Mechanical Properties of Low Density Rigid Polyurethane Foams (Effects of MDI/TDI Mixing Ratio on the Compressive Properties.)

Won Taik Kim, Sie Tae Noh, Chang Nam Jeong and Sang Rin Lee*

Department of Industry, College of Engineering,
Hanyang University, Seoul 133, Korea.
Pacific Institute of Research & Technology, Seoul, Korea.

(Received September, 9, 1981)

Abstract: To observe the variation of mechanical strength of rigid polyurethane foam, the compressive modulus and compressive strength of polyurethane foam were examined in the range, 0.04~0.25, of density (g/cm³). The mixing ratio of two species of diisocyanate (MDI/TDI), were 10/0, 8/2, 5/5, 2/8 and 0/10. And three species of polyol which had different hydroxy values were used. Experimental results were introduced to representative empirical equation: (Properties) = A(Density)*, then coefficients A and a were calculated from the equation.

1) When the mixing ratio of MDI and TDI was changed, the compressive properties (compressive modulus and compressive strength) of the foam were reduced as TDI
低密度硬泡Polyurethane foam의力学性质(I) (압축특성에 미치는MDI/TDI 혼합비의 영향)
were increased.

2) We obtained the following ranges of coefficients according to the variation of
density and of MDI/TDI mixing ratio. i) In case of compressive modulus, \(A = 16,000 \sim
6,000, \alpha = 1.4 \sim 1.6. \) ii) In case of compressive strength, \(A = 500 \sim 250, \alpha = 1.5 \sim 1.6. \)

3) From the optical microscopic studies of cell structure, it became known that when
TDI fraction was increased, the fraction of open cell and the irregularity of formed
cell structure were increased more than when only MDI was used.

1. 서 론

Polyurethane foam은 polyl, isocyanate, 총대, 발포제, 계면활성제 등의 복합으로 제조되며
역학적성질은 조성비 및 발포방법에 따라 변하므로, 유효된 마커 경질, 반경질, 열화의 foam
으로 만든다. 이들 foam은 복잡한 입자를 갖고 있어 폐쇄하하기는 용이하지 않으나, foam의
cell구조를 구조화적으로 정의하거나, \(^{1,8}\) 발포의 함수로 관계할 수 있다. \(^{9,17}\)
기하학적 고전에서 Gent과 Thomas\(^{18}\)는 foam의
cell을 3차원 망상구조로 모형화하고 Leaderman\(^{19}\)
또는 유작이 경우에만, foam구조의 저진단 단순화로 역학적성질을 충분히 해석할 수 없고,
Chen과 Nakamura\(^{20}\), 그리고 Menges와 Knipschil\(^{21}\)들은 5각형의 12면체로 foam을 모형화하여
전자를 보완했으나 일반적이면에는 적용되지 않고, 또한 전자를 보고 있다. Foam의 역학적
성질을 밀도함수로 표시하면 전단적 경질을 보인다. Kern의 수학적분석\(^{22}\)은 부피분율로 foam
의 성질을 구균한 대표적 이론으로, 밀도가 높은 foam은 수지내 경질함이 적어 잘 작용되나
경질함이 많은 질도 foam의 경우는 조성변
형의 중대로 적용이 어렵다. Rusch\(^{23}\)의 실험은 부피분율를 통로에서 실험결과와 잘 일치한다.
Traeger\(^{24}\)등이 제안한 foam의 물성과 밀도의 상
관관계식은 \(\text{property} = A \times (\text{density})^\alpha \)로 전단이 경우
에서 적절한 변형을 갖게, Rusch의 실험
식과 동일한 결과이다. Progelhofer\(^{25}\)는 이와의 여러
식을 비교하였다. Traeger는 요즘의 isocyanate, 즉 tolylene diisocyanate(이하 TDI로 약칭함)및
polyoxy polyisocyanate물성의 rigid urethane
foam의 역학적성질을 검토하였는데, 앞의 여러

2. 실험

1) 시료 및 시약

Polyurethane foam의 물성과 사용한 polyether계 불리움은 Mitsui Tohsu Chemical사의
RDX-1(히드록시값 453), 한국폴리올의 HD-401
(히드록시값 401)을, 90°C에서 2mmHg 압착하
서 8시간 동안 잠재증류하여 사용하고, 이 2
종의 물리로 히드록시값 425으로 혼합참조하
여 사용한다. Isocyanate는 Kasei Upjohn사의
MDI와 TDI, 총대는 triethylene diamine(DAQCO)로 Air Products & Chemical사의 DABCO
33LV(DABCO 33wt.% + tripropylene glycol), 계
면활성제는 Dow Corning사의 DC-193(silicone
계), 발포제로서는 불을 사용하였다.

2) 기기

Foam의 압축탄성을 및 압축강도는 universal
testing machine (Instron사, model 1123)으로
축정하고, foam주조는 광학현미경(Karl Zeiss사)로 관찰했다.

3) 실험

블리올은 흡습성이 대단히 강하므로 사용하기 전에 90℃에서 2mmHg 감압하하여 8시간 동안 잠
입증류하여 수분을 최대로 제거했다. Foam은 금
형에 준비한 환경을 주입하고 여기에 측면 33LV와 발포체인 물 및 중간한 반응을 진행시
키기 위한 silicone의 분산체 DC-193을 넣고, 상
온에서 약 1,700rpm으로 잘 고속한 후, 이 혼
합액에 isocyanate를 주입하고 혼합하여 반응을 중
요시기 foam을 만들었다. 이때 cream time은
5~10초, rise time은 130~140초, set time은
140~150초이다. 이로의 최대발열온도는 88~
98℃이다. Foam의 조성 외부의 여타항을 최소
로 하기 위해 거의 같은 시간에 제조하고, foam
의 밀도가 0.05~3.0g/cm³이 되도록 발포체인
물의 양을 조절했다. 밀도는 절단시점의 중량을
부피로 나누어 계산한다. (ASTM D 1622-63에
의함) 사용한 용제와 재료성을 갖는 각각 1부(dili-
soycyanate, 블리올, 물등의 소량에 대략)액이고
요소의 isocyanate인 MDI와 TDI의 혼합비는 각
각10:0, 8:2, 5:5, 2:8 및 0:10의 비로 변화시
켰다. 제조된 foam은 72시간동안 삶은력세계
도, 이상적인 foam은 발포방향이 압축시험방향과
일치하도록 2×2×3cm의 크기로 절단하여, Instron universal testing machine으로 압축탄성을
및 압축광도를 측정했다. 압축시험은 chart spe-
ed 1,000mm/min, cross head speed 20mm/min
로 측정했다. 또한 foam을 탈 KIND으로 만든 광
학현미경으로 cell의 구조를 촬영했다.

3. 결과 및 고찰

1) MDI/TDI혼합비에 따른 압축탄성을

Foam의 압축탄성을 및 압축광도를 나타낸 일
반식은(8, 12)

\[P = AL^n \](1)

\[\log P = \log A + \alpha \log D \](2)

이다. 여기서 P는 foam의 압축분성(암축탄성을

\[D \]는 foam의 밀도, \[A \] 및 \[\alpha \]는 상
수이다. 압축분성은 foam의 조성비와 발포조건
에 따른 foam의 cell구조에 따라 좌우되며, 압
축분성은 밀도로서 나타낸 (2)식에서 매우 적
선적으로 증가한다.

MDI와 TDI의 혼합비가 10/0, 8/2, 5/5,
2/8 및 0/10으로 변화시켰다. (1)식에서의 A와
\[\alpha \]값을 구했다. Fig. 1은 헤리온의 힘을

\[\text{MDI/MDI의 비율과 TDI의 밀도 값에 따라 압축분성은 밀도는 MDI/MDI의 비율에 따라 10/0, 8/2, 5/5, 2/8 및 0/10의 순으로 저하한다. 실험으로 밀도가 0.15(kg/cm³)일 때 MDI만으로 제조된 foam과 5/5(MDI/TDI),

\[\text{TDI만으로 된 foam의 압축분성은 잘 650, 600, 500(kg/cm³)으로 감소하며, 밀도가 0.05}

\[\text{g/cm³)일 때도 같은 조성 foam의 순으로 150, 127, 100(kg/cm³)으로 감소하는 경향이 있으며, MDI}

\[\text{와 TDI만으로 된 foam의 압축분성은 차는}

\[\text{foam의 밀도가 커질수록 그 차가 커진다. Fig.1의}

\[\text{Compressive modulus vs. density for vari-

polymer (Korea) Vol. 6, No. 1, February 1982}
Photo. 1 Optical photomicrograph (×40) of cell structure
(a) : MDI/TDI=10/0, (b) : MDI/TDI=8/2,
(c) : MDI/TDI=5/5, (d) : MDI/TDI=2/8.
금수홍・ hendle • 정명호・ 이학균

Table 1. Value of Compressive Modulus and Coefficient A and α of Polyurethane Foam at various MDI/TDI ratio

<table>
<thead>
<tr>
<th>MDI/TDI Ratio</th>
<th>10/0</th>
<th>8/2</th>
<th>5/5</th>
<th>2/8</th>
<th>0/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Modulus (kg/cm2)</td>
<td>630</td>
<td>620</td>
<td>600</td>
<td>580</td>
<td>540</td>
</tr>
<tr>
<td>A</td>
<td>8.70</td>
<td>7.10</td>
<td>6.600</td>
<td>6.100</td>
<td>5.400</td>
</tr>
<tr>
<td>α</td>
<td>1.35</td>
<td>1.32</td>
<td>1.31</td>
<td>1.23</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Density = 0.15 (g/cm2)

값은 (1)식에 대입하여 Table 1에 정리하였다. 이것은 폴리올의 허드록시 값이 401인 것으로된 foam으로 밀도가 0.15 (g/cm2)임 때의 값이다.

Fig. 4는 Fig. 1을 (2)식에 대입하여 폴리우레탄으로 밀도에 따라 압축성을 매우 적절적으로 증가하고 있음을 알 수 있다. 앞에서 일반적으로 MDI/TDI 혼합비에 따른 밀도와 압축성성능의 관계는 cell구조의 문장로 더욱 확인할 수 있다. Photo. 1은 MDI/TDI 혼합비에 따라 foam의 구조가 복잡히 포물선 연속기포(계기포)를 형성하는 것을 보여 주고 있다. Photo. 1, a)는 MDI/나프탈렌 비가 0.9 단락밀의 허드록시, b)는 MDI/TDI(2/8)의 조성 foam의 일반적 경사로 MDI단락밀의 허드록시 포물선. TDI의 함량이 증가할 때 연속기포가 증가하고 있음을 보여 준다. 즉 MDI/TDI 혼합하여 polyurethane foam은 TDI의 함량을 증가시 킬때 연속기포가 증가하며 cell의 크기도 조금씩 커진다는 것을 알 수 있다. 이와 같은 구조변화 결과로 foam의 압축성을 영향받는데 이것이 MDI/TDI 혼합비의 압축성을 및 압축강도차가

![Fig. 2. Compressive modulus vs. density for various MDI/TDI mixing ratio.](image)

![Fig. 3. Compressive modulus vs. density for various MDI/TDI mixing ratio.](image)
Fig. 4. Log(compressive modulus) vs. Log(density) for various MDI/TDI mixing ratio.

Fig. 5. Log(compressive modulus) vs. Log(density) for various MDI/TDI mixing ratio.

Table I. Value of Compressive Strength and Coefficient A and α of Polyurethane Foam at various MDI/TDI ratio

<table>
<thead>
<tr>
<th>Property</th>
<th>MDI/TDI Ratio</th>
<th>10/0</th>
<th>8/2</th>
<th>5/5</th>
<th>2/8</th>
<th>0/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength (kg/cm²)</td>
<td></td>
<td>21.8</td>
<td>20.5</td>
<td>19.7</td>
<td>18.6</td>
<td>17.4</td>
</tr>
<tr>
<td>A</td>
<td>400</td>
<td>330</td>
<td>300</td>
<td>270</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1.52</td>
<td>1.48</td>
<td>1.47</td>
<td>1.463</td>
<td>1.46</td>
<td></td>
</tr>
</tbody>
</table>

Density = 0.15 (g/cm³)

Fig. 6. Log(compressive modulus) vs. Log(density) for various MDI/TDI mixing ratio.
암축탄성율이 적절적으로 증가함을 보여주고 있다.

2) MDI/TDI 혼합비에 따른 암축강도

MDI/TDI 혼합비를 암축탄성율의 조건과 동일하게 10/0, 8/2, 5/5, 2/8 및 0/10으로 변화시 키면서 암축강도는 측정하고, 역시 폴리올의 헤드록시 값을 변화하에 따른 결과도 간행한다. Fig.7은 폴리올의 헤드록시 값이 401일 때의 암축강도이다. MDI/TDI의 비율 MDI의 양을 감소하고 TDI의 양을 증가시킨 것이다. 이어 암축강도는 MDI 양이 감소함수록 빨리지고 있다. 헤드록시 값을 423 및 453으로 증가시켜 401과 비교하면 동일한 경향을 보인다. 이때, 헤드록시 값의 증가에 따라 암축강도는 소폭으로 증가하 고 있다(Fig.8 및 Fig.9). 이는 Traeger의 연구 보고에서 폴리올의 헤드록시 값을 증가시킬 때 아주 소폭으로 증가하는 것을 입니다. 폴리 올의 헤드록시 값이 401, 423 및 453인 foam의 MDI/TDI 혼합비에 따라 밀도와 암축강도가 떨

Fig. 7. Log(compressive strength) vs. Log(density) for various MDI/TDI mixing ratio

Fig. 8. Log(compressive strength) vs. Log(density) for various MDI/TDI mixing ratio

Fig. 9. Log(compressive strength) vs. Log(density) for various MDI/TDI mixing ratio

Polymer (Korea) Vol. 6, No. 1, February 1982
表II. Compressive Properties of Polyurethane Foam made from different Polyols.

<table>
<thead>
<tr>
<th>Compressive Property</th>
<th>Diisocyanate ratio of MDI/TDI</th>
<th>OH-Value of Polyol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/0</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td>5/5</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>0/10</td>
<td>453</td>
</tr>
<tr>
<td>Modulus (kg/cm²)</td>
<td>650</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>680</td>
</tr>
<tr>
<td>Strength (kg/cm³)</td>
<td>22</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>17.6</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>10/0</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>5/5</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>0/10</td>
<td>493</td>
</tr>
<tr>
<td>Density = 0.15 (g/cm³)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 결론

MDI-TDI 혼합제 경질 polyurethane foam의 isocyanate 혼합비에 따른 압축탄성률과 압축강도를 실험에서 비교한 결과 다음과 같은 결론을 얻었다.

1. MDI-TDI의 혼합비를 변화시키면 압축특성은 비례적으로 변한다. 즉, 조성의 TDI량이 증가함에 따라 압축탄성률과 압축강도는 비례적으로 증가하며,

2. Foam의 방식은 일반적\(P = AD^α \)에서 압축탄성의 경우, \(A = 16,000 \sim 6,000, \alpha = 1.4 \sim 1.6 \)이고, 압축강도의 경우, \(A = 500 \sim 260, \alpha = 1.5 \sim 1.6 \)이다.

3. 또한MDI-TDI의 혼합비에 따른 cell구조는 MDI단독일 때는 특립 cell을 형성하고, TDI량이 증가함수록 연속 cell이 많이 형성되어 foam의 압축특성이 멀어진다.

인용문헌