Toughening of Epoxy by Inclusion of Cellulose Particles

Junkyung Kim†, Myunghun Lee*, Soonho Lim, and Chul Rim Choe
Division of Polymer Research, Korea Institute of Science and Technology
*Department of Chemical Engineering, Dong Kook University
(Received September 28, 1995)

ABSTRACT: By inclusion of cellulose particles, the fracture toughness of modified epoxies was considerably enhanced without loss of its inherent properties, such as modulus and yield stress. The fracture toughness of modified epoxies is not affected by the crosslinking density of epoxy but affected by aspect ratio of cellulose particles. The maximum fracture toughness can be obtained by using cellulose particles with aspect ratio 8. The increase in toughness in this system seems to arise from a combination of processes that include crack bifurcation, ductile fracture of cellulose, particle pull-out, and defibrillation. Among them, crack bridging and pull-out mechanisms are suggested as dominant toughening mechanisms for cellulosic-modified epoxies.

Keywords: epoxy, cellulose, toughening, thermoplastic toughener, toughening mechanisms.

서론

에폭시 수지는 기계적 물성에 우수하며 내화성, 치수안정성 등이 나아하여 지난 20년 동안 섬유강화 복합재료의 메트릭스로 각광을 받았으며 그 우수한 물성을 이용하여 일반 레저 분야뿐 아니라 자동차, 항공기 분야 등에 그 이용이 확산되고 있다. 1) 그러 나 에폭시 수지는 위에 언급한 여러가지 장점에도 불구하고 낮은 강연성으로 인하여 고성능 구조재료의 이용에 크게 제약을 받아 왔으므로 그 강화화도를 증가시키기 위한 연구가 집중적으로 수행되어 왔다. 

에폭시를 강연화 시키는 방법으로는 2차 분산성을 도입하는 방법이 일반적이며, 고무나 열가소성수지의 이용 방법이 가장 많이 연구되고 있다. 고무를 이용한 에폭시의 강연화는 지급까지 보고된 것 중에서 가장 높은 강연화도의 증가를 보여주고 있으나 에폭시의 기계적 물성과 유리전이온도를 높여야 하며 에폭시의 가료밀도가 높아질수록 그 효과가 감소하는 단점이 있다. 2-11 최근에는 이러한 단점을 극복하기 위하여 열가소성 수지를 이용한 에폭시의 강
셀룰로오스 분말을 이용한 예폭시 수지의 강화

인화에 대한 연구가 많이 진행되고 있다. 열가소성 수지를 이용한 강화화 예폭시 제조는 용해-상분리 공정이 가장 많이 이용되고 있으나 이 공정은 상 분리가 동하여 난한 상태로 굴림가 어려우며 공정이 복잡하기도 한다. 따라서 수지를 분말 산으로 가공하는 공정이 연구되고 있으며, 이 방법은 강화재 입자의 형태 구조 및 분용조절의 유의성, 그리고 공정의 간편성 등의 장점으로 인하여 실제 공정에 적용 가능성이 가장 크다고 시간 단위의 분

말상으로 얻을 수 있는 열가조성 수지는 극히 한정되어 있다.

그러므로 본 실험에서는 용이하게 분말상으로 얻을 수 있는 결정성 폴리머인 셀룰로오스을 예폭시 수지의 강화재로 이용하여 그 강화효과를 검토하였으며 예폭시 가로길이가 강화재에 미치는 영향 및 그

에 따른 강화효과를 고찰하였다.

실험

원료. 예폭시 메트릭스로는 이 관능성 예폭시인 DGEBA (국제호 : YD128)의 사관능성 예폭시

(Shell사 : HPT1071)를 사용하였다. 이 관능성 및 사관능성 예폭시에 사용된 강화재로는 4,4’-diamino-nodiphenylmethane (DDM)과 Shell사의 HPT1062 를 사용하였으며 각각의 최적혼합비는 20 phr과

65 phr이다. 사용된 예폭시와 강화재의 화학식은

Fig. 1에 나타내었다. 예폭시 수지의 강화화를 위해 사용된 강화재는 서로 다른 aspect ratio를 가

지는 결정성 열가소성 수지인 셀룰로오스 분말을 사

용하였다. 이 분말의 전자 현미경 사진은 Fig. 2에나

$$\text{DGEBA : diglycidyl ether of Bisphenol A}$$

$$\text{HTP1071}$$

$$\text{DDM: 4,4-diamino diphenyl methane}$$

$$\text{HTP1062}$$

Fig. 1. Chemical structures of materials.

Fig. 2. Scanning electron micrographs of cellulose particles with different aspect ratio : (a) 2 and (b) 6.
타내었다. 이 관성성 에폭시는 80℃에서 2시간 정
화시킨 후 150℃에서 2시간 후정화시켰으며, 사 관
성성 에폭시는 110℃에서 2시간, 180℃에서 2시
간 후정화시었다.
물성의 측정. 시험된 메트릭스의 강화도는 double torsion (DT) 시험방법을 사용하여 측정하였다. Fig. 3에 DT 시험의 형태와 하중의 배치도를 도식화하였다. 그림에서 보는 바와 같이 크랙의 진행을 유도하기 위하여 시편의 한쪽 면 중앙에 crack guiding groove를 시험체의 절반정도의 길이로 표면에 주었으며 초기크랙은 전방향으로 인위적으로 만들었다. DT 시험에서는 Instron을 사용하였으며 이 때 전단 속도는 1mm/min로 고정하였다. DT 시험방법은 강화도를 시험의 크랙길이에 관계없이 측정할 수 있는 장점이 있으며 강화도는 하중-변형 곡선의 최대 절단하
중값 P_C로부터 계산할 수 있다. DT 방법으로 측
정되는 강화도, 즉 stress intensity factor (K_I)
와 strain energy releasing rate (G_K)는 아래의 식
(1) (2)로부터 각각 계산하였다.

\[ K_I = P_C W_n \left[ 3(1+\nu) / Wt_0 t_n \right]^{1/2} \tag{1} \]

\[ K_K = (E G_K)^{1/2} \tag{2} \]

여기서 W, t, t_n : 각각 시편의 폭, 두께, 실제 절단
이 일어나는 두께를 나타내며, W_n은 하중중간 간의 거리, \nu는 포아송비. 그리고 E는 탄성율을 나타낸다.

항복강도 및 탄성율은 일축탄력시험을 하여 측정하
였으며 시편은 적록색체로 놓이어 폭의 비는 약 2:1
이었다. 측정기는 Instron을 사용하였으며 이 때
시험속도는 0.5mm/min이었다.

Fractographic Study. DT 방법으로 파괴된 순수
에폭시와 강화 에폭시의 절단면을 scanning electron microscope (SEM)를 이용하여 관찰함으로 강
화재의 분포상태 및 강화제 기구를 조사하였다. 전
자이 시편의 절단면에 하延되는 값을 방지하기 위
하여 시료 표면을 gold/palladium으로 코팅하여 사
용하였다.

결과 및 고찰

이 관성성 에폭시인 DGEBA의 유리재이온도, 항
복강도, 탄성율, 그리고 강화도는 각각 153℃, 111 MPa, 2.6 GPa, 그리고 195 J/m²로 나타났다.
반면에 사 관성성 에폭시인 HPT1071의 유리전
이온도, 항복강도, 탄성율은 각각 230℃, 140 MPa, 2.9 GPa로 이 관성성의 에폭시에 비해 크고 강화도
는 60 J/m²로 이관성성의 에폭시에 비해 매우 작은
값을 나타내는데 이는 사 관성성 에폭시의 상대적으
로 큰 가교밀도 때문인다. 이차상으로 고무와 같은
탄성체를 첨가한 강화재 에폭시는 그 첨가량의 증가
에 따라 유리전이온도 등의 열적성질과 항복강도, 탄성율 등의 기계적 성질이 연속적으로 감소한다.2-5
그러나 본 실험에서와 같이 열적, 기계적 성질이 우수한 생플로스를 강화재로 첨가한 경우 유압시수
지의 가교밀도에 관계없이 강화재와의 첨가에 따
른 강화 에폭시의 유리전이온도와 같은 열적 성질과
탄성율, 항복강도와 같은 기계적 성질의 손실은 나타
나지 않는 것을 알 수 있다 (Fig. 4 참조). 이는 열가
소성 수치를 보다 급속한 상으로 사용한 강화재의 장점으로
강화재 분말의 탄성율등이 메트릭스인 에폭시와 크
계 차이가 나지 않기 때문이며, 또 강화재를 보다
상으로 절연함으로써 메트릭스와 분자 차원에서
 penet

DT 시험에 의한 에폭시의 파괴경도의 예를 Fig. 5에
도식화하였다. 그림에서 보는 바와 같이 크랙의
성장은 연속적인 안정한 형태와 불연속적인 불안정한
형태로 나눌 수 있다. 이러한 에폭시의 파괴경도는

Fig. 3. Double torsion specimen geometry.
셀룰로오스 분말을 이용한 에폭시 수지의 강화

![Fig. 4. Modulus and yield stress of modified epoxies.]

![Fig. 5. Schematic load-time curves for double torsion (DT) specimens (a) Stable crack propagation and (b) Unstable crack propagation.]

사용한 에폭시와 경화제의 종류, 경화제의 양, 경화 속도, 그리고 경화조건뿐 아니라, 시험조건에 의해서 변하기도 한다. 

![Fig. 6. Fracture toughness of cellulose-modified epoxies with different crosslinking density (aspect ratio of particles : 6).]

강화효과의 경우 Fig. 6에서 보는 바와 같이 셀룰로오스 분말의 전기량이 증가할수록 에폭시의 가교밀도에 라그와 없이 강화효과가 증가한다. 그림에서 보는 바와 같이 20 wt% 참가한 경우 이 관성 에폭시의 경우 540 J/m², 사 관성 에폭시의 경우 170 J/m²의 강화효과를 나타내며, 강화화제 양이 증가함에 따라 함량에 따른 강화수도는 감소하는 것을 알 수 있다. 이는 입자와 강화화제로 이용한 경우에 일반적으로 나타나는 현상으로 강화화제 입자의 수가 일정 조성을 넘은 경우 각 입자에 의한 강화화기구가 상호 영향을 미치며 충분한 효과를 내지 못하기 때문이다. 본 실험조건 내에서는 조성에 따른 강화효과가 최대값에 도달하지는 않았으나 그 경향으로 미루어 보아 30 wt% 부근에서 얻을 수 있을 것이라 예상된다. 본 실험에 사용된 각 에폭시에 있어서 셀룰로오스 분말의 참가에 따른 상대적 강화효과, 즉 개발된 에폭시의 강화효과를 순수한 에폭시의 강화효과로 나눈 값을 각 조성 별로 Fig. 7에 나타내었다. 그림에서 보는 바와 같이 페트릭스인 에폭시의 가교밀도에 관계없이 셀룰로오스의 조성에 따른 강화효과는 일정한 것을 알 수 있다. 이는 셀룰로오스 분말을 이용한 강화화제에 있어서 에폭시의 가교밀도에 영향을 받는 강화화기구, 즉 메트릭스의 소성 변형을 수반하는 강화화 기구인 plastic dilatation이나 shear band formation 등은 주된 강화화기구가 아닌 시
시해 준다.

셀룰로스 분말로 강화한 예폭시의 경우 그 강화도는 Fig. 8에서 보는 바와 같이 분말의 aspect ratio에 크게 영향을 받는다. 예폭시의 강화도는 분말의 aspect ratio 6까지는 큰 변화를 보이지 않으나 그 이상에서는 급격한 증가를 보이며 aspect ratio 8에서 최값을 나타낸다. 그 후 약간의 감소를 보이다 11 이상에서는 강화효과가 급격히 감소한다. 이와 같이 강화도가 강화유체의 aspect ratio에 영향을 끼치는 경우는 단섬유를 보강제로 이용한 경우에 볼 수 있는 현상이다. 산성유 강화 예폭시에 있어서 aspect ratio에 따른 강화유체의 섬유상의 길이가 어느 정도 길이가 변할 때까지 증가하다가 그 길이가 길을 넘어서도 급격히 감소하여 일정 값을 유지한다. 이는 길이가 전체 섬유의 빠짐현상 (pull-out)으로 인하여 파괴 에너지를 흡수하므로 그 길이가 길수록 더 많은 에너지를 흡수하기 때문이며, 길이가 이 이상에서는 에너지 흡수가 작은 섬유의 파괴가 일어나기 때문으로 보고되고 있다. 본 연구에 이용된 셀룰로스 분말은 적절이 일정한 길이를 쉽게 변화시키길 수 있는 유리섬유나 탄소섬유 등에 비하여 체계적으로 aspect ratio를 변화시킨 것은 아니나 그에 따른 효과가 나타내는 것으로 미루어 보아 단섬유 보강체와 유사한 파괴/강화 기구가 일어날 수 있게 된다.

일반적으로 강화 예폭시의 절단면의 형태구조로 부터 파괴시 작용하는 각 강화기구들을 알 수 있다. 셀룰로스 분말을 이용한 강화유체의 경우 절단면으로부터 에칭할 수 있는 강화기구들은 (1) crack bifurcation, (2) primary & secondary crack bridging, (3) ductile fracture of cellulose, (4) fiber full-out, (5) defibrillation 등을 들 수 있다. Figs. 9~11은 10 wt% 셀룰로스 분말로 강화된 예폭시의 절단면의 SEM 사진들로서 위에 언급한 강화기구들을 보여준다. 셀룰로스 입자와 예폭시 간의 계면에서는 파괴 후 debonding이 전혀 보이지 않으며 이로 미루어 보아 특별한 표면 처리를 거치지 않더라도 계면 접착력은 매우 우수하다는 것을 알 수가 있다. Fig. 9a는 crack bifurcation, primary & secondary crack bridging 등의 강화기구를 보여준다. 그럼에도 보는 바와 같이 첨가된 입자의 윗 쪽에 크리에이태트의 crack bifurcation line이 형성된 것을 볼 수 있는데, 이러한 crack bifurcation line은 크랙이 진행 중 분산되어 있는 강화유체를 만났을 때 그 강화유체를 둘고 지나가지 못하고 돌아간 크랙이 응력장의 변화에 따라 입자의 후면에서 서로 다른 높이에서 만나기 때문에 생성된다.23 크랙이 돌아간 후에 절단되지 않은 입자는 절단된 크랙의 양면을 불장아중으로서 크랙의 진행을 억제하며, 크랙 전단의 응력을 감소시키는 1차 크랙 bridging 효과를 나타낸다. 1차 크랙 bridging 효과는 입자와 에트릭
Fig. 9. Scanning electron micrographs of fracture surface of modified DGEBA epoxy showing (a) crack bifurcation and crack bridging mechanisms (Arrows indicate the crack propagation direction) (b) ductile fracture of cellulose particle.

Fig. 10. Scanning electron micrographs of fracture surface of modified DGEBA epoxy showing particle pull-out mechanism.
결론

셀룰로오스를 강인화재로 철가한 경우 예폭시 수치의 가교밀도에 관계없이 장인화재의 철가에 따른 강화 예폭시의 유리전이온도와 같은 열적 성질과 탄성율, 투명성이와 같은 기계적 물성의 손실이 일어나지 않으며, 강인화재의 경우 분말의 점착력이 증가함수록 강인화에너지가 증가한다. 셀룰로오스 분말에 의한 강화효과는 메트릭스인 예폭시의 가교밀도에 관계없이 일정한 값을 갖으며 이는 셀룰로오스 분말을 이용한 강인화재에 있어서 예폭시의 가교밀도에 영향을 받는 강인화 기구, 즉 메트릭스의 소성영향을 수반하는 강인화 기구인 plastic dilatation이나 shear band formation 등이 주된 기구가 아님이 사사해 준다. 또 셀룰로오스를 이용한 강인화재에 있어서 그 강인화도는 강인화재 분말의 aspect ratio에 크게 영향을 받으며 aspect ratio 8에서 최대 값을 나타낸다. 이는 본 강인화재에 있어서 셀룰로오스 입자가 그 aspect ratio에 따라 단산유와 같은 역할을 하며, 그에 따른 입자의 빠짐현상이 일어나기 때문인다.

셀룰로오스 분말을 이용한 강인화재의 경우 예측할 수 있는 강인화 기구로는 (1) crack bifurcation, (2) primary & secondary crack bridging, (3) ductile fracture of cellulose, (4) fiber full-out, (5) defibrillation 등을 들 수 있으며, 그 중에서도 크래크 bridging 현상과 그에 따른 입자의 빠짐현상이 주된 강인화 기구로 밀어진다.

참고 문헌

2. A. J. Kinloch, S. J. Shaw, D. A. Tod, and D. C.