의 경우 최소 2 g/d이상의 인장강도를 갖는 것으로 보아 MMNO/천연세로스 pre-dope를 이용한 인간가공이 비스코스 공정 혹은 기존의 dope제조 방법에 의하여 제조된 인간에 비하여 상대적으로 우수한 기계적 특성을 갖음을 확인할 수 있었다.

Fig. 6과 Fig. 7에서 알 수 있듯이 분자량 및 알과 천연세로스의 함량이 증가함수록 인장강도 및 탄성계수가 증가함을 알 수 있다. 110℃에서 얻어진 섬유가 130℃에서 제조된 섬유에 비하여 더 우수한 기계적 특성을 갖음을 알 수 있다. 이는 앞에서 언급한 바와 같이 저온방사 시 상대적으로 높은 분자량과 높은 알과 천연세로스 함량을 유지할 수 있으며 또한 dope 점도가 높아 배향성이 향상되기 때문이다. 사용 dope의 농도가 인장강도와 탄성계수에 미치는 영향을 살펴보면 110℃에서 병사기 내에서의 체류시간이 짧은 쪽, 알.Navigate가 적게 빠르게 dope로부터 제조된 섬유의 경우, 저농도로부터 제조된 섬유와 고농도를 사용하여 제조된 섬유의 기계적 특성이 유사함을 알 수 있다. Fig. 5에서 확인된 바와 같이 저농도로부터 제조된 섬유가 월등히 낮은 배향성을 갖고 있으나 유사한 기계적 특성을 보이는 것은 Fig. 2에서 확인된 저농도 섬유의 알과 천연세로스 함량이 고농도에 비하여 많기 때문으로 생각된다. 반면 알.Navigate가 많이 빠르고 평균분자량이 감소된 섬유의 경우, 저농도를 이용하여 제조된 섬유가 고농도로부터 제조된 섬유와 비교하여 인장강도 및 탄성계수가 감소함을 알 수 있다. 이 경우 두 섬유의 알과 천연세로스의 함량 차이가 적어지고 평균분자량이 상대적으로 작아져 기계적 특성이 분자량과 알과 천연세로스 함량보다는 이들의 배향성이 더 영향을 미치기 때문으로 사료된다. 130℃의 경우에서도 저농도에서 제조된 섬유가 분자량은 같고 알과 천연세로스의 함량이 많으나 인

Figure 7. The effect of thermal degradation on modulus of cellulose fibers. (a) Degree of polymerization and (b) α-cellulose content: Closed symbols for data at 130℃ and open symbols for data at 110℃: The concentration of dope; 10% (○) and 15% (△).
Cellulose/MMNO Dope의 열분해에 의한 셀룰로오스 섬유 물성 변화에 대한 고찰

Figure 8. The effect of thermal degradation on elongation at break of cellulose fibers. (a) Degree of polymerization and (b) α-cellulose content. Closed symbols for data at 130℃ and open symbols for data at 110℃: The concentration of dope: 10% (○) and 15% (△).

장강도 및 탄성계수는 고농도에서 제조된 섬유에 비하여 전반적으로 작을 수 있다. 즉 고온에서 가공할 경우 배향성이 기계적 물성에 미치는 영향이 더욱 심화됨을 알 수 있다. 따라서 이를 기계적 물성을 좌우하는 요인은 분자량 및 알파 셀룰로오스 함량과 함께 dope의 농도 및 가공온도에 직접적인 영향을 받는 배향성과 밀접한 관계가 있음을 알 수 있다.

인장강도 및 탄성계수는 Fig. 8에서 보는 바와 같이 신율은 분자량과 알파 셀룰로오스의 함량이 감소함에 따라 증가함을 알 수 있다. 일반적으로 신율은 섬유의 배향도와 밀접한 관계를 갖는다. 즉 배향성이 높을 경우 이로 인해 분자체가 어느 정도 늘어나 있어 인장시험 시 신율은 작아진다. 따라서 분자량 및 알파 셀룰로오스의 감소에 의하여 셀룰로오스 섬유의 연성 시 분자체가 보다 손쉽게 배향함으로서 신율의 감소를 초래한다. Fig. 6과 Fig. 7에서 알 수 있듯이 인장강도 및 탄성계수와 분자량 및 알파 셀룰로오스의 상관관계는 같은 농도에서 가공온도를 다르게 했을 경우 각기 다른 경향을 갖는다. 이는 가공온도에 따라 셀룰로오스의 분해 메카니즘이 현저히 다르고 이와 함께 배향성도 달라지기 때문이다. 반면 신율은 같은 농도에서의 온도에 따라 연속적인 지수적 감소를 보인다. 또한 저농도 dope를 이용하여 제조된 섬유가 고농도 dope를 이용한 섬유에 비하여 가공온도에 관계없이 늦은 신율을 갖는다. 즉 신율이 분자량 및 알파 셀룰로오스의 함량 변화와 같은 분해 메카니즘이나 이러한 분해가 섬유의 배향성에 미치는 영향, 분자량 감소에 따른 점의 감소 및 분자량이 작은 주체가 보다 쉽게 배향되는 성질에 더 밀접한 관계를 갖음을 의미한다. 이상의 결과로 보아 dope의 농도 및 가공온도 조절에 의하여 분자량 및 알파 셀룰로스 함량을 선택적으로 조절하여 원하는 인장강도 및 탄성계수를 얻을 수 있으며 동시에 수축성이 상대적으로 우수한 인견섭유 제조가 가능함으로 사료된다.

결론

본 연구는 새로운 가공방법에 의하여 제조된 MMNO/셀룰로오스 pre-dope를 사용하여 셀룰로오스 섬유 제조 시, dope의 제조 공정 및 방사 시 열분해로 인하여 발생하는 셀룰로오스 분자량 및 알파 셀룰로오스의 함량 변화 메카니즘과 이로 인한 셀룰로오스 섬유의 물성에 미치는 영향에 대하여 고찰하여 다음과 같은 결과를 얻었다.

1. 새로운 방법에서 얻어진 MMNO/셀룰로오스
pre-dope를 섬유소가 완전히 용해된 dope화시키는 과정에서 발현되는 분자량 감소는 분자량이 상대적으로 작은 감마 및 베타 샘플로소스에 의하여 추동됨을 확인할 수 있었다.

2. 방사기 내에서의 dope의 이온분해 메커니즘은 분해 초기 분자량이 큰 알과 샘플로소스의 분해에 의하여 분자량 감소가 일어나나 분해시간이 경과함수록 감마 및 베타 샘플로소스의 분해에 의하여 지속적인 분해가 일어날을 알 수 있었다. 또한 고농도 dope의 이온분해는 알과 샘플로소스의 분해가 분자량 감소의 주된원인 반면 저농도 dope에서는 알과 샘플로소스의 분해가 적어 저농도로부터 재조한 샘플로소스 섬유는 상대적으로 높은 알과 샘플로소스를 함유하고 있음을 알 수 있었다.

3. 이온분해에 의한 분자량 저하 및 알과 샘플로소스의 함량 감소는 섬유의 배양성 감소를 유발하고 이는 재활용성 섬유의 피복력과 현상성을 감소시키는 효과를 갖는다.

4. MMNO/샘플로소스 pre-dope를 이용하여 얻어진 샘플로소스 섬유는 기존의 dope 및 비스코스 공정에서 얻어진 섬유에 비하여 활동히 우수한 기계적 특성을 갖고 있음을 알 수 있었다.

5. 높은 분자량과 알과 샘플로소스를 갖는 섬유에 있어서 우수한 기계적 물성을 유지하는 요인으로서 이들 분자량 및 알과 샘플로소스 함량을 듯 수 있으나 이론에 의하여 분자량 감소의 샘플로소스 함량 이 감소된 경우 섬유의 배양성이 기계적 물성에 더 영향을 미침을 확인하였다.

6. 샘플로소스 섬유의 신희율이 이들의 분자량 및 알과 샘플로소스 함량보다는 섬유의 배양성과 더 밀접한 관계를 갖음을 알 수 있었다.

참고 문헌