Properties and Curing Behaviors of Natural Rubber with Peroxide and Curing Coagents

Jin-Bong Kim*, Seung Ki Jeong*, Sei Chul Oh*, and Dong Ho Kim
Department of Polymer Engineering, Chonnam National University, Kwangju 500-757, Korea
*R & D Center, KumHo, Kwangju 506-040, Korea
(Received October 26, 1996)

ABSTRACT: Curing behaviors and mechanical properties of natural rubber by peroxide in the presence of multifunctional vinyl coagents were investigated. Triallyl cyanurate (TAC), ethylene glycol dimethacrylate (EDMA), and methylene 1,4-diphenylene bismaleimide (MDPBMI) were applied as curing coagents. From the results of curing rate, degree of cross-linking, elongation, cure time, and scorch time, the reactivities of coagents were found to be significantly changed with the electronic characteristics of coagents. The electron withdrawing feature of MDPBMI has especially enhanced the cross-linking reactivity of rubber compounds. These curing phenomena could be explained qualitatively by the adoption of Alfrey and Price (Q-e) concept referring to radical copolymerization, and the feasible curing mechanisms were suggested.

Keywords: peroxide curing, NR compounding, cross-linking coagent, monomer reactivity ratio.
서 론

Benzoyl peroxide를 이용한 친연 고무의 경화가 1915년 Ostrosmileskii에 의해 발견되었으나, 가황 가교에 비하여 인장강도, 열 안정성 등이 좋지 못하였다. 그 후 1950년대 중반에 이러한 단점을 보완하여 dicumyl peroxide를 이용한 상업적인 염가소성 플라스틱이 생산되기 시작하였다. 현재는 염가소성 플라스틱과 일부 고무산업에 사용되고 있다.

파산화물은 유연한 고분자 경화의 가장 두드러진 특징은 열적 안정성이 증가한다. 이는 일반적인 가황 가교에서 형성되는 결합인 C-S (285 KJ), S-S (155~270 KJ)보다 더 큰 결합에너지 갖는 C-C (350 KJ) 결합이 파산화물을 이용한 고분자의 경화시 형성되기 때문에. 이에 의한 분자간 결합은 보호 및 분포표 고분자가 모두가 가교시킬 수 있고, 형질과 접촉이 낮으며, 내약성, 내유성의 장점, 전기 절연성의 우수하다. 단점으로는 인장강도와 인 열강도가 낮고, 내 마모성이 좋지 않다. 일반적으로 파산화물을 이용한 고분자의 경화시 경화조치를 첨가하여 경화속도가 증가하며, 최종 경화시간이 단축되고 가교도를 증가시킨다. 본 연구에서는 라디칼 가교반응성과 가교효율에 대한 화학반응을 이해하기 위하여 일반적으로 사용되는 경화초조제를 사용하여 친연 고무의 라디칼 경화시 경화조제에 따른 경화반응 가속을 분석하였으며, 고무의 역학적 물성 및 특성 변화에 영향을 주는 경화조제의 반응특성을 비교 평가하였다.

설 치

재료. 본 실험에 사용한 재료는 NR (natural rubber SMR-20, cis-1,4-polyisoprene 95% 이상)과 DCP (dicumyl peroxide, Mw=270.37, 순도 98%, Aldrich Co.) 그리고 경화조제로 TAC (trialyl cyanurate, Mw=249.27, 순도 97%, TCI), EDMA (ethylene glycol dimethacrylate, Mw=198.22, 순도 97%, TCI), MDPBMI (methylene 1,4-di-penthylen bismaleimide, Mw=358.36, 순도 95%, Aldrich Co.)를 사용하였으며 model reaction을 위한 N-phenylmaleimide (N-PMI)를 합성하여 사용하였.

<table>
<thead>
<tr>
<th>Table 1. Compounding Ratios of NR Curing System</th>
</tr>
</thead>
<tbody>
<tr>
<td>ingredient</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>NR</td>
</tr>
<tr>
<td>peroxide</td>
</tr>
<tr>
<td>coagent*</td>
</tr>
</tbody>
</table>

* TAC (trialyl cyanurate). EDMA (ethylene glycol dimethacrylate). MDPBMI (methylene 1,4-diphenylene bismaleimide).

하다. 용매 톨루엔 (순도 97%, Yakuri Co.)은 molecular sieve로 수분을 제거한 후 사용하였다.

Table 1과 같은 배합조건으로 internal mixer를 이용하여 side drum temperature 40 ℃, rpm 40 으로 5분간 소량한 후 경화조제를 투입하고 7분간 혼합 후 파산화물을 투입한 다음 5분 혼합하여, hot press (Carver laboratory press Model C.FRED S. Carver Inc. U.S.A.)를 이용하여 160 ℃에서 300 psi 압력 하에서 10분 경화시킨 후 압력을 첩천히 증가시키며 1500 psi 압력 하에서 20분간 경화시켰다.

분석 및 측정. 경화특성은 rheometer (Monsanto 100s)를 이용하여 160 ℃에서 측정하고, 125 ℃에서 Mooney viscometer (Monsanto 1500)로 공정 안정성을 관찰하였다.

인장강도는 ASTM D3184에 규정에 따라 달달형 시편을 준비하고 Shimadzu Autograph AG-D type 안장시험기를 이용하여 crosshead speed 100 mm/min 조건으로 측정하였다.

고무의 기기시험은 톨루엔 용매를 사용하여 24 hr 이상 충분히 폐인시킨 후 폐인도를 측정하였다. 동적특성은 Rheovibron (Toyo baldwin DDV-3-EA type)으로 -80 ℃~+80 ℃ 범위에서 승온속도 3 ℃/min, 진동수 11 Hz 조건으로 측정하였다.

결과 및 고찰

경화조제의 가교반응성. 친연 고무의 가교반응성 구가 파산화물의 분해에 의해서 생성된 라디칼의 공격에 의해 친연 고무에 새로운 라디칼을 생성한 후 이 고분자 라디칼이 경화조제와의 반응으로 이 해되며 이러한 반응가동은 isoprene 단량체와 경화보
조제간의 공중합 거동과 유사하다고 판단할 수 있다. 이러한 가정 하에 고분자의 라디칼과 경화조제의 반응성을 Alfred and Price (Q-e) scheme으로 설명할 수 있다.89 Alfred and Price (Q-e) scheme 관계식에 의해서 각 단량체의 반응성 비를 구하여 비교하면 공중합체의 형태와 상대적인 반응성을 판단할 수 있다. 각 단량체에 대한 Q-e 값을 Table 2와 같다.

각 monomer의 반응성 비 \(r_1, r_2 \) 값을 다음 식 (1)으로부터 구한 결과는 Table 3과 같다.

\[
\begin{align*}
Q_1 &= \frac{Q_1}{Q_2} \exp(-e_1(e_1-e_2)) \\
Q_2 &= k_{11}/k_{12} \\
Q_2 &= \frac{Q_2}{Q_1} \exp(-e_2(e_2-e_1)) \\
r_2 &= k_{22}/k_{21}
\end{align*}
\]

Table 3에서 각 monomer 혼합계의 반응성 비를 비교하면 NR/TAC 혼합조제에서는 \(r_1 \)은 충분히 큰 값을 갖는 데 반하여 \(r_2 \)가 0에 접근하므로 NR에 생성된 라디칼이 TAC의 비강기를 공격하기가 매우 어려워 TAC는 경화조제로서의 반응성이 거의 없다고 판단된다. 반면에 NR/MDPBM1 혼합조제에서는 \(r_1, r_2 \)가 모두 0에 접근하고 있으므로 이중 단량체에 대한 강한 선호가 예상되며 이러한 조건에서의 NR 주체에 생성된 라디칼이 MDPBM1을 쉽게 공격하여 부가될 수 있다고 판단된다. NR/EDMA 혼합조제의 경우는 \(r_1 \)이 우세한 렌덤 공중합성으로 가교반응성은 앞의 두 경우의 중간정도로 예상된다. 즉, 반응성에서 임계점에 효과가 부실될 수 있으며 혼합계의 교대공응성 성격이 강하면 비밀관능 형 경화조제의 가교반응성은 보다 효과적이라고 예상할 수 있다. 이러한 결과는 rheometer에 의한 가교반응속도 거동 (Fig. 1)과 평균실험에 의한 가교정도 (Fig. 3)의 비교 결과와 잘 일치하고 있다. Fig. 1에서 peroxide 1 phr, MDPBM1 1 phr (curve a)을 함유한 고무혼합물의 최종 torque가 같은 비율의 다른 경화조제를 함유한 고무혼합물의 torque보다 높고 빠른 가교수도를 보여주며, 또한 peroxide 0,5 phr, MDPBM1 4 phr의 curve b에서 보면 경화조제의 양이 증가하면 가교효과의 증대가 초기 torque가 낮아지거나 적은 과산화물의 청과도 불구하고 가교수도는 오히려 증가되었고, 산화물 1 phr 단독과 비교해도 더 높은 가교도를 보이고 있다. 최종 가교도는 과산화물의 초기가능도와 관련이 있으나 경화조제의 반응성에 따라서 가교효용의 큰 차이를 보이고 있다.

경화반응기구, 과산화물에 의한 천연고무의 경화반응은 과산화물의 분해로 생성된 라디칼에 의해 고분자의 주체에 대한 hydrogen abstraction과 고분자 라디칼간의 저항에 따른 가교반응으로 진행되므로 결과적으로 해제된 또한 \(\beta \)-scission 등 비가교성 반응이 동시에 발생한다 (Fig. 2). 그러나 반응성 경화조제의 존재시 부가반응이 우천하여 고분자 라디칼의 경화조제에 대한 부가반응이 빠르게 진행되어 라디칼...
Peroxide only

\[
\begin{align*}
\text{Peroxide} & \xrightarrow{2R} P \\
\text{R} \cdot + H & \rightarrow P + RH \\
\text{P} \cdot + M & \xrightarrow{\text{fast}} P \cdot + M \\
\text{P} \cdot + M & \rightarrow \text{No reaction} \\
\text{P} \cdot + P & \rightarrow \text{by electronic attraction} \\
\text{P} \cdot + P & \rightarrow \text{by electronic steric repulsion} \\
M & \rightarrow \text{Coagent} \\
P & \rightarrow \text{Polymer}
\end{align*}
\]

Peroxide with effective Coagent

\[
\begin{align*}
\text{Peroxide} & \xrightarrow{2R} P \\
\text{R} \cdot + H & \rightarrow P + RH \\
\text{P} \cdot + M & \rightarrow P + M \\
\text{P} \cdot + M & \rightarrow \text{No reaction} \\
\text{P} \cdot + P & \rightarrow \text{by electronic attraction} \\
\text{P} \cdot + P & \rightarrow \text{by electronic steric repulsion} \\
M & \rightarrow \text{Coagent} \\
P & \rightarrow \text{Polymer}
\end{align*}
\]

Figure 2. Radical curing mechanism of NR with or without coagent.

Table 4. Relationship between Swelling Ratio and Cross-Linking Density in NR-Toluene System

<table>
<thead>
<tr>
<th>Q</th>
<th>(v_r)</th>
<th>(1/M_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>0.154</td>
<td>0.000087</td>
</tr>
<tr>
<td>5</td>
<td>0.167</td>
<td>0.000104</td>
</tr>
<tr>
<td>4.5</td>
<td>0.182</td>
<td>0.000126</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.000156</td>
</tr>
</tbody>
</table>

Swelling ratio Q, volume fraction of rubber \(v_r \), and \(1/M_c \) were calculated by eq. (2) and eq. (3) using \(\rho \), \(\rho \), and \(V \).

Flory swelling equation에 따른 식 (3) 폐윤도로 나타내었다. \(\rho \) 예의 폐윤도-가교밀도 관계는 Table 4와 같다.

가교밀도 \(\nu = \frac{1}{M_c} = \frac{-\ln(1 - \nu)}{\rho V_1(v_1^{1/3} - \nu)} \) (2)

\[
v_r = \frac{1}{1 + Q}
\]

\(\nu \): 시료 1g 당 유효가교 물수

\(M_c \): 가교간 폐균분자량

\(\rho \): 시료 밀도

\(\chi \): Flory-Huggins 고분자-용매 상호작용 변수

\(V_1 \): 용매 음부피

\(v_r \): 폐윤시료 내 고분자 부피분율

폐윤도 \(Q = \frac{(W_1 - W_0) \rho}{W_0 \rho} \) (3)

\(W_0 \): 초기 시료 무게

\(W_1 \): 폐윤 후 시료 무게

\(\rho \): 용매 밀도

경화보조제 첨가효과를 살펴보면 변동성이 낮은 TAC는 변동기가 3개로도 불구하고 가교에 대한 기여도가 낮기 때문에 첨가하는 양이 증가하면 또한 경화보조제에 비하여 유효적 물성변화에 미치는 영향이 적지만 EDMA에 특이 MDPBMI는 변용성이 높아 가교반응에 크게 기여하지 역학적 물성에 미치는 영향이 크다. Fig. 3의 경화보조제 함량에 따른 폐윤성 결과에서 유추되는 가교의 변화는 경화보조제의 변용성과 밀접한 관계가 있으며, 과산화물
Figure 3. Swelling ratios as on various coagents and contents with peroxide 1 phr.

Figure 5. Elongation ratios as on various coagents and contents with peroxide 1 phr.

Figure 4. Tensile strength as on various coagents and contents with peroxide 1 phr.

정 가교도에서 최대 물성치를 보이며 이때의 가교도
인장의 대체로 평균도 5 (1/Mc=0.0001)부근의 값
을 갖고 있으나 최대 강도발현의 측면에서는 고반용
성 경화보조제가 다소 유리해 보인다. 이는 교대 공
중합특성과 동시 따른 가교반응성을 갖기에 가
교간 결합중게 C-C 결합에서 C-정화보조제-C 결
합으로 달라지는 효과와 관련되어 보이며, 가교중
제가 C-C, C-S-C, C-Sx-C로 달라질때 따라 최대
인장강도의 증가를 보이는 예와 유사하다고 생각된
다. 신장율의 변화 (Fig. 5)는 평균현상과 유사하게
가교장도가 높을수록 높아지는 특성을 보이고 있다.

결
론

1. 천연고무의 라디칼 경화시 혼용된 비닐 관능형
경화보조제에 따른 경화속도 및 가교효율의 큰 차이
는 경화보조제 비닐 관능기의 전자 공여-흡인 특성에
따른 라디칼 반응성에 의존하며, 라디칼 공중합시 반
량체간의 공중합 가동을 설명해 주는 Alfrey-
Price (Q-e) 개념에 적용함으로써 가교반응성의 상
대적인 평가가 가능하였다.

2. Rheometer를 이용한 경화가동 분석, 평균현상,
한성율, 신장율 변화 등으로부터 NR (isoprene)과 경화보조제간의 라디칼 교대공중함성이 우세할수록 가교수도와 가교도의 증가를 확인하였다.

3. 1개의 관능기를 갖는 N-PMI의 가교 반응성이 2개의 관능기를 갖는 MDPBMI에 비해 현저히 낮은 것은 가교반응의 주요 반응경로가 C-경화보조제-C 형태로 이루어진을 가정할 수 있다.

4. Peroxide 1 phr 기준에서 최적의 역학적 응성을 나타내는 경화보조제들의 농도는 경화보조제 TAC: 4 phr, EDM: 2 phr, MDPBMI: 0.5~1 phr 수준으로서 이때 대체로 일정한 가교도 (1/$M_e = 0.0001$ 부근)를 나타내었으며, 파산화물의 침가 농도가 일정하더라도 경화보조제 참가량 변화시 광범위한 가교도의 선택이 가능함을 보이고 있다.

감사의 글: 본 연구는 (주)금호타이어 연구비 지원으로 수행되었기에 감사드립니다.

참 고 문 헌

