Note

Anthraquinone 단위를 포함하는 새로운 폴리올Perfilamide의 제조

하성룡 · 오부근 · 이상무 · 박영훈 · 정창남*

한양대학교 공과대학 공업화학과 *순천대학교 고분자공학과

(1994년 8월 22일 접수)

Preparation of New Polysulfoneamide with Anthraquinone Units

S. Y. Ha, B. K. Oh, Y. M. Lee, Y. H. Park*, C. N. Chung*

Dept. of Industrial Chemistry, College of Eng., Hanyang Univ., Seoul 133-791, Korea
*Dept. of Polymer Engineering, Suncheon Univ., Suncheon 540-742, Korea

(Received August 22, 1994)

요약: 본 연구에서는 폴리아미드의 열적 안정성과 더불어 유기용해에 대한 용해성을 향상시키기 위해 주로 안트라퀸을 단위로 포함하는 폴리올Perfilamide를 제조하였다. 안트라퀸을 단위로 포함하는 다양한 단량체의 유효성을 향상시키기 위해 트리메틸산실알коло이드가 사용되었다. 제조된 폴리올Perfilamide는 방향적 폴리아미드와는 달리 가내 전기 측정값과 TGA에서의 외부적 특성을 감소한 결과, 1% 달러감소 온도가 354℃로 일반적인 방향적 폴리아미드에 비교하여 열적 안정성이 향상된 것으로 보였다.

Abstract: A polysulfoneamide based on anthraquinone was prepared for improving solubilities in organic solvents while it maintains its thermal stability. Trimethylsilyl chloride was used for enhancing the reactivity of the diamine monomer containing anthraquinone unit. From the X-ray diffractionogram of the polysulfoneamide showed that it is almost amorphous structure in contrast with an aromatic polyamide. As 1% weight loss temperature of the polysulfoneamide was observed around 354℃ by TGA, its thermal stability is as high as expected comparing with conventional aromatic polyamides.

Keywords: anthraquinone, polysulfonamide, synthesis.
H. R. Kricheldorf 등은 benzoxazole을 코발라주세아에 도입하여 열적 안정성을 향상시킨 결과를 보고하였다.5 A. Naujundar등은 anthracene sulfone기를 폴리스폰 주세아 측체에 도입하여 열적 안정성과 전기적 특성을 향상시킨 결과를 발표하였다.6

본 연구에서는 anthraquinone 단위를 폴리아미드 주체에 도입하여 열적 안정성과 용해성을 향상시키는 연구를 위한 목적으로 기존의 다이아민 단량체를 사용하지 않고 anthraquinone 슬론산염을 출발 물질로 한 새로운 다이아민 단량체를 합성하고, 이를 이용하여 anthraquinone를 주체로 포함하는 새로운 폴리아미드를 제조하였다. 또한 다수의 방향 측 고리로 인한 다이아민 단량체의 낮은 전하성을 활성화시키기 위해 trimethylsilyl chloride로 다이아민 기에 실릴기를 도입하여 산클로리드에 대한 반응성을 향상시키고자 하였다.10

설 치

AQDSS의 염소화반응. Anthraquinone-2,6-disulfonic acid sodium salt (AQDSS)의 염소화반응은 Scheme. 1과 같은 방법으로 행해졌다.7 AQDSS와 PCl3를 혼합시키고 체위전 관과 환류를 각각 3구 플라스크에 붓었으며, 중고 저 bastante 구반경으로 잘 섞은 후 110℃에서 1시간 다가 혼들어 주며 6시간 반응시켰다. 반응성질을 체계 반응을 통해도 볼고, 염이 전부 용해되면 반응물물로 분리하여 얻어졌다. 이 용질을 methylene chloride로 재결정하여 정제된 염소화된 단량체인 anthraquinone-2,6-disulfonylechloride (AQDSC)로 함성하였으며, 수용은 75% 정도었다.

AQDSS와 PCl3를 혼합시키고 체위전 관과 환류를 각각 3구 플라스크에 붓었으며, 중고 저 bastante 구반경으로 잘 섞은 후 110℃에서 1시간 다가 혼들어 주며 6시간 반응시켰다. 반응성질을 체계 반응을 통해도 볼고, 염이 전부 용해되면 반응물물로 분리하여 얻어졌다. 이 용질을 methylene chloride로 재결정하여 정제된 AQDSC로 함성하였으며, 수용은 75% 정도되었다.

AQDSS와 PCl3를 혼합시키고 체위전 관과 환류를 각각 3구 플라스크에 붓었으며, 중고 저 bastante 구반경으로 잘 섞은 후 110℃에서 1시간 다가 혼들어 주며 6시간 반응시켰다. 반응성질을 체계 반응을 통해도 볼고, 염이 전부 용해되면 반응물물로 분리하여 얻어졌다. 이 용질을 methylene chloride로 재결정하여 정제된 AQDSC로 함성하였으며, 수용은 75% 정도되었다.
Scheme 2.

연결관을 이용하여 포착했다. 반응하지 않은 TMSCl은 회전식 증발기를 이용하여 제거하였다. 이상과 같이 N-trimethylsilylamine을 양말단에 가지며, 슬론기를 주체에 갖는 새로운 디아민인 anthraquinone-2,6-bis(p-sulfone- N-trimethylsilyl anilide) (ABSSA)를 합성하였으며, 수율은 83% 정도였다.

폴리슬론아미드의 제조. Anthraquinone 단위를 갖는 폴리슬론아미드의 제조과정은 다음과 같다. ABSSA를 사용하여 폴리아미드를 제조하기 위해 교반기와 온도계 및 절모주입구가 장착된 동근 폴라스코에 dimethylacetamide (DMAc) (5ml), LiCl (0.5g) 및 ABSSA (0.5g)를 완전히 용해하였다. 물중량으로 가열하면서 terephthaloyl chloride (0.227g)를 가한 후 교반하였다. 생성되는 산을 중화하기 위해 triethylamine을 사용하였다. 한 동안 반응시킨 후 반응 생성물을 과량의 물에 침득시켜 생성된 폴리슬론아미드를 횡수하고, 증류수, 에탄올, 메탄올로 각각 세척한 후 여과하였다. 이를 갈압, 건조하여 슬론기를 주체에 갖는 개질 폴리슬론아미드인 poly[anthraquinone-2,6-bis(p-sulfone phenylene) terephthalamide]를 제조하였으며, 반응 수율은 85% 정도였다. 이를 PSA라고 명명하였다.

분석. 중간체와 폴리슬론아미드의 적외선 스펙트럼은 Nicolet사의 Magna-IR 550 적외선 분광광도계를 사용하여 얻었다. 수소학자기균형 스펙트럼은 Bruker사의 300M-Ft-NMR을 사용하였고, TMS를 내부표준물질로 사용하였다. 결정성의 확 인은 X-선 회절분석기(Rigaku D/Max-11A)로 2θ의 범위가 5°~45° 까지 주사속도 4°/m인으로 측정하였으며, 측정 시료는 파우더 형태의 PSA를 무중형 필름에 접착시켜 제조하였다. 원소분석은 EA 1108 원소분석기를 사용하였다. 중합체의 초기본도의 측정은 열중량 분석기(TGA, DuPont model 951)를 사용하여 일정온도에서 슬론수도 10°/min로 하여 40°C에서 600°C까지의 범위에서 측정하였다.

결과 및 고찰

Table 1에는 합성된 탄편체와 중합체의 원소분석 결과를 나타내었다. 분석결과 실험치와 계산치가 비교적 잘 일치함을 알 수 있으며, 이를 통해 AQDSS의 염소화반응과 아닐린의 Friedel-Crafts 반응에 의한 ABSSA의 합성이 용이하게 이루어졌음을 알 수 있다. 또한 중합체인 폴리슬론아미드

Polymer Korea Vol. 18, No. 5, September 1994
Table 1. Elemental Analysis of AQDSC, ABSSA and PSA

<table>
<thead>
<tr>
<th>Sample</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQDSC Calc.</td>
<td>42.30</td>
<td>1.51</td>
<td>24.13</td>
<td>14.10</td>
<td>-</td>
</tr>
<tr>
<td>Found</td>
<td>41.65</td>
<td>1.54</td>
<td>23.65</td>
<td>14.79</td>
<td>-</td>
</tr>
<tr>
<td>ABSSA Calc.</td>
<td>60.66</td>
<td>5.14</td>
<td>13.91</td>
<td>4.23</td>
<td>8.46</td>
</tr>
<tr>
<td>Found</td>
<td>60.04</td>
<td>5.21</td>
<td>13.92</td>
<td>4.09</td>
<td>8.62</td>
</tr>
<tr>
<td>PSA Calc.</td>
<td>62.25</td>
<td>2.98</td>
<td>21.40</td>
<td>2.62</td>
<td>10.75</td>
</tr>
<tr>
<td>Found</td>
<td>61.94</td>
<td>2.93</td>
<td>21.53</td>
<td>2.57</td>
<td>11.03</td>
</tr>
</tbody>
</table>

Fig. 1. FT-IR spectra of a) AQDSC and b) AQBSA.

(PSA)의 경우도 분석결과와 계산치가 잘 일치하였다고 한다. AQDSC와 AQBSA의 FT-IR 분석 결과를 나타내었다. AQDSC의 경우 1319cm\(^{-1}\)에서의 수fonyl chloride 내의 수fonyl기의 반응기와 대칭 신축동정파크가 나타남을 알 수 있고, 또한 3080cm\(^{-1}\)에서 방향성 고리와의 C-H 신축동정파크를 확인할 수 있었다. AQBSA의 경우, sulfonyl chloride기가 수fonyl 기로 변환에 따라 수fonyl기의 반응기와 대칭 신축동정파크가 각각 1315cm\(^{-1}\)와 1130cm\(^{-1}\)에서 나타남을 알 수 있다.

일반적으로 N-silylated 아미드는 보통의 아미드보다 산클로레이드와의 반응성이 훨씬 더 크다고 보고되고 있다.\(^\dagger\) 카르복실산 유도체, R’COX는 아미드의 전화성 아미드 반응으로 두가지 반응단계를 거쳐 아미드를 만든다. 즉, 아미드가 카르보닐단소로 전화성 두가방울을 하여 사원탄의 중간체를 이루며, 연이어 HX의 제거로 아미드접합이 형성된다. N-silylated 아미드가 카르복실산 클로레이드와 반응하여 아미드접합을 이루는 것도 상기와 같은 반응경로와 유사하다. 또한 실리콘은 산소, 불소 또는 염소와 강한 전화력을 가지고 있으며, 실리콘결합에 서 β-위치에 있는 카르보닐기온 실리콘 s-p 효과로 안정화될 수 있다. Fig. 2에는 N-silylated 아미드 카르복실산 클로레이드와의 반응경로를 나타내었다. 2번째 단계에서 산클로레이드의 카르보닐 산소와 N-silylated 아미드의 실로판과의 상호작용이 N-silylated 아미드의 저소의 전화성 반응을 촉진시켜 사원탄의 중간체가 생성된다. 두번째 단계에서 β-실리콘에 의한 s-p 효과로 중간체의 정소이온 제거가 용이하게 되어 아미드 접합이 형성된다. 본 연구에서 형성한 단단체인 AQBSA는 안트라כר 단단을 가지고 있어 폴리아미드의 열적안정성은 향상시킬 수 있지만 산클로레이드와의 반응성이 다소 감소하는 단점이 있다.

Fig. 2. Reaction mechanism of N-silylated amine and carboxylic acid chloride.

889 폴리머 제18권 제5호 1994년 9월
피플라미드의 열적 안정성 유지와 용해성 향상을 위해 주체에 안트라זכ라는 구조를 갖는 폴리술론아미드를 제조하였다. 주체에 안트라זכ라는 단위를 갖는 단량체의 반응성을 향상시키기 위해 TMSCl를 이용하여 N-Silylated 아미드 형성시켜 산염화물과 반응시켜 폴리술론아미드를 제조할 수 있었다. 안트라 зарегист된 단위를 주체에 도입하여 폴리술론아미드의 결정성을 감소시킬 수 있었고, m-cresol에 대한 용해도 향상시킬 수 있었다. 두 세 개의 패널기가 결합된 구조, 즉 나프탈렌, 안트라첸 및 본 연구에서 같이 안트라 зарегист된 단위에 가진 폴라미드는 열적 안정성의 유지할 수 있을 뿐만 아니라, 결정성을 감소시켜 용해성을 향상시킬 수 있음을 알 수 있었다.

참고 문헌
