The Effect of Processing Parameters on the Mechanical Properties of High Performance PE Fibers in Gel Spinning Process

Chul Rim Choe, Kwang Hee Lee, and Kyeong Hyeon Kim
Polymers Composites Laboratory,
Korea Institute of Science and Technology,
P.O. Box 131, Cheongryang, Seoul, 130—650, Korea
(Received September 11, 1989)

Abstract: The effect of spin-draw ratio on the properties of PE fiber was investigated to improve the mechanical properties by optimization of processing condition. Ultra-high mol. wt. PE solution of 5 wt.% in paraffin oil was spun through conical die and then Xerogel fibers were obtained by extraction of paraffin oil in n-hexane and drying in vacuum oven. These as-spun Xerogel fibers were drawn in hot oven at 120°C. It was observed that the degree of orientation of Xerogel fibers was not significantly changed with spin-draw ratio. But tensile strength and Young's modulus were increased with increasing spin-draw ratio. High performance PE fiber, obtained in the spin-draw ratio range between 20 and 30, gave the diameter of about 25μm, and it also attested to have the tensile strength of 2.7 GPa and Young's modulus of 100 GPa.
서 론

그동안 고분자 재료를 이용하여 고탄성용, 고장도 성유를 제조하기 위한 연구가 활발하게 진행되어 왔다. 이에 대한 연구를 크게 구분하여 보면 강직한 분자 구조를 갖는 새로운 고분자에 대한 탐색 연구와 비교적 유연한 분자체로 된 범용성 고분자의 분자 구조를 재편성함으로써 물성을 극대화 하는 연구로 분류된다. 이들은 원리면에서 성유를 형성하고 있는 고분자체를 성유축 방향으로 배열시키는 방식이 성유내에 긴밀하게 분배되도록 하는 것이다. 강직 분자체의 경우는 고분자체 자체의 강직성으로 인해 압축성의 형성이 이러한 조건을 만족시킨다. 한편 유연한 분자체를 가지는 고분자체의 강도를 향상시키기 위해서는 고분자체가 갖고 있는 분래의 물성이 최대한 발휘되도록 folded chain crystal을 extended chain crystal로 변화시켜 주어야 한다. 이 방법에는 주로 PE, PP, PAN, PVA, POM 등이 이용되는데, 이중에서 특히 PE는 많이 사용하고 분자구조 특성상 이론적으로 얻을 수 있는 물성이 가장 우수하기 때문에 PE에 관한 연구가 가장 활발하게 이루어져 왔다. 분자 구조 재배열법에 의해 고강도 PE 성유를 제조하려는 연구는 1956년 Jurgenleit가 (1) 용액방식 한정을 시작으로 (2) 초 연속, (3) zone 연속/annealing, (4) 고장압 축, (5) 유동용액 결정화, (6) 단결정배열 연속, (7) 건방식 7~14 등으로 발전하였고, 1980년대에 들어서면서 개방방법을 다소 변형시킨 (8) melt kneading processing, (9) gel press process, (10) virgin polymer 연속법 등이 개발되었다. 이러한 방법들 가운데서 개방방법은 가장 우수한 물성을 얻을 수 있는 방법중 하나이며, 다른 방법들과는 달리 연속 공정이 가능하고 생산속도를 고속화 할 수 있기 때문에, 공업적으로 커다란 관심을 끌어 일으켜 현재 미국(Spectra-900, 1000®), 일본(Technilam®), 화란(Dyneema®) 등에서 이 방법으로 고강력 PE성유를 생산하고 있다.

본 연구는 반 연속식 개방방법에 의해 고강력 PE성유를 제조할 때, PE성유의 물성에 영향을 주는 방사광정 및 연속광정의 가공 변수들을, 방사광정비에 대해 고찰하였다.

실 협

재료

높은 탄성율과 인장 강도를 지니는 고강력 PE성유를 제조하기 위하여 분자량이 약 2,000,000인 Mitsui사의 HDPE, Hizex Million 240M을 사용하였다. 용매로는 Yakuri사에서 제조된 파라핀 오일을 사용하였으며 PE용액의 산화분해를 방지하기 위하여 2,6-di tert-butyl-p-cresol을 PE에 대해 0.5wt% 첨가하였다.

방법

PE용액제조: 용기속에 PE와 파라핀오일을 넣고 가열하면서 교반시키는 동상적인 방법으로 PE용액을 제조할 경우에는 온도가 약 110°C 근처에서 PE입자들이 서로 음착되는 현상이 일어나기 때문에 균일한 용액을 제조할 수 없었다. 따라서 본 실험에서는 Iguchi18-20 등에 의해 제안된 방법을 다소 변형시켜 사용하였다. PE용액의 제조방법은 우선 소량의 용매를 사용하여 PE입자를 상온에서 습도를 처리한다. 이와는 별도로 PE에 대해 0.5wt% 산화방지제가 첨가된 파라핀 오일을 230°C 온도를 유지 Fig.1에서 볼 수 있는 PE용액 제조탱크에 넣은 뒤 교반시키면서 앞에서 기술한,

![Fig. 1. Schematic diagram of gel spinning.](image-url)
슬윤처리된 PE-페라인 오일 혼합액을 주사기로 주입했다. 고온한 용액을 제조하기 위하여 170℃에서 2시간 용해시킨 후 방사하였다. PE용액의 농도는 5wt%로 설정하게 하였다.

방사, 추출 및 연산 Fig.1 참조: PE 용액체조 맹크에 절소로 가주하면서 기어 퀘브로 일정량의 PE용액을 다이에 토출시키기로 방사하였다. 방사온도는 200℃였으며, 방사유량은 2.11cc/min, 가재기 하였다. 이와같이 방사된 PE용액은 나이(직경=1mm, L / D=40, entrance angle=6°)로부터 5cm 아래에 있는 맹그조에서 수생되어 켌 상으로 되고, 빌금지단에 있는 위치물레에 의해 연산되는데, 이와 같은 방사과정에서 연산되는 연산비는 방사연산비(λsp)로 명명하였다. 이는 켌 성유를 연산하는 속도와 실제 방사되는 속도의 비로 정의하였다. 이와 같은 과정을 거쳐 제조된 켌 성유는 traverse를 통해 드릴 위의 균일하게 감겨지게 되며, 이 드릴을 n-hexane 속에 24시간 담구어 젤 성유 내에 있는 파라핀 성유를 추출하였다. 그 후 연산과정을 거친 Xerogel 성유를 길이가 2mm인 오븐속에서 연산하였는데, 이때의 연산비(λh-d)는 주입물레와 위치물레의 속도비로 정의하였다. 연산온도는 120℃였으며, Xerogel 성유를 오븐속으로 주입하는 속도는 50cm/min으로 하였다.

물성측정: 기계적 특성인 인장강도와 Young's modulus의 측정은 Instron 4201을 사용하였다. 시편의 길이는 25mm, crosshead speed는 12 mm/min, Young's modulus는 변형율이 0.1%일 때 응력-변형한 곡선의 기울기로부터 구하였으며, 성유의 단면적은 밑도를 1g/cm³로 가정하고 길이와 무게로부터 구하였다. 또한 PE성유의 배향각도(orientation angle)와 PE라멘라의 배열 방향을 살펴보기 위하여 Jeol X-ray diffractometer model JDX-5P를 사용하였다.

결과 및 고찰

방사연산비에 따른 물성변화

연산공정은 크게 두 단계로 행해지고는데 방사공정 에서의 연산(이때의 연산비=λsp)과 오븐 내에서 수행되는 hot drawing(이때의 연산비=λh-d)로 나뉘어 진다. Hot drawing할 때의 성유의 물성을 λh-d에 따라 증가한다는 것이 잘 알려져 있기 때문 에, 본 실험에서는 방사공정에서 행해지는 연산 에 따른 성유의 물성 변화를 살펴 보았다.

Fig.2는 λsp를 변화시켰을 때 hot drawing에서의 최대연산비(λh-d max) 변화를 보여주고 있다. λsp를 증가시키면 λh-d max는 λsp가 6까지는 감소하는 추세에 있지만, 그 이상에서는 크게 줄어 들지 않았다. 1984년 Penning은 λsp와 λh-d max 를 극한 overall draw ratio가 약 150으로 일정하다고 보고한 바 있는데, 본 실험에서는 Fig.2에서와 같이 λsp에 따라 λh-d max가 크게 변화하지 않았다. 이는 사용한 PE의 종류, 방사온도 및 방사조건 의 차이를 인하여, 이 연산사인 Xerogel 성유의 구조가 다르기 때문으로 추정된다. 본 연구에서는 λsp을 크게 해술하고 전체 overall draw ratio를 증가 시킬 수 있었으며 물성 또한 증가시킬 수 있었다.

Fig.3은 λsp를 변화시켜 가면서 Xerogel 성유를 제조한 후 이를 오븐 속에서 λh-d max의 약 80% 되게 연산시킨 성유의 인장강도와 Young's modulus의 변화를 보여주고 있다. PE성유의 물성은 λsp에 따라 증가하는 경향을 나타내어 인장강도는 1.72GPa에서 2.75GPa까지, Young's modulus는 40GPa에서 100GPa까지 증가하였다. 또한 λsp에

Fig. 2. Maximum draw ratio in hot drawing vs. spin-draw ratio.
게 방사에 있어서 PE성유의 물성에 미치는 가공변수의 영향: I. 방사연산비

![Fig. 3. Tensile strength & Young's modulus with spin-draw ratio(All the Xerogel fibers were drawn to the 80% of λ_{h.d.-max} in hot oven).](image)

따라 섬유의 직경 또한 적어지며 λ_{sp} 를 34로 하였을 때 직경이 25㎛인 섬유를 제조할 수 있었다.

Hot Drawing과 방사공정에서의 연산 비교

Hot drawing과 방사공정에서의 연산 효율성을 살펴보기 위하여 각 공정에서 연산된 섬유를 제조 하였다. 즉 방사할 때 원형속도를 변화시키면서 λ_{sp} 가 다른 인원의 Xerogel 성유를 제조 하였고, 이 외는 별도로 방사공정에서 각의 연산 인원 성유 (λ_{sp}=1) 를 오른 속에서 연산시키며 인원의 연산비(λ_{h.d.-})을 가지는 성유를 제조하였다. 그 뒤 이 두 공정에서 연산된 성유의 배향 각도를 측정하였 다.

Hot Drawing: Fig 4-(a)는 λ_{sp}=1, λ_{h.d.-}=1인 Xerogel 성유의 X-ray 회절 패턴이다. 그림에서 보면 미연산시기 때문에 X-ray 회절 패턴이 환상으로 완전되지만 azimuthal 방향으로 90°와 270°(섬유축과 수직한 방향)에서 보다 강한 강도를 나타내고 있다. 이로부터 Xerogel 성유에는 PE 라멜라 들이 주로 random하게 배열되어 있지만, 섬유축과 수직한 방향으로 배향된 라멜라 들이 상당량 있음을 알 수 있다. Fig 4-(b)는 λ_{sp}=1, λ_{h.d.-}=2인 성유의 X-ray 회절 패턴을 보여주고 있다. 그림에서 보듯이 오른 쪽에서 두 배만 연산되어도 분자체가 섬유축 방향으로 상당히 배향되기 때문에 회절이 나타나는 각도가 90°, 270°에서 0°, 180°(섬유축과 평행한 방향)로 이동됨을 관찰 할 수 있다. Fig 5는 λ_{h.d.-}에 따른 배향 각도의 변화를 보여 주고 있다. λ_{h.d.-}에 따라 처음에는 배향 각도가 현저하게 줄어들었으나 λ_{h.d.-} 가 10 이상에서는 배향 각도가 약 8°로 일정하였다. 성유의 인장강도와 Young’s modulus는 연산비에 따라 계속 적선적으로 증가하지만, 13 분자체의 배향이

![Fig. 4. Wide angle X-ray patterns in azimuthal direction at (110) plane with hot draw ratio: (a) λ_{h.d.-}=1, λ_{sp}=1, (b) λ_{h.d.-}=2, λ_{sp}=1.](image)

![Fig. 5. Variation of orientation angle with hot draw ratio for the sample of λ_{sp}=1.](image)
어느정도 이상 일어나면, 더 이상의 배향이 없이 주체가 extension되기 때문에 전신비 10 이상에서의 배향 각도가 약 8°로 일정한 것으로 생각된다.

방사공정에서의 연성 : Fig. 6-(a)~(c)는 \(\lambda_{sp} \)를 변화시켜가면서 제조한 Xerogel 섬유의 X-ray 회절 패턴을 보여주고 있다. 그림에서 보듯이 회절 피크가 모두 섬유축과 수직한 방향인 90°와 270°에서 위치되었으며 (Fig. 4-(a) 참조), 배향각도의 변화도 거의 없었다. 다만 \(\lambda_{sp} \)가 34인 경우에는 (Fig. 6-(c) 참조) 섬유축과 평행한 방향인 0°, 180°에서도 피크가 나타나는 것으로 보아 분자체의 일부가 섬유축 방향으로 배향되어 있음을 알 수 있다. Fig. 7은 hot drawing에서 19배 연산된 섬유 (a)와 \(\lambda_{sp} \)가 34인 섬유(b)의 X-ray 회절 패턴을 보여주고 있다. Hot drawing에서 연산된 섬유는 배향이 매우 잘 된 반면 방사공정에서 연산된 섬유는 거의 배향이 되지 않아 황성으로 회절이 일어남을 알 수 있다. 이와의 결과로부터, 방사되어나온 용액중의 PE 분자들은 빨리 relaxation 되기 때문에 방사과정에서 연산시켜 주더라도 PE 분자들이 빠르게 recoiling하여 배향이 거의 안 일어나는 것으로 생각된다.

Fig. 6. Wide angle X-ray spectrums in azimuthal direction at(110) plane for the Xerogel fiber with various spin-draw ratio: (a) \(\lambda_{sp} = 6 \), (b) \(\lambda_{sp} = 21 \), (c) \(\lambda_{sp} = 34 \).

Fig. 7. Comparison of WAXS patterns: (a) hot drawn PE fiber, (b) Xerogel fiber drawn in spinning process.
로 생각된다. 그러나 방사시 판취속도를 아주 빠르게 해주면 PE음액이 완전히 recoiling하기전에 수조에서 급명되면서 구조가 고정되어 일부 배향된 분자체가 남겨 되기 때문에 Fig. 6-(c)에서와 같이 섬유측 방향에서도 회절이 일어나는 것으로 생각된다. 결과적으로 방사공정에서의 연산이 최종물성에 미치는 영향은 분자배향에 의한 것이 아니라는 결론에 도달하게 된다.

물성 변화에 대한 원인 고찰: 일반적으로 섬유가 파괴될 때 crack은 표면의 결함에서부터 시작된다고 알려져 있다.21-22) PE섬유의 경우 이러한 표면의 결함은 본 실험에서 확인된 바와 같이 주로 kink band인데(Fig. 8 참조), 섬유의 직경이 두꺼워 질수록 이러한 kink band가 많아지게 된다.11) Xerogel 섬유가 오븐 내에서 연산 될때, 열전달이 이루어지면서 변형되기 때문에 core 쪽은 온도가 낮아 다소 변형이 어렵게 되고, 이로 인해 생기는 응력차에 의해 kink band가 형성된다고 알려져 있다.11) 본 연구에서는 Fig. 3에서와 같이 섬유의 인장강도와 탄성율이 \(\lambda_{sp} \)에 따라 증가하는 경향을 나타내었는데, 이는 \(\lambda_{sp} \)에 따라 Xerogel 섬유의 직경이 적어져 오븐에서 연산될때 kink band가 적게 생기기 때문으로 생각된다. 섬유의 직경이 인장강도에 미치는 영향은 1984년 Penning이 발표하였듯이11) Griffith equation, 식(1)과 같다.

\[
\sigma_{o}^2 = K(D-D_{0})^{1/2} + \sigma_{0}^{-1}
\]

\(\sigma_{o} \)는 인장강도, \(K \)는 상수, \(D \)는 섬유의 직경, \(D_{0} \)는 flawless 섬유의 직경(\(D_{0} = 0 \)), \(\sigma_{0} \)는 flawless 섬유의 강도이다.

Fig. 9는 \(\lambda_{sp} \)를 변화시켜 가면서 본 실험에서 제조한 섬유의 인장강도와 직경과의 관계를 식(1)에 따라 그려진 그래프이다. 그림에서 보듯이 인장강도의 역수와 직경의 제곱근 사이에는 직선관계가 잘 유지되어kink band의 수와 연관된 섬유의 직경이 최종물성에 상당한 영향을 미치는 것을 다시 확인할 수 있었다. Fig. 9에서 섬유의 직경이 0밀면 외삼

Fig. 8. SEM microscoph of the surface of a highly oriented gel spun and hot drawn UHMW PE fiber revealing kink band.

Fig. 9. Linear strength-diameter relationship as observed for the fully oriented UHMW PE filaments (▲: experimental data).

한 인장강도(\(\sigma_{o} \))는 15.7 GPa이었는데, 이 값은 Hiz ex Million 240M을 사용하여 PE 섬유를 제조할 때 우리가 얻을 수 있는 인장강도의 극한값으로 생각된다.

결론

관련 내에서의 연산가능 단리 방사공정에서의 연산에 의해서는 거의 배향되지 않은을 확인할 수 있었다. 그러나 방사공정에서 많이 연산되어 주면 hot drawing 할 때 열전달이 용이하게 일어나 직경으로 작용하는 kink band의 수가 줄어들기 때문에 인장강도와 Young's modulus는 증가하는
경향을 나타내었다. 본 연구에서 고체환의 최적의 조건에서 인장강도 2.7 GPa, Young’s modulus 100 GPa, 흑정이 약 25 μm인 PE 섬유를 반연속적으로 제조할 수 있었다.

참고 문헌

18. 本島正則, 関西特許公報, 昭 59－130313.
19. 三橋重信, 関西特許公報, 昭 59－232123.
20. 三橋重信, 関西特許公報, 昭 59－78238.