Copoly(urethane-g-γ-methyl-L-glutamate)의 혈액적합성

장성욱, 성용길, 조종수, 김계용
한양대학교 공업화학과, *동국대학교 화학과, **전남대학교 고분자공학과
(1988년 10월 7일 접수)

Property and Blood-Compatibility of Copoly(urethane-g-γ-methyl-L-glutamate)

Dept. of Industrial Chem., College of Eng., Hanyang Univ., Seoul 133-791, Korea
*Dept. of Chem., Dongguk Univ., Seoul 100-715, Korea
**Dept. of Polymer Eng., Chonnam National Univ., Kwangju 500-757, Korea
(Received October 7, 1988)

Abstract : Blood compatibility have been studied for copoly(urethane-g-γ-methyl-L-glutamate). Copolymer was synthesized by ring opening anionic polymerization of γ-MLG NCA with amine substituted polyurethane. Amine substituted polyurethane was made from sodium hydride and p-bromoaniline in dimethylformamide at 0℃. Reaction site of polyurethane was controlled by sodium hydride. In order to adjust the grafted chain length, the amount of γ-MLG NCA added was controlled. Microsphere column, Lee-White and film depositing methods were used for the evaluation of blood compatibility. The behavior of platelet on the polymer surfaces was investigated by scanning electron microscope and average number of platelet was measured by Coulter Counter. The contact angle and the clotting time of samples were investigated in order to examine the blood compatibility of copolymer.
Copoly(urethane - g - γ-methyl - L-glutamate)의 혈액적합성

서 론

보다 효율적인 의료용장비 개발과 생체내의 고장된 장기나 기관의 과 북한신체, 생체의 고장된 장기나 기관의 보존, 신체적, 기능적, 성장가속의 필요에 따라, 이론과 실험적인 연구가 진행되고 있다. 이 중에서도 주목되는 것은 고분자재료의 이용이, 의료용재료의 개발로서 혈액장기와 양상한 접합교대, 기계적 성장이 우수한 폴리우라탄, 생체 유상품질인 젤라틴 등이다. 이 중에서도 우레탄과 섬리온의 단독 중합체 또는 이들의 공중합체가 혈액장기 재료로서 활발하게 연구개발되고 있다.

본 연구에서는 기계적 성장이 우수하며 의료용재료로 널리 쓰이는 폴리우라탄에 생체 단백질 구성 성분인 L-glumatic acid에 메틸알코올을 반응시켜 만든 γ-methyl-L-glutamate(γ-MLG)를 그라프트 공중합하여 혈액장기 의료용재료로서의 성질을 검토하였다. 그라프트된 펩티드의 영향을 검토하기 위하여 폴리우라탄의 우레탄 결합중의 수소에 NaH 치환을 2종류로 변화시켜 γ-MLG를 그라프트중합시켰다. 혈액적합성은 Lee-White 법으로 혈액응고시간을, microsphere column 법으로 헌혈혈소판을 측정하였고, 주사전자혈미경으로 접착 형소판의 모양에 관한。

실 험

시 악

폴리우라탄은 미국 Goodrich사의 제품인 Esthane 5707F1(hard type)를 사용하였으며, L-glumatic acid는 일본 Junsei Chemical Co. 제품(specific rotation 31.5-32.2°, N: 95.2%)을 그대로 사용하였다. 기타 시약은 일상 시약을 일반적인 방법으로otal정하여 사용하였다.

그라프트 공중합체의 합성

γ-methyl-L-glutamate와 γ-MLG N-carboxy-anhydride (γ-MLG NCA)는 전조3와 같이 합성하였으며 그라프트 공중합체(PU-g-MLG)는 음

이온 친화중합으로 합성하였다.

폴리우라탄을 DMF에 용해시킨 다음 전조기류 하에 0℃이하에서 NaH양을 변화시켜 2종류의 나트륨판화체를 만든 후 여기에 NCA의 종합개시액 함을 할 p-bromoaniline을 도입하였다. 각 생성물 을 DMF에 녹인 후 γ-MLG NCA를 녹여 상온에서 72시간 반응시켜 그라프트 공중합체(PU-g-MLG)를 합성하였다. 그라프트된 펩티드의 길이

는 각 반응조건의 반응기이 몰수에 대한 NCA의 몰비로 조절하였다. Fig. 1과 Table 1에 합성과정과 중합체의 그라프트율을 나타내었다.

Fig. 1. Preparation of PU-g-MLG.

<p>| Table 1. Preparation of Graft Copolymers |</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Monomer Feed (g)</th>
<th>Grafting Eff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG - I - 1</td>
<td>0.46</td>
<td>4</td>
</tr>
<tr>
<td>PG - I - 2</td>
<td>2.05</td>
<td>32</td>
</tr>
<tr>
<td>PG - II - 1</td>
<td>0.92</td>
<td>13</td>
</tr>
<tr>
<td>PG - II - 2</td>
<td>4.10</td>
<td>43</td>
</tr>
</tbody>
</table>

Type I : 0.1042g NaH / 10g PU
Type II : 0.2084g NaH / 10g PU
Reaction time : 72h, Reaction temp. : 35°C.

폴리머 제13권 제3호 1989년 3월 239
압전조하여 제조하였다. 합성한 PU-g-MLG 유용 \(H_w \)은 각 시험을 37℃로 유지시킨 후 10일간 영유시킨 다음 다음식으로 계산하였다.

\[
H_w(\%) = \left(\frac{W - W_0}{W_0} \right) \times 100
\]

\(W_0 \): 건조상태의 무게, \(W \): 영유상태의 무게

인장강도와 신장율은 Universal testing machine (Toyo Boldwin UTM-4-100)를 이용하여 측정하였다.

항염전성 평가시험 및 염계표면장력측정
항염전성 평가시험은 microsphere column법과 Lee-White법 및 film depositing법을 이용하여 전형과 같이 실험하였으며, 염계표면장력도 전형과 같은 방법으로 측정하였다. Microsphere column법에서 재료와 혈액과의 접촉면을 균일하게 하고 channel 형상을 만드기 위해서 Down-Up계를 사용하였다(Fig. 2). Film depositing법은 시료를 0.5×0.5cm²으로 만든 후 식염수에 영유시킨다. 이

영유시킨 시료를 즉각에서 개별한 혈액 3ml에 3분간 담근 후 표면을 식염수로 잘 세척한 다음 1.25% glutaraldehyde로 점착협소관을 고정하여 주사전 자원미경으로 혈소판의 모양모지를 관찰하였다.

결과

중합체의 구조
합성한 그라프트 공중합체의 구조를 FT-IR (Nicolet 5-DX)로 확인한 결과를 Fig. 3과 Fig.4에 나타내었다. Fig. 3에서 아미노기의 도입양이 증가할수록 3320cm⁻¹ 부근의 N-H 신축동동 band의 강도가 증가하는 것을 알 수 있었으며, Fig. 4에서 PG-I 형태는 1653cm⁻¹에서 amide I band가 그리고 1533cm⁻¹에서 amide II band를 띠내하는 random 형태임을 알 수 있었다. 또한 PG-II 형태는 1654cm⁻¹에서 amide I band가 1546cm⁻¹에서 amide II band가 나타나는 것으로 보아 α-helix 구조를 갖는다.
Copoly(urethane-g-γ-methyl-L-glutamate)의 혈액적합성

이 증가함에 따라 인장강도는 증가하고 신장율은 감소하고 있다. 함수율은 캐피로드양이 증가함에 따라 감소하고 있으며, 임계표면장력은 공중합체 모두 23-27 dyn/cm을 갖는다.

항혈전성평가

Microsphere column법에 의한 잔유혈소관수 측정값을 Fig. 5에 나타내었다. Lee-White법에 의한 혈액응고시간측정값을 Table 4에 나타내었다.

혈소판의 모폴로지관찰

Film depositing법으로혈소판의 접착기능을 살펴보았다. 접착성능을 비교하기 위해 실험에 사용한 폴리우레탄 및 항혈전성이 좋은 것으로 알려진 실리콘 표면에서의혈소판 모폴로지상태를 Fig. 6에서 비교검토 하였다.

![IR spectra of PU and PU-g-MLG.](image)

Table 2. Mechanical Properties of Polymer Films

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tensile Strength (Kg/mm²)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG- I -1</td>
<td>2.36</td>
<td>358</td>
</tr>
<tr>
<td>PG- I -2</td>
<td>2.62</td>
<td>259</td>
</tr>
<tr>
<td>PG- II -1</td>
<td>1.14</td>
<td>242</td>
</tr>
<tr>
<td>PG- II -2</td>
<td>1.86</td>
<td>196</td>
</tr>
</tbody>
</table>

![Number of platelets remaining in the sampling bottle. SD:standard deviation, CV:coefficient variance.](image)

Table 3. Water Content and Critical Surface Tension

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water Content (%) at 37℃</th>
<th>Critical Surface Tension (dyn/cm)</th>
<th>Graft Effi. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG- I -1</td>
<td>2.8</td>
<td>26.1</td>
<td>4</td>
</tr>
<tr>
<td>PG- I -2</td>
<td>0.7</td>
<td>23.9</td>
<td>32</td>
</tr>
<tr>
<td>PG- II -1</td>
<td>0.8</td>
<td>26.6</td>
<td>13</td>
</tr>
<tr>
<td>PG- II -2</td>
<td>0.1</td>
<td>23.9</td>
<td>43</td>
</tr>
</tbody>
</table>

![Clotting Time Ratio and Adhesive Performance of Platelet](image)

Table 4. Clotting Time Ratio and Adhesive Performance of Platelet

<table>
<thead>
<tr>
<th>Sample</th>
<th>Clotting Time Ratio</th>
<th>Adhesive Performance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>1.00</td>
<td>.</td>
</tr>
<tr>
<td>PG- I -1</td>
<td>1.97</td>
<td>8.2</td>
</tr>
<tr>
<td>PG- I -2</td>
<td>2.06</td>
<td>6.0</td>
</tr>
<tr>
<td>PG- II -1</td>
<td>1.64</td>
<td>6.4</td>
</tr>
<tr>
<td>PG- II -2</td>
<td>2.08</td>
<td>3.0</td>
</tr>
<tr>
<td>PMLG</td>
<td>1.43</td>
<td>.</td>
</tr>
</tbody>
</table>
고 찰

앞의 결과에서 나타난 것처럼 PG-I는 PG-II 보다 안정적이고 신장용이 우수한 것은 일반적인グラ프트공중합체에서의 반응조건의 수가 적을수록 나타나는 일반적인 특성이며, 같은 물리적에서 그래프트양이 증가할수록 안정성도 증가하고 신장용이 감소하는 것은 그래프트메이트의 길이가 길어짐에 따라 전체 반응이 증가하여 나타나는 현상이라고 생각되며, 케트리드 고유물성의 영향도 받는다고 생각된다. 합성물의 경우, 전보다는 플라우레탄에 그래프트된 $\text{poly(\gamma-benzyl-L-glutamate)}$가 모두 α-helix의 콤폴레이션임때는 그래프트율이 증가함에 따라 합성율이 거의 적절적으로 감소하고 있다. 본 실험에서는 케트리드 양의 증가에 따라 합성율이 적절적으로 감소하는 경향은 나타내지 않고 있다. 이것은 PG-I의 케트리드가 random 콤폴레이션으로 PG-II의 α-helix보다 수소결합을 할 수 있는 amide bond가 더 많이 존재하기 때문에 나타나는 현상이라고 생각되며, 여기서 케트리드구조가 서로 다르게 형성되는 이유는 케트리드의 양에 관계되는 것으로 생각되지만 그래프트된 케

티드의 구조에 대해서는 FT-IR 이외에 CD, ORD 등을 이용한 더 자세한 연구가 수행되어야 확실해질 것으로 생각된다.

현액응고시간(Table 4)과 전류값완수 측정 결과(Fig. 5)를 비교해보면 반응물의 환경 플라우레탄을 사용한 공중합체에서는 케트리드양이 많은 것이 다소 향성성이 우수한 것으로 나타났으며, Fig. 6에 나타난 혈소판의 보존성시작을 보면 케트리드양이 많은 PG-I-2와 PG-II-2가 PG-I-1과 PG-II-1보다 혈전형이 덜 진행된 것을 알 수 있었으며, PG-I-2의 PG-II-2 모두 거의 원형을 유지하고 있는 혈소판을 관찰할 수 있었으며 이는 혈액응고시간 측정결과(Table 4)와도 일치하고 있음을 알 수 있다.

결 론

본 실험에서는 기계적성질이 우수한 플라우레탄에 생체판매질 구현성분인 아미노산을 그래프트 공중합하여 혈액적성능을 접고한 결과 다음과 같은 사실을 알았다.

1. 합성된 고분자 재료에서의 혈소판 접착기동
Copoly(urethane-g-γ-methyl-L-glutamate)의 혈액적합성

과 평균질약소수를 측정한 결과 PMLG나 PU보다 PG-I와 PG-II의 혈액적합성이 다소 우수하며 이 중에서도 펌티드항이 증가함에 따라 다소 우수한 혈액적합성을 나타내는 것을 알 수 있었다.

2. 임계표면장력이 20-30dyn/cm에 있는 공중합체가 그렇지 않은 단일중합체보다 다소 우수한 혈액적합성을 갖는 것을 알 수 있었다.

본 연구는 과학세단 및 학술진흥재단 연구비 보조의 일부로 이루어졌으며 이에 감사한다.

참고문헌