중합 용기 내부 표면에서의 중합체의 부착 방지
―PVC의 서스펜션 중합을 중심으로

진 정 일*

1. 머리말

PVC내지 염화비닐의 혼성 중합체는 물리 및 화학적 성질이 종합된 더 높은 가공 기술과 용도의 개발로 그 수요가 계속적으로 크게 증가하고 있다.

그러나 PVC나 염화비닐 혼성 중합체의 생산에는 아직도 여러 가지 크고 작은 문제들이 염을 기다리고 있으며 그 중의 하나가 중합 과정에서 중합 용기의 내부 기벽, 교반기, 배출구 용기 상부의 도층(dome) 표면에 수지의 부착하는 것을 어떻게 방지 혹은 감소시킬 수 있는가 하는 문제이다. 이와 같은 수지의 점착(scale)은 반응 용기의 열공방을 낮추어 반응열의 조절을 어렵게 하며 및 배치(batch) 중합에는 많은 막을 형성하여 용기를 닫아야 하므로 생산성과 경제성을 악화시키고 있다. 물론 이러한 문제들이 아름답게 이탈하여 수지에 섞여 들어 가면 수지의 열공방 성을 저하시키고 피쉬-에이(fish eye) 내러는 등 제품의 값을 떨어뜨리다.

따라서 이의 방지는 전 PVC 생산업체의 수레이며 여러 가지 방향에서 이에 대한 연구가 진행되고 있다.

현재 일부 업계에서는 부분적으로 효과적인 방법을 발전하여 사용하고 있기는 하나 근본적인 해결책은 아직도 갖고 있지 못하는 듯하다.

PVC의 생산에서는 서스펜션, 에멀젼, 용액 및 밸크(bulk) 중합법이 사용되고 있으며 첫 두 방법이 가장 보편적으로 쓰이고 있다. 중합 방법에 따라 경도의 차이가 있으나 공통적으로 수지의 부착이 문제가 된다. 이들 연구에서는 배치 공정 외의 서스펜션 중합 방법들을 다루기로 하며 가끔 기타 중합법에 관한 언급도 피할 수 없으리라 믿는다.

각 PVC 생산 업체는 총 경우와 마찬가지로 어느 정도 각기 독특한 공정을 사용하고 있으므로 이를 정확히 알아내기는 어려움이 있다. 대구나 PVC생산에서 관찰되는 반응 용기벽의 수지 부착에 관하여는 학술적인 결과가 별로 보고된 바가 없는 설정이다. 따라서 본고에서는 주로 1970년대에 이 문제에 관하여 발표된 각국의 특허를 조사해보며 이번 방향에서 이 문제를 풀리는 노력이 계속되고 있는지 살펴보고자 한다. 물론 필자의 손이 맡지 못한 특허나 보도가 없으리라 믿으며 완벽한 문헌 조사를 보고하는 것은 아님을 지적하여 둔다.

원의상 먼저 PVC의 서스펜션 중합과정을 개괄하고 중합 속생기는 중합체의 부착을 다루기로 한다.

2. PVC의 서스펜션 중합

PVC의 제조 과정은 그림 1에 보여준 공정의 조합으로 되어 있으며, 서스펜션 중합에서는 단 위체를 기계적 교반에 의하여 균일한 작은 방울로 분산시키고 분산된 방울의 응집을 방지하기 위하여 보호 폴로이드(protective colloid) 혹은 서스펜션제(suspension agent)를 소량 넣어 준

*국립대학교 이과대학 화학과(Jin, Jung-II: Chemistry Department, Korea University, Seoul Korea)
다. 게시체로는 유용성 파산화물이나 아조화합 물을 많이 사용한다.

소화하는 화합물의 종류와 양은 물론 중합 용기의 모양, 교반 장치와 배포물법을 포함 한 중합 용기의 올바른 설계 및 제로의 선택이 매우 중요하다. 현재 PVC는 주로 배치법 (batch process)에 의하여 생산되고 있으며, 연속 중합 (continuous process)에 관한 연구가 활발히 진행되고 있으나 아직 실용 단계에는 도달하고 있지 못하다. PVC 제조에서 중합 속도는 주로 게시
체의 종류와 양에 의하여, 또 분자량은 중합 속도와 연대 이동체 (chain transfer agent)의 사용 으로 조절되고 있다.

단위체 (Monomer) 영화비닐 단위체는 99.9% 이상 순수하여야 하며 염산, 알데하이드, 아세틸렌, 결합 붕소물의 함량은 수 ppm 이하여야 한다. 단백질은 파산화물을 생성함으로써 공기나 산소
와의 접촉을 피하여야 한다. 단위체가 불순한 중합 속도와 중합도에 영향을 미칠뿐 아니라 베타
로는 중합체를 채석시키고 일정성 및 모성능 떨하시키는 원인이 된다.

단위체 방출의 형성 및 서스펜션체 서스펜션 중합에서 단위체 임자의 형성은 그림 2와 같이 나타낼 수 있다. 보호층이므로 물리적으로는 단 위체 방출중에서 생성되는 PVC는 아직 반응 하지 않고 남아 있는 단위체에 의하여 발동될 뿐
뜻하는 것으로 중합에 얽은 PVC 임자는 다
공성의 백색 가루형이 된다. 물론 보호 츠스트
로서 안정화된 단위체 임자도 중합중 어느 정도
는 응집되며 이 현상은 PVC 임자의 타콩성에
적에 나아 가게된다.

PVC 임자의 타콩성, 모양 및 임자 크기의 분포는 교반 속도, 서스펜션체의 중합율과 양등에
의하여 좌우되며, 이들은 분자량과 함께 PVC의
품질 및 품종을 결정한다. 서스펜션체는 원형
제일 서스펜션체와 계이 서스펜션체로 나누며,
계이 서스펜션체로는 물리비닐알코올, 셰로로오스의 유도체, 말레산 무수물의 혼성 중합체 (co-polymer), 플라틴, 플라크릴산의 염등 보호
층이므로 물리적으로 채석할 수 있는 것을 사용하며, 계이 서스펜션체로는 초산비닐-알코올의 혼성
중합체나 플라크릴에스테르 등이 있다. 계이 서
스 пен션체는 중합체 임자의 타콩성에 큰 영향을
준다. 계이 서스펜션체가 어떻게 PVC의 타콩성
에 영향을 주는지는 그 메커니즘은 정확히 알려져
있지 않으나 물과 단위체간의 게민 장벽을 변
화시키기 때문인 것으로 보인다. 이들의 친수
성-유수성 평형수 (hydrophilic-lipophilic balance
number, HLB)가 중합체 임자의 타콩성과 밀접
한 관계가 있음을 보고된 바 있다. 4, 5.

개시체 PVC 서스펜션 중합에 사용하는 개시
체는 모두 유용성 (oil soluble) 파산화물 혹은 아
조화합물이다. 위험성과 작고 물성에도 별로
영향을 미치지 않는 파산화라우릴 (lauryl peroxi
die, LPO)이 많이 쓰이고 있으며, 아
조비스이소프로필로사이소프로필 (diisopropyl
peroxycarbonate, IPP)도 1964년 현재 반응 속도를 빠르게 하거나 낮은 온도에서 중합시킬 때 사용하고 있으나, LPO나 AIBN보다 활선 없이 저증
과 사용에 주 의하여야 한다.

이 외에도 파산화의방산 t-부틸 (t-butyl per
oxypivalate, BPP) 및 아조비스디메틸вал레로न트
릴 (azobisisdimethyl valeronitrile, ABVN) 등이
사용되며 베타로는 두 가지 개시체를 병용하기도 한
다. IPP와 BPP의 범용이 그 한 예이다. 개시체
는 단위체 무게의 0.015~0.2% 정도 사용한다. 총
고 산이 대표적인 개시체가 반감기를 표 1에
설했다.

* * *

그림 2. 서스펜션 중합에서 서스펜션체의 메커니즘.

122

Polymer (Korea) Vol. 2, No. 3, June 1978
표 1. PVC 중합 개시제

<table>
<thead>
<tr>
<th>개시제</th>
<th>온도(℃)</th>
<th>반감기(hr)</th>
<th>$T_{1/2}=10hr$ (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO</td>
<td>60</td>
<td>13</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>IPP</td>
<td>30</td>
<td>88.5</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>BPP</td>
<td>50</td>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>AIBN</td>
<td>60</td>
<td>18.6</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>ABVN</td>
<td>50</td>
<td>13.75</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

*반감기가 10시간 되는 온도(℃).

개시제의 선택에는 반응 온도와 속도, 이외에도 취급상의 위험성, 개시제 분해물 및 잔류물이 제품의 물성과 특성에 미치는 영향을 고려하여야 한다.

단위체/물의 비 단위체/물의 비는 생성성, 반응물의 제어 및 중합 온도의 조절이 용이하기도 하며, 보통 1 : 2 ~ 1 : 4의 비율로 사용하며 단위체의 양이 적을 수록 다공성 수지가 얻어진다. 1 : 2 정도가 많이 사용되고 있다.

중합 과정 우선 탈아온수 (deionized water)와 저스테일세트 용액을 중합 용기에 넣고 반응 용기 제거에 스프레이를 뿌려 중합 온도, 액체내 55℃까지 조절한다. 개시제 도입 용기에 넣고 필요한 양의 단위체를 중합 용기에 가며 이때 개시제가 녹아 들어가게 한다.

중합이 시작되면 제거에 망자수를 순환시키며 반응 온도를 유지한다. 30℃의 망자수를 사용한다면 중합 속도율이 약 70%일 때까지는 온도를 조절할 수 있으나, 70%이상에서는 보통 자동 가속(autoceleration) 현상때문에 반응율이 급격히 증가함으로 마지막 한시간 정도는 15℃의 온도를 사용한다.

반응 용기에내의 압력이 감소하는 것을 보아 중합이 끝나는 것을 알며, 압력이 약 40psi 정도 멀어지면 (그림 3) 미반응의 단위체를 회수하고 합성된 중합체 슬러리는 판수, 진조 과정을 거쳐 된다. 더 자세한 동업적 품질에 관련하는 인용 문헌 7~10을 참고하기 바란다.

그림 3. 시간에 따른 중합율과 압력의 변화.*

부착물의 형성 중합 용기가 무엇으로 만들어졌는지 그 재료에 따라 차이가 존재하며 스테인레스강의 경우는 두어 배치의 중합후에는 벌어 용기의 내부 기체에 매우 작은 PVC 잔여물이 용액 내 수직적으로 붙어 있음을 볼 수 있으며 3~4백 미터 후에는 부착물의 형성이 크게 늘어난다. 대략 4~6백 미터 후에는 부착물의 형성이 연속적으로 되어 많은 종이(sheet) 모양을 이루며 일부는 용기 벽에 붙어 있고 일부는 기계에서 멀어진 상태로 존재한다. 부착된 중합체의 일부는 3차원 그룹 모양의 특특한 구조를 갖는다. 이 외에도 중합이 진행됨에 따라 액체의 부피가 줄어든 부분의 기벽에 커다란 도나누 모양의 부착물 덩어리가 생기는 것도 자주 관찰된다. 또 반

폴리머 제2권 제3호 1978년 6월 123
3. 중합체 부착 방지법

중합체 업자가 접착성을 가질 때는 중합체의 중합율이 10~30%의 레이어이며, 이 때 중합체의 부착이 가장 많고 생긴다. 수지의 부착은 중합 용기의 재질, 용기 내부벽의 상태, 중합에 사용하는 물질, 견고성, 방열 및 유체 현상과 관련되어 있는 특별한 문제로 간단히 다룰 수 있으 며 이들에 관한 학술적 연구가 미비한 것은 이 미 지적한 바이다. 그러나 이 문제에 관하여 발생된 특허 내용을 분석해 보면 레이어 다음과 같은 방법들의 면역으로 수지의 부착을 제소 혹은 방지하고 있다.

1) 중합 용기 제조 및 설계의 적절한 선택
2) 중합 방법의 조절
3) 첨가제의 사용
4) 중합 용기에 도장(coating)의 면역의 기술적 상황을 차례로 살펴 보겠다.

3.1. 중합 용기의 재료 및 설계

앞에서 이미 언급한 바와 같이 중합 용기의 재료 및 표면 상태에 따라 중합체의 부착이 크게 영향을 받는다.

스테인레스강으로 되어 있는 용기에는 중합체의 부착이 심하며, 용기 내부벽의 부식이 심한 상태에서는 더욱 그러하여 오래 사용한 용기는 2~3배까지에 탈아내야 하는 경우도 있다. 거울처럼 연마한(mirror polished) 표면에는 부착물의 형성이 잘 형성 되지. 유리 내장된 표면은 중합체 부착이 더욱 적다. 그러나, 앞에서 지적한 바와 같이 유리 내장된 열전도율을 높추어 반응열의 조절이 더 힘들고 여러 배치후에는 역시 부착물의 형성이 심하여 제거하여야 한다.

그림 4. 중합 용기의 열전도도.

PVC 제조 공업의 초창기에는 사람이 직접 반응 용기속에 들어가 부착물을 긁어내 적도 있으 며 지금은 훨씬 1.2-디클로포로탄과 같은 용매를 사용하여 제거한다. 제거하기 전에 가능한 한 여러 배치와 중합을 행하기 위하여 각 배치 후에 위로부터 고압의 물분사를 행하여 부착물의 일부를 제거하기도 한다. 현재의 두 방법을 함께 사용하고 있는 공장이 많다.
다. 이와 같은 방법은 확실하게 효과적일 것이 예상되나 중합체에 생기는 미세한 중합체입자가 물리적으로 내장재 표면에 부착할 수 있는 흔이 없도록 내장재 표면이 되어있어야 하며, 열전도율이 크게 감소할 문제점이 있다.

반응 초기에 생기는 중합체 부착물의 형상을 보면 최후에 얇은 수지 입자보다 크기가 월선 작으며 용기벽에 묽이 있는 곳에 물리적으로 깔려 있는 것을 자주 보며 이런 곳이 후에 부착이 염철될 셈이다.

반응 용기의 적절한 내장재에 중합용기에 방각기 (condenser)를 장착하여 중합이 5~10% 진행하여 중합체가 적착성을 갖기 시작하는 단계에서 이를 작동하게 하는 방법이14, 중합율이 35% 정도될 때까지 중합용기를 여러 번 병렬로 연결하여 중합한 후 35%가 넘으면 직렬로 중합 용기 여러개를 통합하여 중합을 완결 시키는 방법16도 특허로 내와 있으며, 후자의 경우 준연속 중합법 (semi-continuous polymerization method)은 실용화되고 있는지 않다.

3.2. 중합 방법의 조절

앞에서 설명한 중합과정은 일반적인 것으로 중합중 부착물 형성을 줄기 위하여 여러 가지로 변형한 방법이 보고 되어 있다. 중합이 진행되며 따라 중합체의 부착가 줄어 들면, 이 줄어든 부분의 용기벽에 수지부착물이 생기는 것을 흔히 관찰한다. 이를 방지 또는 감소하고 액을 일정하게 유지하기 위하여 중합 중 서스펜션체, 암플리 및 무기산화물의 수용액을 위해서부터 분무하기도 하며17, 방각수로 용 기벽과 고반기의 온도를 중합 온도보다 25~50°C 이하로 유지하면 부착물의 형성이 감소한다고 한다18. 이와 관련하여 반응 용기의 하반부로 부터 세척수를 울려 보내고 고반기 축에 부착물 줄이거나19 혹은 반응 용기 상부로부터 고압의 물을 세척하는 방법도 제시하고 나와있다20,21.

일본의 Shin-Etsu 회사는 부착물 형성의 방지를 위하여 여러 가지에서 연구하고 있으며 중합 범의 조절도 그 한 예이다. 중합율이 15% 정도 되면 고반을 증가하고 20~40%가 된 후에 다시 고반을 계속하여 반응을 끝낸다22. 고반을 증가하면 점착성이 큰 단계에서 서스펜션 입자가 기벽, 배관 및 고반기등에 충돌하는 횟수를 줄일 수 있었으나 반응 온도의 조절이 힘들 것이 예상된다. 또한 단위체 분산체를 넓히 지어 단위체 반응물의 서스펜션이 안정화된 후 개시시간을 가지하여 중합을 시작하는 방법도 효과적이른다23. 서스펜션이 안정화되지 않고 반응 혼합물 끝에 단위체가 충돌 이후로 있을 때나 서스펜션 입자가 아직 클 때 개시시간의 문제가 저하되어 반응 용기를 더럽게하는 경우를 방지하기 위한 수단으로 보인다.

독일의 BASF는 중합 초기에 용기벽의 온도를 반응 혼합물을 15°C 정도 높게 유지하면서 반응 주기의 최소1/3에 해당하는 기간동안 가열하며, 반응 혼합물의 pH는 8보다 낮게 유지할 경우3~7을 유지하면 중합체의 부착이 저하시다고 한다24. 그러나 스테인레스강 용기의 경우 반응 혼합물의 pH가 너무 낮아지면 혼히 액효과가 관찰된다. 이 밖에도 중합의 개시시간의 조절25, 각 성분의 주입 방법 및 운전 방법의 개선등으로 부착을 감소할 수 있다고 한다26. 후자의 경우는 Shin-Etsu 회사에 개발한 대형 중합기에 사용에 엄밀히 있으며 모든 운전을 전산기기 조절로 되어 있다고 하니 부착 방지에 실제로 어떠한 방법을 사용하고 있는지는 서술하고 있지 않다.

3.3. 첨가제의 사용

반응 혼합물에 반응에 직접적으로 관여하지 않는 종합계를 넣어주거나 종합체의 부착을 감소시킬 수 있다. 수용성산화물로 파산화 수소27, 과망간산이나 중크롬산 및 그 염, 황산 제2세로28,29등의 사용이 추천되었으나, 수용성황 분산체 효과가라는 상반된 주장을20가 있어 이들의 효과를 의심스럽게 하고 있다.

중합체의 pH 조절을 위한 첨가제로 원료 및 안정제의 사용은 분명히 어느정도 도움을 주고 있는 듯하다. 보라크스 (borax)20, 인산나트륨30, 미로인산나트륨32, 수산화알코올29와 알칼리 금속의 산화물 및 수산화물 등이 그 예이다. 태
부분 전 반응을 통해 반응체의 \(\text{pH} \)를 7보다 크게 유지할 것을 요구하며, 중합 초기 (중합율 \(\sim 20\% \))에서의 \(\text{pH} \) 조절이 중요한 듯 하다. \(\text{pH} \) 조절은 부작용 형성의 방지뿐만 아니라 스테인레스 강으로 된 용기의 경우에는 부식과도 관련되어 고려되어야 한다.

계면활성제를 다가 금속염과 함께 서스패션에
와 동시에 사용하여 서스펜션 중합을 행하던 수지의 가소성 흡수성이 좋아지고 종합체의 부착
이 감소한다는36는 계면활성제의 병용이 시도
된 바 있으며 계면활성제의 종류와 양에 따라 그
영향이 크게 차이가 난다. 절차의 결과에 의하
며 일반적으로 계면활성제 사용은 부착 방지
에 도움을 주지 못하는 외에 오히려 수지이온의
크기, 영연결성 등의 문제를 제공한다.

앞서 말한 수용성 식화처리나 환경처리와의
무기화합물로 요오드나 브롬화물36, 다가 금속
염과 아질산나트륨 혹은 아질산염모늄을 사용하
던 매우 효과가 있다. 주장된 다가 금속염
의 대표적 예로는 염화칼슘77과 황산알루미늄38
만료르텐36 등이 있다. 이와 같은 방법을 시
도할 때에는 금속이온이나 염이 중합체나 PVC
의 열연성성분에 미치는 영향을 고려하여야 하
며, \(\text{pH} \)의 조절과 함께 식은 방법으로 많은 연
구가 계속되고 있다.

유기 화합물로는 베타트리아졸과 EDTA의 나
트륨염39, 비교적 낮은 온도에서 분해하여 정화
제 노출을 하는 유기 과산화물 (과산화디카르본
산 이소프로필, IPP)41, 아간 제품의 염료33,
디메틸디오카르반산의 염42, 디메틸디트리카
르반산인 크산산염과 수용성 다가 금속의 염43,
스테인레스활성을 체질알코올로 처리한
혼합물44, 스테인레스알루미늄45 등이 수지부착
방지에 좋다고 한다. 스테인레스알루미늄은 PVC
의 브로크중합에 사용할 때 4배치후 부착물의 양이 약 \(\frac{1}{10} \)로 줄어들었다고 하며 서스펜션에서
도 같은 효과를 줄지는 의문시된다.

3.4. 중합 응기의 도장

중합 응기의 내부벽, 배포면, 교반기속 및
임펠러 (impeller)의 표면을 도장하면 중합중 중
합체의 부착을 줄일 수 있다고 주장된 화합물은
그 종류가 매우 다양하며 Shin-Etsu 회사의 활
동하는 및 산지의 화합물은 열거하고 있을 정
도이다46.

카르복시기를 갖고 있는 염화메틸의 중합체47,
자유 라디칼 중합 억제제 (inhibitor) (\(\alpha \)-메틸스티
렌, 아세토렌, 폴노닐)48, 타르나 피차49, 폴
로시산감염, 폴로시산합금, 로드산감염 및
Reinecke염50, 황51, 나카52, 타타산트리에이한
아민 (triethanolamine titaneate)이나 타타산트리에
티아세토로 다리 결합된 폴리메틸알코올, 녹
말 혹은 인산나트륨53, 인산에스테르나 알칼리염54
디아민55 등이 언급되고 있다. 끝의 인합말은
블랙 중합에 효과적이고, 나카도장은 에틸산
중합에서도 좋다고 한다.

전수성 기름 갖고 있는 중합체로 내부 용기벽
을 도장하면 중합체의 부착이 속선 감소함은 종
관찰되며 Shin-Etsu 회사가 주장한 화합물중
몇가지 염료로 놀랄만한 좋은 결과를 보인다.
물론 수지의 재료, 물성등에는 영향을 준다. 위
에서 말한 화합물 이외에도 습도저하물이나
구든56, 염료와 우시산의 병용57,58,
티티아세토와 폴리에이드로
도장하여 부착을 방지할 수 있다고 한다. 특히 최
후의 경우에는 스테인레스강 반응 용기기를 사용하
여 빈 중합 배치마다 나일론과 폴루프로필의 용액
을 분리하여 도장하면 5배치 후에도 견고 수지
의 부착이 없었다고 한다.

블랙 중합에서 피로결말59과 인산60이 효과적
이라 하며 전자의 경우는 자유 라디칼 중합 억
제물의 임용으로 생각하면 서스펜션 중합에도
이용될 효과적인 것임이 얻어졌다.

앞에서 말한 여러 가지 방법에서도 적절한 바
있으므로 도장에 사용한 화합물의 선택에도 중합
속도, 중합 용기 운전상의 문제점, 수지의 성질
에 미치는 영향등을 고려하여야 할 중요한 문제가 있다.

4. 소규모 연구 방법

실험실이나 중간시험공장 (pilot plant)에서 수
지 부착 방지를 연구하고자 할 때에 사용할 수
있는 화학적 실험법에 관하여 잡게 인금하였다.

PVC의 중합을 끝앞 소규모의 고압 반응 용기 (혼히 스테레인지가이나 유리로 내장된 스테레인지에 의해 있어) 제작의 설계 변경을 자주 하는것 어우르고 중합 방법의 변경, 내장, 도장 및 첨가제의 영향을 조사하는데 극한되는 경우가 대부분이다.

중합 과정의 조절에서는 중합에 필요한 각 성분의 도입 순서, 시간, 방법, 성분의 변경, 반응 온도의 조절, 교반 방법의 변화를 생각할 수 있다. 각 조건에서 중합 단계에 따른 부착물의 형상, 부착 정도, 부착이 자라나는 모양을 관찰하므로 용이한 정보를 얻을 수 있다. 수지의 부착이 시작되거나 많이 생기는 용기의 부착에 어떤 결합이나 특이성이 있는지 알아보는 것 도 매우 중요하다.

내장물의 선택에서는 용기의 내부 기기 전체를 내장물로 처리하지 말고 몇 곳에 넓은 중추(Stripe)형으로 내장물을 용기벽에 붙혀 내장제 포진과 용기 기계에 생기는 수지의 부착을 비교 한다. 이 방법은 불용성이거나 이동성이 없는 도장제를 실험할 때에도 적용된다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

첨가제의 경우는 반응증 어느 단계에, 어떤 방법으로, 어느 양을 섭취하는 것이 가장 효과적인지 조사하여야 한다. 같은 첨가제라도 첨가 시기에 양에 따라 크게 차이는 결과를 주는 것이 보통이다. 일반의 연구가 끝나지 금정적인 결과를 준 방법을 사용하는 것을 경도한다. 금정적인 방법의 병용이 오히려 부정적인 결과를 주는 경우가 매우 흔함을 절제해 둔다. 그만큼 수지 부착 방지는 복잡한 문제이다.

실험에서 발견한 가정 효과적인 방법이나 조건을 사용 중합 용기에서 제작 실험할 때에는,

대량용기의 모양, 내부 표면의 상태, 교반 장치, 반응면의 조절등 여러가지 면에서 소형 중합 용기와 다르게 때문에 같은 결과를 얻지 못할 경우가 많다. 따라서, 처음에 사용한 소형 중합용기를 가능한한 대형 용기에 준하게 제작하여 실험이면 것이 무엇보다 중요하다. 내장재나 불용성 도장제의 실험이는 이와 같은 영향이 될 것이다.

5. 몇 음 말

시스템 PVC의 생산성과 제품의 품질을 항상시키려는 여러가지 방법중에서 중합중의 용기 내부 기기에 생기는 수지 부착의 감소 및 방지 법에 관하여 1970년대에 발표된 특허의 중점으로 검토하였다. 이 문제의 해결은 중합 용기가 적자 대형화되고 생산성이 자동화됨에 따라 더욱 중요하게 되고 있으며 현재도 이에 관하여는 세계 각국의 PVC 제조 회사나 기타 기관에서 연구가 진행되고 있다.

이와 같이 이상 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가혹 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.

적합한 가藿우 혹은 반응 조건에서 반응물에 접계 적게 적은 나올 수 있는 화합물의 실험할 때에는 용기의 일부분만 철저히는 그 효과를 알기 어리우므로 전체를 철저히 가열하면 문제가 발생할 수 있다. 도장제로 사용했을 때에용능적인 결과를 주는 물질은 첨가제로 사용했을 때에도 같은 결과를 얻을 수 있는지 검토해야 할 만한 문제이다.
11. 佐伯康治, 化学製品, 1969年9月号, p. 49.
45. J. Drobig et al., Ger. (East), 118289 (Feb. 20, 1976).
51. S. Aruga, K. Nakano, and S. Ishibashi (to Chisso Corp.), *Japan. 75-27874 (Sept. 10, 1975).*