Diffusion of Solvents in Natural Rubber Networks

Shinyoung Kaang†, Changkook Hong, and Dongeun Kweon*
Department of Fine Chemicals and Process Engineering, College of Engineering, Chonnam National University, Kwangju 500–757, Korea
* Kumho R & D Center, Kumho & CO., Inc., Kwangju 506–040, Korea
(Received October 20, 1993)

Abstract: Natural rubber(NR) was crosslinked with dicumyl peroxide(DP) to prepare spherical NR networks. The molecular weight between crosslinks was controlled with a DP concentration, and ranged from 2.6×10³ g/mole to 2.0×10⁴ g/mole. Carbon tetrachloride, benzene, cyclohexane, n-hexane, n-decane, dichloromethane, and toluene were used as solvents in this study. The degree of crosslinking of the samples was determined using the equilibrium volume-swelling data based on the Flory-Huggins theory, and the diffusion coefficients of solvents into NR networks were calculated using a diffusion equation based on Fick's law. Results showed that the higher the degree of crosslinking, the greater the diffusion coefficient of the solvents. Diffusion coefficients of the solvents in samples with extremely low crosslinking density, determined by extrapolation, were dependent upon the values of the polymer-solvent interaction parameter, approximately as \(D_0 \sim \chi^{1/2} \). The solubility parameter for NR was 17.5 MPa¹/², based on swelling data in various solvents. Selective absorption of a solvent having a comparatively low value of \(\chi \) was observed in the initial time of swelling by a binary solvent mixture.
한편 고유 방상에 대한 용제의 확산

서론

서로 접촉하고 있는 유기용해제와 공성유리의 고분자에 대한 상호작용은 확산운동(diffusion kinetics)과 열역학(thermodynamics)적 접근을 통해서 설명될 수 있다. 대부분의 유기용해제는 가교
된(crosslinked) 고분자제료에 대해서 폐종작용을 한다. 그 폐종정도는 10, 20% 또는 그보다 높은 수준일 수 있으며, 이는 고분자와 용제간의 상용성(compatibility), 고분자의 가교도(degree of crosslinking), 그리고 용제의 상대측압(relative vapor pressure)등에 따라 크게 달라지게 된다. 가교된 고분자의 폐종은 용제의 확산에 의해서 이루어지며 이 때 고분자 분절(segments)의 내부 미세운동이 확산과정에 관여하고 있기 때문에 고분자의 폐종현상에 대해 연구를 통해 고분자의 가속을 상실할 수 있다. 따라서 이와같은 연구는 고분자의 분절운동에 관한 지식을 얻는데 유익하며 결국 고분자제료의 물리적 성질을 연구하는데 기여하게 된다.

용제와 접촉하고 있는 고분자방상에 대한 완전한 폐종-시간곡선은 확산계수를 계산하는데 적용되어 질 수 있다.3 용제분자는 폐종과정에서 고분자방상으로 확산되고, 그 방향은 부피의 변화가 즉시 진행되어 탄성적 수축력과 상대성에 의한 폐종력이 평형에 이르기까지 폐종은 계속된다. 초기폐종에 의한 질량의 증가 즉, 용제의 흡수속도는 일정확산 상수에 의해서 조정되는 확산과정의 결과이며 이로부터 고유확산계수(intrinsic diffusion coefficient)를 직접 구할 수 있다. 고분자제료내에서 작 은 분자로 구성된 물질의 이러한 확산을 측정하는 데 빌가자의 실험적 기술들이 사용되어 왔다. 그 중에서도 빌가하게 이용되어지고 있는 대표적인 것이 구체적 소영, radioactivetracer materials, 그리고 interferometer절차 등이다. 첫 번째 방법은 낮은 농도의 화학물질으로 연직하게 한정되어지며, 다른 두 방법은 사용되어질 수 있는 재료의 형태에 제한되어지거나, 보다 정교한 실험설비를 필요로 한다. 그러나 폐종방법에 의한 확산 속도의 측정은 이러한 제약조건들로부터 제한받지 않으며, 만성구조를 폐종시키는데 흡수된 용제의 질량을 측정하여 확산운동에서 잘 확립된 이론적 기준에 이르 관련시험 수 있다.

본 연구에서는 한편고무를 화학적으로 가교시키는 가교도가 각각 다른 만성구조를 준비하고, 상용성
이 상이한 용제속에서 이들을 폐종시키며 만성의 탄성 폐종도를 연속적으로 측정함으로써 그 만성의 가교도와 용제의 확산계수를 동시에 결정하였다. 또한 이와같은 방법으로 얻어지는 확산계수를 만성
의 가교밀도 및 두 물질간의 상용성과 관련시키고 해석함으로써 이들간의 상호영향을 평가하였다.

실험

제료. 본 실험에서 사용되었던 고무재료는 비교적 순도가 높은 천연고무인 SMR-L.(Standard
Malaysian Rubber, 불순물 함유율 0.03 wt%)를 사용하였으며, 가교재료로는 dicumyl peroxide(98% purity, Aldrich)를 사용하였다. 확산시험에 적용된 용제로는 toluene(동양화학공업주식회사, extra pure), carbon tetrachloride(덕산제약주식회사, first grade), benzene(덕산제약주식회사, first grade), n-hexane(동양화학공업주식회사, extra pure), decane(Fluka AG, practical grade, Switzerland), dichloromethane(동양화학공업주식회사, first grade), 그리고 cyclohexane(순정화학주식회사, extra pure, 일본)이었다.

구형(sphere)가교시료의 준비. 천연고무 SMR-L을 싱글밀링 소형 밸링 혼합기(Farrel laboratory mill)를 이용하여 분쇄(break-down)한 후 가교재인 dicumyl peroxide를 밸링중에 균일하게 첨가하면서 배합(mixing)하였다. 가교재인 dicumyl peroxide는 최소 0.5phr로부터 최대 3.0phr까지 변량참가하였다. 배합방법은 ASTM D3182와 D3184에 기술된 순서를 참고하였으며, 총배합시간은 약 10분간 소요되었다. 배합고무의 종류는
Table 1. List of Mixing Compounds

<table>
<thead>
<tr>
<th></th>
<th>Unit: phr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural rubber</td>
<td>100 100 100</td>
</tr>
<tr>
<td>Dicumyl peroxide</td>
<td>0.5 1.0 1.5</td>
</tr>
<tr>
<td></td>
<td>2.0 2.5 3.0</td>
</tr>
</tbody>
</table>

Table 1에 나타내었다.

배합 고무에 대한 가교시간의 결정은 oscillating disk type의 Monsanto rheometer (ODR 2000E)를 이용하였고 가교온도를 160℃로 고정하여 얻은 가교곡선(cure curve)으로부터 결정한 가교시간은 30분이었다. 가교온도를 유지하고 있는 가교 프레스(cure press)로 직접이 10mm인 구형 공동(sphere cavity)을 이용하여 구형의 가교된 전면을 시험관에 연고를 얻었다.

구형대칭(spherically symmetrical)계의 확산은 radial방향이며 일차원 확산식으로 비교적 간단하게 해를 구할 수 있는 장점이 있다. 또한 실제 폐포측정에 있어 sheet시편에서 발생하는 edge영향이 없으며 구형시편의 동방성(isotropic) 경우로 무게측정법이 아닌 부피측정에 의한 폐포도 결정이 용이하다. 따라서 무게측정법에서 시편의 표면에 남아있는 전류유체로부터 발생하는 실험오차를 최대한 줄일 수 있는 장점이 있다.

확산실험. 본 실험을 위해서 제작된 확산실험장치 Fig. 1에 나타내었다. 용제가 채워져 있는 유리 용기(rectangular TLC chamber)의 속에 직접이 0.3mm인 강철줄을 이용하여 구형시편을 고정시켰다. 용제확산에 의한 시편의 부피확장영상을 연속촬영하기 위하여 사진기(Nikon FM2)에 motor drive(Nikon MD-12)과 motor remote cord(Nikon MC-10)를, 그리고 보다 근접된 촬영을 위해 microlens(Nikon, 55mm f/2.8)에 extension ring(Nikon PK-13)을 각각 사용하였다. 직접 10mm 금속관주(steel cylinder)로 설치하여 동시에 촬영하였고, 이를 calibration에서 이용하였다. 유리기구에 용제가 없는 상태에서부터 시편의 용제에서 평형상태까지 폐포하는 과정을 연속적으로 촬영하였다. 가교시간 분자량(M_n)이 5.6

![Schematic diagram showing the experimental apparatus for the diffusion study.](image)

Fig. 1. Schematic diagram showing the experimental apparatus for the diffusion study.

![Photographs of a NR sphere(M_n=5.6x10^3 g/mole) swollen in dichloromethane solvent. t indicates the swelling time.](image)

Fig. 2. Photographs of a NR sphere(M_n=5.6x10^3 g/mole) swollen in dichloromethane solvent. t indicates the swelling time.

×10^3 g/mole인 시편의 폐포과정을 보여주고 있는 실제사진을 Fig. 2에 나타내었다. 초기 폐포시에는 1초당 1 cortisol 이상 촬영하였고, 폐포시간이 지남에 따라 그 촬영시간의 간격을 늘려 나갔다. 촬영 결과는 3배로 확대현상하였고, 확대현상된 시편의 적정을 수평이동 측정기형(Gaertner Scientific Co., M1180-303P)을 이용하여 측정하였다. 본 확산실험은 실험에서 실시하였다.

확산계수의 결정. 구형 대칭계(spherically symmetrical system)에 있어서 반지름(radial) 방향의 확산에 대해서는 Crank에 의해서 분석적으로 기술되었다. 구표면에는 일정한 표면농도 C_0가 유지되어 있고, 시편내부에는 초기에 C_1의 일정한 농도가 일정하게 유지되고 있다면 시편에 있어서 농도분포에 대한 관계식은 Fick's 2nd law로부터 다음과 같은 해를 얻게된다.

Polymer(Korea) Vol. 18, No. 4, July 1994
\[
\frac{C-C_t}{C_0-C_t} = 1 + \left(\frac{2a}{\pi} \right) \Sigma (-1)^n \sin(n\pi a) \exp(-Dn^2\pi^2t/a^2)
\]

여기서 \(a\)는 구의 반지름, \(r\)은 반지름 방향의 확산 거리, \(t\)는 확산시간, 그리고 \(D\)는 확산계수이다. 구 형변면에 들어온 화산물질의 충전량량분포로 표현된 확산관계식은 (1)식으로부터 다음과 같이 유도 된다.

\[
\frac{M_t}{M_*} = 1 - \left(\frac{6}{\pi^2} \Sigma \left(1/n^2\right) \exp(-Dn^2\pi^2t/a^2) \right)
\]

여기서 \(M_t\)는 확산시간 \(t\)에서 시편속으로 흡수된 용체의 질량이고, \(M_*\)는 평형상태에 도달하였을 때 용체의 질량이다. Fickian확산의 경우 초기시간의 확산에 대해 상기(2)식은 다음과 같이 간단하게 표현할 수 있다.

\[
\frac{M_t}{M_*} = 6(Dt/a^2)^{1/2}
\]

여기서 Fickian확산이기 위해서는 sorption구획이 시편의 크기에 의존하지 않아야 하며 \(M_t/M_*\)가 초기시간(1)의 확산에 있어서 \(t^{1/2}\)에 비례하여야 한다. 이 경우에 확산물질의 흡수증가는 농도와 관계없는 일정한 확산계수에 의해서 조정되는 확산 과정을 가정하므로 \(M_t\)와 \(M_*\)의 적절한 해석으로 구에 있어서의 흡수를 설명할 수 있게 된다. 따라서 확산계수(D)는 \(M_t/M_*\)를 \(t^{1/2}/a^2\)에 대해 도해함으로써 그 곡선의 초기가속기로부터 결정할 수 있다. 실제로 흡수실험에 있어서 \(M_t/M_*\)가 50% 에 도달할 때까지 확산관 계는 일정한 확산계수를 나타내는 거의 직선상에 있는 것을 관찰할 수 있었다.

구형시편의 동방성 폐음에 대해서 \(V_t\)가 폐음시간 \(t\)에 있어서 시편의 폐음부피이고, \(V_o\)는 폐음이 전의 순수시편의 부피일 때 폐음시간 \(t\)에서의 폐음 비는 \(V_t/V_o\)로 정의되어진다. 따라서 \(d_t\)를 폐음시간 \(t\)에서 구의 직경, \(d_0\)를 폐음이전의 직경이라고 하면 \(Q_t\)는 \(d_t/d_0\)으로 계산할 수 있다. 여기서 천연고무와 용제의 이상적 혼합거리를 가정하면 \(M_t\)는 \(V_o\rho_1 (Q-1)\)으로 결정된다. \(\rho_1\)은 용제의 밀도이다. \(M_t\) 또한 마찬가지로 \(V_o\rho_1 (Q-1)\)에 의해서 결정되며, 여기서 \(d_t/d_o\)의 계산으로 결정되는 \(Q_t\)는 평형상태에 도달하였을 때의 폐음비이고, \(d_t\)는 평형폐음상태에서 구의 직경을 가리킨다.

가교도의 결정, 고분자의 가교망상의 폐음에 있어서 고분자의 용해(dilution)에 따른 자유에너지의 변화와 망상의 탄성적 폐음에 따른 자유에너지의 변화를 간단한 자유에너지를 충분히 \(\Delta G_t\)는 다음과 같이 표현된다.

\[
\Delta G_t = RTQ^2 \left[Q_t^2 \ln(1-Q_t^{-1}) + Q_t + \chi + (\rho V_t/M_* \right) \left(Q_t^{5/3} - 2Q_t^{-1} \right)]
\]

여기서 \(\rho\)는 고분자의 밀도이고 \(V_t\)은 용제의 부피이며, \(\chi\)는 고분자와 용제분자간의 상호작용 계수이다. 또한 \(f\)는 가교망상을 상호연결하는 가교점에 있어서의 functionality이며 여기에서 \(f = 4\)를 가정하였다. 따라서 평형폐음상태 \(\Delta G_t = 0\)에서 (4)식은 다음과 같이 된다.

\[
Q_t^2 \ln(1-Q_t^{-1}) + Q_t + \chi + (\rho V_t/M_* \left(Q_t^{5/3} - 2Q_t^{-1} \right) = 0
\]

여기서 부피 폐음비 \(Q_t\)의 변화를 폐음시간 \(t\)에 대해서 도해하여 평형상태에 도달하였을 때의 부피폐음비 \(Q_t\) 값을 구하고 이 값을 (5)식에 대입하여 \(M_*\)를 결정하였다. 계산에서 사용한 천연고무의 밀도 \(\rho\)는 0.97g/cm\(^3\) 이었고\(^6\) 용제의 부피의 \(V_t\)은 각각 용제의 분자량과 밀도로부터 계산하였으며, \(\chi\)값은 문헌에 발표된 값을\(^7,8\) 각각 적용하였다. 이들 값은 Table 2에 정리하여 나타내었다. 이와 같이 결정된 \(M_*\)값의 범위는 2.6×10\(^5\)g/mole에서 2.0×10\(^4\)g/mole에 이르렀다.

결과 및 고찰

천연고무방상의 폐음. 가교된 천연고무시편이 n-hexane용체속에서 폐음되는 과정을 대표적으로 Fig. 3에 나타내었다. 폐음초기에는 급격한 폐음을
Table 2. Natural Rubber–Solvent Interaction Parameters, Solubility Parameters of Various Solvents, and Inferred Diffusion Coefficients of Solvents Diffusing into Natural Rubber (SMR-L)

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Natural Rubber–Solvent Interaction Parameter*</th>
<th>Solubility Parameter** δ (MPa²/1/2)</th>
<th>Inferred Diffusion Coefficient Dₚ (mm²/sec×10⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrachloride</td>
<td>0.307</td>
<td>17.6</td>
<td>0.75</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>0.392</td>
<td>16.8</td>
<td>0.96</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.393</td>
<td>18.2</td>
<td>1.07</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.421</td>
<td>18.8</td>
<td>1.29</td>
</tr>
<tr>
<td>n-Decane</td>
<td>0.444</td>
<td>13.5</td>
<td>1.21</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>0.483</td>
<td>14.9</td>
<td>1.57</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>0.494</td>
<td>19.8</td>
<td>1.90</td>
</tr>
</tbody>
</table>

* | | | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Plot of the volume swelling ratio (Q) vs. swelling time for NR spheres crosslinked using different amounts (phr as indicated) of dicumyl peroxide, swollen in n-hexane.

보여주다가 폐용시간의 증가와 함께 폐용정도가 늘어나면서 폐형상태에 도달하였다. 천연고무에 첨가한 가교체인 dicumyl peroxide의 함량이 증가함에 따라 폐형평온특의 크기는 점진적으로 감소하였다. 천연고무의 가교는 폐용에 따른 고분자 형태변화의 가능성을 감소시킨다. 따라서 가교도의 증가는 음 (negative)의 방향으로 엔트로피의 변화를 초래하여 망상(networks)의 탄성적 폐형과 관련된 자유 에너지변화는 가교밀도가 증가함수록 커지게 되어 그 결과 폐용에 반하는 작용을 하게 된다.

평형평온특의 크기는 온도의 종류에 따라서 큰 차이를 보여주었다. Dicumyl peroxide를 1.0 phr 첨가하여 가교간의 시편을 carbon tetrachloride.Publication을 제출한 경우에는 폐형평온특이 7.38이었으나, 이에 반하여 decane-용체에서는 동일조건에서 폐형평온특이 3.69이었다. 동일한 가교도의 시편에 대해서 온도의 종류에 따라 이처럼 폐형평온특이 다르게 나타난 것은 천연고무분자와 융해분자간의 혼합에 있어서 그 affinity의 차이에 따른 열역학적 요인으로 설명이 가능하다.

고분자-용체사이의 혼합가동을 해석하는 중요한 열역학적 인자중 하나는 두 분자간의 상호작용 파라미터(χ)이다. 본 실험결과는 χ값이 커질수록 폐형평온특은 반비례하여 감소하는 경향을 보여주었다. Flory의 혼합에 따른 열효과(ΔH_m)를 상호작용 파라미터와 관련시져 χ<ΔH_m로 정의하였고, 따라서 상호작용 파라미터값의 증가는 혼합에 따른 풀수열의 증가를 의미한다. 결국 상호작용 파라미터 값의 증가는 곧 혼합에 반하는 작용을 하게 된다.

평형평온특(Qv)값을 (5)식에 대입하여 구한 가교질감 분자량(M_a)은 가교체 첨가량이 증가함에

496

Polymer(Korea) Vol. 18, No. 4, July 1994
천연고무 방상에 대한 용제의 화산

Fig. 4. Plot of the equilibrium volume swelling ratio \((Q_s) \) vs. the solubility parameter \((\delta_s) \) of the solvent used for swelling NR network \((M_c = 5.0 \times 10^3 \text{ g/mole}) \). The solubility parameter \((\delta_s) \) of natural rubber was determined from the maximum point of the curve.

따라 점진적으로 감소하였다. 그러나 \(x \)값이 서로 다른 용제를 적용하여 \(M_c \)를 결정했음에도 불구하고 \(x \)값이 결정된 \(M_c \)값은 비교적 일치하였다.

천연고무의 용해성 파라미터. 용제가 고분자방상 속에 침투하는 현상은 두 물질간의 혼합의 결과이며 열역학적으로 \(\Delta G \)의 값을 갖게되는 혼합에 따른 자유에너지의 변화를 초래한 약자 자유에너지의 변화는 주로 \(\Delta H_m \)의 크기에 따라 그 부호가 결정되며 이는 다음의 식으로 정의된다.\(^{10}\)

\[
\Delta H_m = V_m[\langle \delta_1 - \delta_2 \rangle^2 \phi_1 \phi_2] \tag{6}
\]

여기서 \(V_m \)은 혼합물의 총부피이고, \(\phi_1 \)과 \(\phi_2 \)는 혼합물에 있어서 용제와 고분자의 부피분율이다. \(\delta_1 \)과 \(\delta_2 \)는 각각 용제와 고분자재료의 용해성파라미터이다. 따라서, 두 재료간의 \(\Delta H_m \)은 \(\delta_1 - \delta_2 \)의 값에 크게 의존하게 된다. \(\delta_1 \)값과 \(\delta_2 \)의 값이 근접할수록 \(\Delta H_m \)값이 작아지게 되고 용해작용은 향상되어 평형평결은 증가한다. 가장 좋은 용제(\textit{best solvent}) 즉, 주어진 고분자재료에 대하여 가장 좋은 평행체(swelling agent)는 두 물질간에 비슷한 화학구조를 가지고 있거나 비슷한 극성을 가지고 있어 그화학구조가 가장 유사한 경우이고 고분자방상은 이 때 최대로 평결한다.\(^{11}\) 이와 같은 이론적 근거를 배경으로 고분자재료의 용해성 파라미터 \(\delta_2 \)를 평결실험을 통해서 실험적으로 결정할 수 있다. 구체적으로 용해성 파라미터가 각각 다른 몇 종류의 용제에 대한 평형평결용액비율 \(\delta_1 \)값에 대하여 도해하면 그 최대 평형평결용액비율 \(\delta_1 \)값이 평결 \(\delta_2 \)값이된다.

본 실험에서는 가교점간의 분자량 \(5.0 \times 10^3 \text{ g/mole} \)의 천연고무시판의 평결결과를 해석하였다. 평형상태에 도달한 평결용액 \((Q_s) \)를 용제의 용해성 파라미터 \((\delta_s) \)에 \(^{12}\) 따라서 Fig. 4에 도해하였다. 그 결과로부터 최대평결용액비율 \(\delta_1 \)값을 구하였고, 그 값은 17.5 \text{ MPa}^{12} \text{이었다. 이 값은 } \text{천연고무} \text{의 용해성 파라미터} \(\delta_2 \text{이며 이와같이 결정된 천연고무의 용해성 파라미터값은 이미 보고된 값} \text{과}^{13,14} \text{에서 일치하였다.}

시편간의 영향. 용제의 확산계수를 결정하는데 있어서 시편간의 영향을 검토하기 위해 적경이 각각 10mm와 20mm인 시판을 \textit{toulene}용제속에서 평결촉성하였고 그 결과를 비교하였다. Fig. 5는 \(M_c \)값이 5.3 \text{ g/mole} \text{인 시판에 대한 적경} \((d_i/d_s) \text{의 변화를 평결시간(1)} \text{에 대해서도해한 결과이다. 예측한대로, 적경이 큰 시판의 경우에는 드리에 평결되는 반면에 적경이 작은 시판은 비교적 빠르게 평결되었으며, 평결시간이 증가함에 따라 두 곡선은 점진적으로 동일적경에서 일치하였다. \(d_i/d_s \)를 다시 확산시간 \(t/2/d_s \)로 환산하여 Fig. 6에 나타냈으며 그 결과 두 곡선이 거의 겹치는 것을 확인하였다. 그러므로 용제의 흡수속도는 (3)식의 확산식에 따라 시판의 크기에 의존하였으며 이 경우는 Fickian임이 가능성을 보여주었다.}

용제의 확산계수. 적경 \((d_i/d_s) \text{로부터 계산된 평결시간 (1)에서의 평결용액}\((Q_s) \text{와 (d_i/d_s)로부터 계산된 평결용액비율 (Q_s)로부터 평결용액에 도달했을 때의 온도흡수량}\((M_c) \text{에 대한 확산시간 (1)에서
Fig. 5. Absorption relations for spheres ($M_c = 5.3 \times 10^3$ g/mole) of different initial diameter (\bigcirc: $d_0 = 10$ mm, \bullet: $d_0 = 20$ mm).

Fig. 6. Results from Fig. 5 replotted against a reduced time function ($t^{1/2}/d_0$).

용제흡수량의 비 즉, M_r/M_s는 다음과의 관계식을 이용하여 계산하였다.

$$\frac{M_r}{M_s} = \frac{Q_r}{Q_s} - 1 \quad (7)$$

M_r/M_s를 환산(reduced)흡수시간 $t^{1/2}/d_0$에 대해서 도해하였고 Fig. 7은 가교도가 5.0×10^3 g/mole인 천연고무시편에 대한 n-hexane용제의

Fig. 7. A typical diffusion curve calculated from absorption data of n-hexane solvent into an NR network ($M_c = 4.96 \times 10^3$ g/mole).

Fig. 8. Dependence of diffusion coefficient(D) upon molecular weight of network strands (M_c) for various solvents diffusing into NR networks, \triangle: dichloromethane, Δ: n-hexane, \Box: benzene, \blacksquare: cyclohexane, \bigcirc: toluene, \bullet: carbon tetrachloride, ∇: n-decane.

확산과정을 그린 대표적인 확산곡선이다. 용제의 확산계수(D)는 초기확산에 대한 (3)식으로부터 다음식을 이용하여 결정하였다.
천연노무 방상에 대한 응체의 확산

\[D = A^2 \pi / 144 \]

(8)

여기서 \(A \)는 확산속성의 초기기울기이다.

이와 같이 결정된 응체의 확산계수를 가교된 천연노무의 가교점간 분자량 \(M_c \)의 변화에 따른 의존성을 검토하였으며 Fig. 8에 그 결과를 나타내었다. 가교점간 분자량이 \(2.6 \times 10^4 \)g/mole과 \(2.0 \times 10^4 \)g/mole의 범위내에서 응체의 종류에 따라서 정도의 차이를 있었으나 일반적으로 \(M_c \)의 감소에 의해서 확산계수는 상승하는 경향이 관찰되었다. 이와 같은 실험결과에 대하여 다음의 두 가지 관점에서 확산계수의 가교도 의존성을 고찰하였다. 첫째, \(M_c \)가 큰 경우에는 가교점간 고분자 간의 직접적인 상호작용(steric hindrance)을 무시함으로써 응체의 단단하게 확산하려고 시도하지 않으려고 세분자는 전체적인 변화를 감소시킨다는 가능성이 있으며, 또한 가교체결도의 자명적인 간통(sluggish motion)이 응체의 단단화들을 억제했을 가능성을 고려할 수 있다. 둘째, \(M_c \)가 작은 경우, 즉 가교점 간 짧은 사슬길이의 경우에는 비교적 단단한 간통(vibration amplitude)과 높은 진동수(vibration frequency)의 분절운동(segmental motion)이 오히려 응체의 확산운동을 촉진시켰을 가능성을 하나의 요인일 수 있다.

가교도가 증가함수록 확산계수는 낮아지는 실험 결과는 epoxy resins의 흡수연구에서도 보고되었으며, 이와는 반대로 benzene의 확산실험에서 천연노무의 가교도가 높음수록 확산계수가 낮아지는 결과도 보고되었다. 또한 polyisoprene방상에 동일성분의 액체를 확산시키었을 때 polydimethylsiloxane(PDMS)방상에 그 액체를 확산시켰을 때도 방상의 가교점간 분자량이 높음을수록 확산계수가 낮아지는 결과가 보고되었으며, PDMS방상에 대한 확산연구에서 이와 반대되는 실험결과도 보고되었다.

Polystyrene의 자기확산에서 Antonietti와 Sillescu는\(^\text{19}\) 가교질도에 대한 확산계수의 차이를 다음의 세 가지의 다른 영역으로 구분하였다. 즉, 매우 낮은 가교질도 영역에서 확산계수는 가교도가 증가하면 감소하고, 가교질도가 계속 증가함에 따라 확산계수가 평형상태에 도달하거나 최소값을 지나 증가하는 경향을 보이며, 높은 가교질도 영역에서는 확산계수가 다시 감소한다고 보고하였다. 이와 같이 확산계수와 가교도의 상관관계에 대한 분명한 해석은 아직 불분명하며 응체확산에 있어서 방향구조의 영향을 규명하기 위해서는 추가의 실험이 필요한 것으로 판단된다.

가교도가 무한대로 낮은 천연노무에 대한 응체의 확산계수를 \(D_0 \)라고 할때 이들값은 Fig. 8에서 1/Mc 0까지 외삽하여 추정하였다. 이와 같이 결정한 \(D_0 \)값을 응체-천연노무간의 상호작용 파라미터 \(\chi \)와 함께 Table 2에 정리하였고, 이들 값에 log 를 각각 취하여 Fig. 9에 나타내었다. \(\chi \)값이 커질수록 \(D_0 \)값은 감소하며 증가하였으며, 그 직선의 기울기는 1.8이었다. 따라서 \(D_0 \)와 \(\chi \)간의 상호관계는 \(\chi \)값이 0.307~0.494의 범위내에서 \(D_0 \propto \chi^{1.8} \)의 관계식으로 나타낼 수 있었다. 이와같은 결과로부터 천연노무방상에 대한 응체의 확산속도를 측정하고 있는 두 물질의 분자간 상호작용에 의해서 크게 영향을 받는다는 사실을 알 수 있었다. 즉, 응체와 고분자간의 유사성(likeness)이 크게 상호작용 파라미터 \(\chi \)값이 작아지고 혼합은 유용하게 되
에 의한 폐응. Scanlan은 일정기 삼성분계(용제1/용제2/고분자)의 폐응에 관하여 상호작용 파라미터가 현저하게 다른 두 혼합용제에 의해 고분자가 폐응할 때 고분자에 의한 용체의 선택적 흡수는 매우 적으며, 따라서 단일용제 근사화(single-liquid approximation)인 하나의 상호작용 파라미터로 폐응거동을 해석할 수 있다고 하였다.

본 실험에서는 고분자와 용제간의 상호작용 파라미터가 비교적 크게 차이가 있는 두 용제, 즉 decane(χ = 0.444)과 carbon tetrachloride(χ = 0.307)를 동일용적비로 혼합하였다. χ값이 4.8×10^3g/mole인 시편이 이상분계 용제 혼합물속에서 폐응하는 과정을 추적하였다. 폐응상태까지의 폐응 과정을 Fig. 10에 나타내었고, 초기시간의 폐응과정은 Fig. 11에 나타내었다. 최종 폐응상태에서의 혼합용제의 폐응은 두 순수용제 폐응곡선의 중간에 위치하고 있었다. 그러나 초기시간에서의 폐응거동은 상대적으로 낮은 χ값을 가지고있는 carbon tetrachloride의 폐응곡선에 접근하고 있었다.

이와같은 실험결과로부터 상호작용 파라미터가 현저하게 다른 용제혼합물에 의한 고분자상태의 폐응에 있어서 최종 폐응단계에서는 두 용제의 상호작용이 서로 상쇄되어 평균적 폐응온도에 도달하였으나 초기평응과정 즉, 폐응시간이 약 30분이전에는 상호작용 파라미터가 상대적으로 낮은 용체 즉, likeness가 큰 용제가 선택적으로 먼저 흡수되는 경향을 보여주었다. 따라서 Scanlan의 해석은 오직 폐응평균거동에서만 유요하였다.

결 론

본 연구실험을 통해서 얻은 일반적인 결론은 다음과 같다.

1. 가교제인 dicumyl peroxide의 첨가량을 달리하여 화학적으로 가교시킨 천연고무용 용제속에서 폐응시켜 결정한 용제의 확산계수(D)와 가교정간 분자량(M_n)의 상호의존관계를 검토하였다. M_n가 2.6×10^3g/mole에서 2.0×10^4g/mole까지의 범위
내에서 D는 천연고무방성의 M_c 가 낮을수록 상승하고 M_c 가 커질수록 감소하는 경향을 보여 주었다.

2. 용해성 파라미터값이 다른 용제들에 의한 천연고무방성의 부피밀도밀률로부터 결정한 천연 고무(SMR-L등급)의 용해성 파라미터는 17.5 MPa$^{1/2}$이었다.

3. 가료도가 적고 '낮은 천연고무에 있어서 외 산에 의하여 추정된 용제의 확산계수(D_0)는 천연 고무-용제간 상호작용 파라미터(χ)에 크게 의존하 였으며, χ값이 0.307~0.494의 범위내에서 D_0의 χ에 대한 의존성은 $D_0 \sim \chi^{1.6}$의 관계식으로 나타낼 수 있었다.

4. χ값이 비교적 큰 차이가 있는 두 용제를 동 일 용적비로 혼합하여 천연고무방성의 평온기둥을 조사한 결과, 평형밀수에서는 두 용제의 상호작용 이 상해되어 평균적 평온상태에 도달하였으나 평온 의 초기과정에서는 χ값이 상대적으로 낮은 용제에 대한 선택적 흡수방향이 관찰되었다.

감사: 본 연구는 한국과학재단 연구비지원(과제 번호: 903-1005-007-2)에 의한 결과로 지원기관 에 감사드리며 또한 환경시험 장치설계에 귀중한 조언을 주신 (주)동양연상소에 감사드립니다.

참고문헌
13. E. A. Grulke, ibid., VII/552.