Studies on the Design and Compression After Impact
Test of Hybrid Composites

Geon Woong Lee, Ki-Jun Lee, Sooho Lim*, Junkyung Kim* and Chul Rim Choe*
Department of Chemical Engineering, Seoul National University
*Div. of Polymer Research, Korea Institute of Science and Technology

(Received February 3, 1996)

ABSTRACT: Composite materials containing two or more kinds of fibers are called hybrid composites. The most popular hybrid composites are glass-carbon and aramid-carbon hybrids. The addition of carbon fibers to glass-fiber-reinforced composites will produce a hybrid composite with increased stiffness and satisfactory strength at a reasonably low cost. In this work, low-velocity impact damage characteristics and compressive strength after impact of quasi-isotropic glass-carbon hybrid laminates are investigated. Low-velocity impact test is performed using a drop weight type impact test system and the damage zone due to impact is detected by C-scan. Compression after impact tests of single composites, delamination-simulated specimens and hybrid composites are performed to compare the residual compressive strength each other. Also the low-velocity impact damage characteristics and hybrid design of the glass-carbon hybrid laminates are discussed.

Keywords: hybrid composite, glass-fiber-reinforced composite, carbon-fiber-reinforced composite, low-velocity impact test, compression after impact (CAI) test.
혼합복합재료 (hybrid composite)는 서로 다른 두 종류 이상의 강화섬유를 합유하고 있는 고분자 복합 재료이다. 혼합복합재료는 단일복합제의 물성을 크게 상향적으로 개선한 것으로, 지난 섬수년간 이에 대한 연구가 활발하게 진행되어 왔으며, 그 결과로서 이러한 재료의 응용분야가 급격하게 증가하는 추세이다. 이러한 혼합복합재료의 가장 보편적인 예는 유리섬유와 탄소섬유 그리고 아라미드섬유와 탄소섬유의 혼합을 들 수 있으며, 이들 각각의 성유는 보통 높은 신장율과 낮은 산장률의 빌로 구성되어 있다. 혼합복합재료의 특성을 살펴보면 첫째, 최적효과에 의한 경제적 인 이점, 둘째, 기계 물리적인 특성의 다양한 가능, 셋째, 치명적인 파열에 대한 예비경고 system의 가능 성 부여, 넷째, 'hybrid effect'와 같은 유일한 특 성의 구현 등을 들 수 있다. 이에 이르면 탄소섬유 복합 재료의 fracture toughness, 피로특성 등을 강성의 저하없이 형상시킬 수 있는 점은 혼합복합재료가 최근의 연구와 제로 각광을 받고 있는 이유이다.

혼합복합재료의 구성방식은 강화섬유의 적층 또는 배열에 따라 여러 가지 방법이 가능하다. Fig. 1은 크게 두 가지 예를 보여주고 있는데, (a)는 하나의 섬유로 구성된 각각의 라미네이트를 섹트로지 방법과 교대적층 방법으로 배열한 것이고 (b)와 같이 하나의 라미네이트안에 이중의 섬유로 적층형태를 구성하는 방법도 사용되고 있다. 혼합복합재료가 설계적인 관점은 물론 학문적인 연구과정에서 주목을 받게 되는 것이 hybrid effect로 알려진 물성의 상승효과 때문이다. Hayashi는 1 일정한 방향을 가진 탄소섬유와 아라미드섬유의 강화 플라스틱과 유리섬유와 액체시트지의 강화 플라스틱을 결합시켜 제조한 혼합복합재료에 대하여 연구를 하여, 혼합법칙에 의해 계산한 물 성량이 실제와 비교하였다. 실험에 의한 물성치와 혼합법칙에 의한 물성치를 비교한 결과 탄성율은 이론치와 일치하나 최대응력과 그래의 변형은 이론치보다 크다는 사실을 보여주었으며, 이러한 현상은 탄소섬유/액체시트지 부분의 파피가 유리섬유/액체시트지 부분의 유연성 때문에 발생되는 것이라고 발표하였 다. Well과 Hancx는 2,3 탄소섬유와 유리섬유의 혼합복합재료를 제조하여 굴곡시험 및 충격시험을 행하여도 섬유들을 모두 한쪽 방향으로 배향하여 도색 시편을 제조하여 시험한 결과 혼합복합재료나인 탄소 섬유 함량이 50%로 줄어도 물성들은 10%정도만 줄어도 있다는 사실을 발표하였다. 즉 비교적 값이 저렴 한 유리섬유를 탄소섬유와 함께 사용함으로써 경제적 인 복합재료를 제조할 수 있다는 것이다.

고분자 복합재료의 본질 평가 방법에는 여러 가지 가 사용되고 있다. 특히 항공기 구조물 등에 사용되 는 복합재료에 대하여 저속층함으로 인한 손상 후 아가리는 문제 해결을 위해 많은 연구들이 진행되어 왔 다. 이들 연구들은 두 가지로 대분할 수 있는데 한 가지는 재료를 개발하거나 개발시험으로써 물성을 높 이는 방법이고 나머지는 정화한 해석을 통해 복합재료를 설계함으로써 문제를 해결하는 방법이다. 재료 에 대한 연구로서는 취약성을 지닌 에폭시시트지 대신에 안정이 줄어드는 poly(ether ether ketone) (PEEK) 와 같은 열가성수지들을 사용하거나 에폭시시트지에 열 가성수지 분말을 첨가하여 메트릭스의 강화를 통한 방법 등이 소개되어 있다. 해석을 통한 방법에 대해 하여는 복합재료의 저속층함에 대한 손상 허삼 설계를 위하여 저속층함을 받은 복합재료의 겉도와 손상 및 강도저하에 관한 실험과 4 혼합복합재료의 세 조를 통한 연구 등을 들 수 있다. 탄소섬유/PEEK는 탄소섬유/액체시트 복합재료에 비하여 비강성 및 비강 도가 유지되면서 측면손상에 대한 저항성이 크게 높은 성형이 가능하다는 점이 있으나, 성형이 높은 온도 와 압력을 요구하고 공급가가 높기 때문에 아직 널리

![Figure 1. Systems of hybrid composite laminates.](image-url)
본 연구에서는 총을 강화 유리섬유(form fiber, GF)를 탄소섬유(carbon fiber, CF)와 함께 사용함으로써 총성 및 성능을 최대화시켜 총성 및 성능 후 간류 압착강도를 높일 수 있는 혼합합성재료를 제조하고자 한다. 먼저 탄소섬유/복합재료(CFRP)의 총성분 및 모서리면을 만들어 성능 및 특성을 따라 간류 압착강도에 미치는 영향을 조사하고 혼합합성재료를 실험하기 전에 한 종류의 보강섬유로 이루어진 CFRP와 유리섬유/복합재료(GFRP)를 제조하여 총성 후 압착강도를 총성의 압축에 따라 측정하여 보았다. 혼합합성재료의 디자인으로는 샹드 직후시 굽기(CF/GF, GF/GF)와 고온시합성(DF/CF/DF, GF/GF)을 선택하였으며 성유함량을 달리하여 혼합합성재료를 제조한 후 총성 후 압축(compression after impact, CAI) 실험을 행하였다.

Table 1. Mechanical Properties of Prepregs

<table>
<thead>
<tr>
<th>property</th>
<th>carbon/epoxy</th>
<th>glass/epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>tensile strength(ksi)</td>
<td>285.30</td>
<td>137.63</td>
</tr>
<tr>
<td>modulus(ksi)</td>
<td>18.38</td>
<td>5.78</td>
</tr>
<tr>
<td>compressive strength(ksi)</td>
<td>133.6</td>
<td>133.11</td>
</tr>
<tr>
<td>flexural strength(ksi)</td>
<td>254.24</td>
<td>173.91</td>
</tr>
<tr>
<td>modulus(ksi)</td>
<td>16.76</td>
<td>5.85</td>
</tr>
<tr>
<td>short beam shear strength(ksi)</td>
<td>10.2</td>
<td>10.80</td>
</tr>
</tbody>
</table>

Figure 2. Schematic diagram of lay-up for prepreg lamination according to the BSS 7260 specification.

(주)한국카본 회사의 모델 CU-125 carbon/epoxy 표준체와 GU-175 glass/epoxy 프리페그를 적층 사양한 것으로 재료의 물성값은 Table 1에 있고, 이들 프리페그에 사용된 예제시속이는 250°F에서 정화되는 수치로서 범용으로 사용되는 등급이다.

시편 준비 시편 제작은 보일의 사양인 BSS 7260에 의거하여 크기, 프리페그 개수 및 적층순서를 결정하였다. 즉 32장의 프리페그를 사용하였으며 적층순서는 준방성 구조인 [0°/+45°/90°/-45°]_6을 적용하였다. 프리페그는 25×33 cm의 크기로 적층 및 제작을 단단히 성형하였다. 성형된 하강합성판은 디아이아웃을 이용, 절단하여 10.16×15.24 cm의 크기로 나 개의 시편을 제조하였다. Fig. 2는 프리페그의 적층모양을 보여주고 있다.

Autoclave Process. 복합합성판의 성형은 백성형을 사용하였다. 프리페그의 적층과정은 복합합성판의 물성에 영향을 미치는 중요한 요소 중 하나이다. 이것은 복합합성재료가 풍부하는 달리 이방성과 방향성을 갖는 재료이므로 이의 적층과정 즉, 섬유의 방향이
가래물성을 휘우시카며, 층간의 이물질 흔적의 흔
히 일어나기 때문이다. 각각된 시험결과는 수지확률
e이 없는 공경 (no-bleed)이며 고온 면을 가진 콜
플래트와 툴플레이 사이에 놓이게 된다. 성형 중 전
공백 작업이 가능하므로 공기와 휘발성 물질의 방출
통로를 만들어 주기 위해 브리더를 진공백 전체에
적용한다. 끝으로 툴 가공자의 실린트 세일프
를 붙이고 진공플레이를 내부에 충분한 우수염
줄 수 있도록 하여 레이프에 부착한다. 백색상의 끝
남과 동시에 진공플레이를 이용하여 내부에 존재하는
공기를 체제하고 적층시 함유될 수 있는 프리프레그
내 보이드를 체제하는 작업을 수행한 후 액로브
에서 경화에 들어간다. 백색상이 완료된 시험은 액
로브 경화를 이용하여 Fig. 3 과 같은 경화 주기에
따라 체제하였으며 경화준서는 다음과 같다. (1) 전
공압력은 최소 560 mmHg로 한다. (2) 진공압력은
백색상이 완료된 시간부터 액로브 경화압력이 1.3
기압이 이루기까지 가한다. (3) 내부온도는 125 ±
5 ºC을 적용시키고 온도 상승 속도는 분당 1-15 ºC 사
이로 한다. (4) 액로브 내부에 3.3기압을 가한다.
(5) 압력이 1.3기압일 때 진공압력을 뒤틀어 액로브
한다. (6) 압력은 3.3기압으로 유지하고 온도는 125 ±
5 ºC에서 90분을 유지시킨다. (7) 액로브 압력하
에서 60 ºC까지 내부 압력 은 3 ºC으로 냉각시킨다.
모든 시험에 대해 같은 경화주기를 사용했으므로 경
화반응 후 시험의 경화도는 모두 같다고 가정하고 중
격 및 압축시험을 행하였다.

실험 시안, 단일 복합재료의 파리 특성을 알아보기

Figure 3. Cure cycle for carbon/epoxy and glass/
epoxy laminates (250 ºF cure system).

(a) damage area-simulated specimen
film shape : circle
film diameter : 2, 3, 4 cm

(b) damage volume-simulated specimen
film shape : circle
film diameter : 7 cm

Figure 4. Rule of insert film for damage-simulated
specimens.

위해 CF와 GF의 단일 복합재료를 성형하였다. 또
한, 충격 손상과 CAI값과의 관계를 알아보기 위해
충진분리자에 모수한 시험을 제작하였다. 우선 손상 면
적과 그것의 위치를 변수로 하여 Fig. 4의 (a)와 같
은 방법으로 releasing film을 삽입하여 성형하였고,
3차원적인 부피개념의 충격손상을 모사하기 위해
Fig. 4의 (b)와 같은 방법으로 필름을 삽입하여 성
형하였다. 혼합복합재료는 CF와 GF의 조성을 각각
1 : 1, 3 : 1, 7 : 1의 부피비율로 Table 2와 같은
stacking sequence를 갖도록 성형하였다. 교대적층
형태는 GF를 바깥쪽으로 하여 중심에 대칭이 되
도록 배열하였으며 모든 시편에 적층은 사용된 프
리프레그의 종류에 관계없이 동일하게 적용된다. 성
형이 완료된 시험 시험은 제작공정상의 균열이나 보
이드의 유무를 확인하기 위해 C-scan을 이용하여 검
사하였다.

CAI Test. CAI tests는 시험에 충격을 가한 후 압
축강도를 측정하는 방법이다. 충격시험은 Dynatup
사의 중량하차식 충격시험기를 사용하였다. 시험을
지지해 주는 치구는 0.25 in 두께의 알루미늄으로 군

<table>
<thead>
<tr>
<th>C : G</th>
<th>stacking sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 1</td>
<td>8 16 8 G/C/G/C/C</td>
</tr>
<tr>
<td>3 : 1</td>
<td>4 24 4 G/C/G/C/G</td>
</tr>
<tr>
<td>7 : 1</td>
<td>2 28 2 G/C/G/C/G</td>
</tr>
</tbody>
</table>

Table 2. Stacking Sequence of Hybrid Composite
공합복합재료의 설계 및 충격 후 압축강도에 관한 연구

Figure 5. Schematic diagram of compression support fixture for CAI test.

성되어 있으며 접제를 이용하여 시편과 치구를 고정
시킨다. 충격에너지의 낙하 높이와 치구에 가해진
충격량을 측정해 값을 취한다. 충격시험 후 시편을
Fig. 5와 같이 장착하여 압축강도를 측정하고 본 실험에는 최대하중 60 ton의 universal test machine을
사용하여 실험을 행하였다. 압축강도 계산은 다음 식 (1)과 같다.

\[F_{\text{CAI}} = \frac{P}{bt} \]

여기서, \(P \) : Ultimate load (lb)
\(b \) : Total specimen width (inch)
\(t \) : Nominal thickness (inch)

Ultrasonic Scanning. 비파괴 검사방법의 하나인 초음파 탐사시험을 초음파를 사용하여, 그 피폭체의 건전성 (soundness)이나, 두께, 또는 기타 물리적인
성질을 파악하는 것이다. 본 연구에서 사용된 초음파
탐상기는 펌스-반사법 (pulse-echo method)을 이용
한 수중법 (immersion testing)이 사용되었다. 매질
의 밀도가 바뀌면 반사되는 초음파의 특성을 이용하
여 복합재료 시편 내부에 존재하는 불연속성 즉 중
간이나 공명을 판별할 수 있으며, 충격이 가해
진 후의 손상면적을 2차원적으로 얻을 수 있다.

결과 및 고찰

단일 복합재료의 파괴특성. 혼합복합재료를 연구하
기 이전에 한 종류의 보강섬유로 이루어진 CFRP와
GFRP의 CAI값을 충격에너지의 달리하여 측정하여
보았다. Fig. 6의 (a)와 (b)는 CFRP의 시간에 따
른 충격 하중과 에너지를 보여주고 있다. 충격 에너
지로 25 joule에서 40 joule까지 변화시키면서 시험
해 본 결과 25 joule인 경우에는 하중과선이 요동없
이 진행하는 반면, 30 joule 이상에서는 하중의 심한
요동을 보이며 회복되지 못하는 굽힘 파괴 (flexural
failure)가9 나타남을 관찰할 수 있다. 실제로 Fig. 7
의 (a)와 같이 C-scan으로 충격시험을 검사한 결과
25 joule에서는 불연속면의 파괴가 나오지 않아 파괴가
거의 일어나지 않았음을 예측할 수 있었다. 그러나
30 joule 이상에서는 매우 큰 영역에서 파괴가 일어
나며 충격 에너지의 증가에 따라 2차원 손상 면적이
증가하는 것을 Fig. 7의 (b), (c), (d)에서 확인할
수 있다. Fig. 6의 (c), (d)와 같은 GFRP의 경우
충격 하중 곡선이 약간 감소한 후 다시 회복되는 과
정을 반복하면서 진행되는 전단 파괴 (shear failure)
가9 관찰되었고, 초음파 검사에서는 충격에 의한
파괴를 관찰할 수 없었다.

초음파에 의한 C-scan검사는 시편의 손상을 2차
원적으로 투영한 결과만을 보여주고 또한 감지하는
파괴의 크기에도 한계가 있다. 충격시험 내부의 파괴
농도를 알아보기 위해 충격시험을 1 cm 간격으로 절
단하여 두께방향 단면을 관찰하였다. Fig. 8의 (a)
는 2차원적으로 투영된 충격분리 영역을, (b), (c),
(d)는 동일 시편 내부에 존재하는 서로 다른 각의
충간이 있는 영역을 보여주고 있다. 이외에도 굽힘 파괴
가 일어나는 GFRP는 실제 내부에서 여러개의 층이
서로 분리되는 손상으로 나타남을 확인하였다. 또한
충간이 있는 영역의 방향은 파괴되는 층의 아래면의
적측방향과 일치함을 보여주고 있다. 전단 파괴가 일
어나는 GFRP는 충간분리가 관찰되지 않았고 단지
섬유의 파괴를 동반한 미세균열만이 관찰되었다. 이
것은 유리섬유의 높은 연속성으로 인해 충격에너지
가 미세균열의 형태로 출수되어 충간분리로 바지하는
것으로 해석할 수 있다. 이들 단일 복합재료의 충격
시험을 통하여 CFRP는 자체가 가지고 있는 높은 강
성에 의해 섬유 자체의 파괴보다는 수지층이 분리되
는 현상을 보여주었고, GFRP의 경우 본 실험에서
주어진 충격에너지 범위 내에서는 섬유 자체의 미세균
열로 나타날 수 있었다.

폴리머 제20권 제4호 1996년 7월 643
충격시험을 만일 복합재료를 사용하여 양면시험을 수행하였다. Fig. 9는 CFRP와 GFRP의 충격에너지 양에 따른 CAI값을 보여주고 있다. CAI 시험 결과 CFRP와 같이 충간분리가 일어나는 30 joule 이상의 시험 경우는 CAI 값이 급격한 감소를 보였다. 반면 GFRP와 같이 충간분리가 아닌 미세균열이 발생하는 경우는 충격에너지의 증가에 따라 약간 감소하는 경향을 보여주었다. 즉 복합재료 내에 충간분리가 없이 미세균열이 일어나는 경우 섬유 다발의 breakage가 증가하여도 CAI값에는 큰 영향을 주지 못한다는 것을 알 수 있다. 반면, 복합재료 내에 충간분리가 일어나면 CAI 값이 급격히 감소하는 것을 보여준다. 이 결과로부터 복합재료의 CAI값에 영향을 미치는 중요한 인자는 충간분리임을 유추할
Figure 7. Damage area detected by C-scan for CFRP with different impact energy. (a) 25 J, (b) 30 J, (c) 35 J, (d) 40 J.

Figure 8. Characterization of damage area by observing the cross-section of CFRP with 30 joule. The cross-section represents the center of composites; dotted line, →: direction of lay-up below the delamination.

수 있다.

손상 면적 모사 시편. CFRP시편에 충격분리된 면적을 조절하여 CAI값에의 관계를 알아보기 위해 시편의 내부에 releasing film을 삽입하였다. 이와 같은 모사 시편은 Fig. 4의 (a)와 같이 삽입된 필름의 정방 및 위치가 다른 9개의 시편을 생성하여 충격시험을 수행하였다. Fig. 10은 손상 면적을 모사한 시편의 CAI값을 보여주고 있다. 실험결과 CAI값이 삽입 필름의 위치 (충격분리시킨 위치)에는 무관할음
Figure 9. CAI value of CFRP and GFRP as a function of impact energy.

Figure 10. CAI value of damage area-simulated CFRP specimen.

알 수 있었다. 그러나 충진분리 영역이 증가함에 따라 손상 면적이 커짐에 따라 감소하는 것을 알 수 있다. 이러한 결과로부터 CAI값을 함성시키기 위해 서는 충격시 충진분리되는 위치를 조절하기보다는 충 진분리되는 부위를 줄이는 것이 효과적이라는 사실을 주장할 수 있다.

손상 부피 교차 시편. 실제 충격을 받은 시편은 충

분리가 여러 측에서 발생하기 때문에 2차원적인 손상 면적만으로는 CAI 값의 연관성을 유추하는 매우 어렵다. 그러므로 본 실험에서는 손상된 부위의 부피를 측정하기 위하여 2장 이상의 필름을 시편 내부에 삽입시켜 실험을 행하였다. CFRP시편에 직경 7cm의 필름을 Fig. 4의 (b)와 같이 삽입하여 손상 부피를 모사한 시편을 제작하였다. 이 실험은 2 차원적인 손상 면적은 같지만 3차원적인 면적은 세 배까지 커진 것으로 그 결과는 Fig. 11에 보여주고 있다. CAI 실험 결과 삽입 필름의 수가 많아짐에 따라 감소하며, 이 결과로부터 CAI값과 손상 면적과의 관계를 결정하는데 있어서 C-scan들과 같은 3차원 손상 면적만으로는 그 연관성을 나타낼 수 없음을 알 수 있다.

혼합복합재료. CFRP와 GFRP의 혼합복합재료를 제조하여 CAI 시험을 했다. 센드워치 방법으로, 가상처리에 따른 8장의 프리퍼스를 가운데에는 16장의 다른 종류의 프리퍼스를 적층한 혼합복합 재료의 충격시험 결과를 Fig. 12에서 보여주고 있다.

혼합복합재료는 보고된 단일 복합재료의 충격시험 결과에서 설명한 바와 같이 단소형이고 가장치에 위치할 때는 급히 파괴, 즉 시편 내부에 충진분리가 우세하고 유리섬유가 가장치에 있을 때에는 충진분리보다는 미세균열이 우세한 것으로 예측할 수 있으.
Figure 12. Impact load history and energy history for sandwich type hybrid composites at 30 J impact energy. (a) CF/GF/GF and (b) GF/CF/GF.

Figure 13. CAI value of different hybrid composites at 30 J impact energy as a function of CFRP content.

로ることが 보여주고 있는데 총감결과 정확한 것으로 예측된 GF/CF/GF 샌드위치형태가 CF/GF/CF 형태나 교대적층형태보다 모든 조성에서 더 높은 CAI값을 가짐을 알 수 있다. 즉 CAI에 가장 큰 영향을 주는 총감결과 내부 CF층에서만 발생하며 또한 그것의 크기로 다른 디자인이 비해 작은 변동을 갖게 되므로 상대적으로 CAI값이 높일 수 있다는 것이다. 또한 1/4 4지자인 모두에 대해 CF의 조성이 증가하면서 CAI값이 증가함을 보여주며 변칙하였다. 이는 GF함량이 감소함에 따라 GF에 의한 충격 흡수 효과가 크게 감소하여 두께가 얇은 단일 CFRP와 같은 간을 보이는 것으로 해석할 수 있다. GF가 50%인 경우 CF 100%보다 더 높은 CAI값을 보이는 현상에서 GF의 함량에 최적값이 있음을 예상할 수 있으며 이는 복합재료 구조물 내의 응력분포를 계산하던 해석이 가능할 것으로 예상된다.

충격시험의 파괴 단면을 관찰한 결과 총감결과 여러 층에서 발견되었다. 2차원적인 투영 면적과 각각의 총감결과 면적을 Table 3에 정리하였다. 전체적으로 CF의 함량이 증가함수록 총감결과의 발생 개수가 많아짐을 알 수 있고 GF가 바깥쪽에 위치하는 샌드위치형태(G/C/G)보다 CF가 바깥쪽에 위치하는 샌드위치형태(C/G/C)가 더 많은 수의 총감결과를 보여주며 이 결과는 충격시험 및 CAI 시험 결과와 일치함을 알 수 있다. 또한, 2차원적인 투영면적
Table 3. Damage Area Detected by Observing the Cross-section of Hybrid Composites

<table>
<thead>
<tr>
<th>specimen</th>
<th>area of each delami-</th>
<th>all layer</th>
<th>trajectory</th>
<th>nation layer (cm²)</th>
<th>sum</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/G/C</td>
<td>1:1 7 21 3 3</td>
<td>31</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3:1 24 24 26</td>
<td>79</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:1 32 13 7 15</td>
<td>66</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1 little</td>
<td>little</td>
<td>little</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/C/G</td>
<td>3:1 26 36</td>
<td>62</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:1 59 32</td>
<td>91</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1 21 15 12</td>
<td>48</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternating</td>
<td>3:1 29 20 23</td>
<td>72</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:1 5 32 32</td>
<td>69</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

보다 각 혼합복합재료에서 층간분리된 면적 총합의 크기가 CAI 값의 크기와 잘 연결됨을 알 수 있다. 즉 C/G/C의 경우 두께면적에 의하면 (3:1)시편과 (7:1)시편의 면적이 비슷하나 각 시편의 CAI 값을 비교해 보면 큰 차이를 보여주며 이것은 층간분리된 면적 총합으로 얻는 결과와 일치함을 알 수 있다.

결 론

단일복합재료 및 혼합복합재료에 대하여 층기시험을 하였고 층기손상을 알아보기 위해 C-scan을 이용손상면적을 측정하였다. 또한, 층기손상의 특성을 해석하기 위해 층기시험의 두께방향 단면을 관찰하였고, 고분자 복합재료의 CAI값 향상을 위해 모사시험을 제작하여 압착시험을 행하였다. 모사시험은 층기형성되는 층간분리의 인위적으로 만들어주기 위해 원형의 편평을 시험대부에 삽입하였으며, 위치에 따라 한개의 층간분리가 가진 시편과 여러개의 층에서 층간분리를 갖는 손상부와 모사시험을 제작하였다. 이상의 연구결과로부터 다음의 같은 결론을 얻었다.

1. CFRP는 층기에너지 증가에 따라 급격한 파괴가 일어나며 그 손상은 수지중이 낮은 영역에서 분리되는 층간분리로 나타남을 확인하였다. GFRP는 본 실험이에서 사용한 층기에너지는 범위에서 섬유자체의 미세균열의 형태로 관찰되었다.

2. CFRP와 같이 층간분리가 일어나는 시편은 CAI값이 급격한 감소를 보였고, GFRP와 같이 미세균열이 발생하는 시편은 층기에너지 증가에 따라 CAI값이 약간 감소하는 경향을 보았다. 즉 복합재료 내에 층간분리없이 미세균열이 일어나는 경우 섬유다발의 파괴가 증가하여도 CAI 값에는 큰 영향을 주지 못한다는 것을 알 수 있다. 이 결과로부터 복합 재료의 CAI 값에 영향을 미치는 중요한 인자는 층간 분리일을 유추할 수 있다.

3. 층기 손상 모사시편의 압착시험 결과 층간분리된 위치에는 큰 영향이 없으며, CAI 값과 손상면적의 관계를 결정하는데 있어 C-scan과 같은 2차원 손상면적만으로는 그 연관성을 나타낼 수 없음을 알 수 있었다.

4. 혼합복합재료의 CAI시험 결과 GF/GF/GF 섬드위치형태가 모든 조성에서 더 높은 CAI 값을 보여 주었다. CAI에 가장 큰 영향을 주는 층간분리가 내부 CF층에서만 발생하며 그것의 크기도 다른 디자인에 비해 작은 면적을 갖게 되므로 상대적으로 높은 값이 나타나는 것으로 해석할 수 있다.

5. 혼합복합재료 층기시험의 단면관찰결과 C-scan에 의한 전체 손상면적을 여러개의 층간분리로 나누어 볼 수 있었고 전체면적보다는 여러개의 층을 합한 면적이 CAI 값과 같으면 관리가 있을음을 알 수 있었다.

본 실험으로부터 혼합복합재료의 CAI값을 향상을시키기 위해서는 GF/GF/GF 형태와 같이 층간분리를 억제할 수 있는 섬유를 바갈목에 두는 것이 유리하며 유리섬유와 탄소섬유의 함량을 최적화함으로써 CAI 값을 증가시킬 수 있음을 알 수 있었다.

참 고 문 헌

4. 최호현, 최동록, 홍창선, 한국복합재료학회지, 6, 69 (1993).
8. “Suppliers of Advanced Composite Materials Associ-