폴리포스파제인 (Polyphosphazenes)
—多様한 機能을 갖는 새로운 半無機高分子—

1. 論 言

高分子科学의 급격한 발전이 우리 인류의 生活向上에 크게 기여하였음은 더 말할 나위가 없는 사실이다. 섬유, 플라스틱, 고무등 合成有機高分子 물질이 제거의 無機, 有機材料에 비해 많은 유용한 특성을 갖고 있지만 高分子科学者는 特殊用途에 알맞는 새로운 無機로서的 새로운 플라스틱 를 항상 찾고 있다. 특히 低溫과 高溫에서 안정하고 기름 또는 湯液에 不溶性인 彎性體, 雖然性 高分子, 生醫學的 應用性의 플라스틱 등이 그 예가 된다.

현재 알려진 보통의 유기고분자 물질이 제료로서의 幹樁의능성을 갖고 있지만 플라스틱 總結(backbone)의 탄소 원자 결합으로 맺어진 악의 유용성에 의해 그 용도에 의할 수 없는 侕限性이 나타나고 있다. 즉 탄소 원자의 亜面體 기하학적 구조와 같은 탄소-탄소 결합결이에서 비롯된다는 侕限性은 유기고분자의 物性에 여러 불가피한 缺點을 주게 된다. 이런 한계성을 의하여 플라스틱 仏詣의的更進化가 염요하고 많은 분야의에서의 彎性과 柔軟性을 주기 쉽다. 또한 약간 탄소-탄소 결합은 酸化作用이나 高溫에서의 저항성이 없고 可燃性이기 쉽다.

유기고분자 물질의 이론 과학을 극복하기 위 한 가장 방법은 탄소 원자들 合併하지 않는 플라스틱 주체를 고안하는 데 있다. 즉 탄소 원자 가 제거된 無機高分子1에서 성용 유기고분자의 여러 결합이 채워질 수 있다. 그러나 유기 고분자의 合併과 物性에도 많은 侕限性이 있으므로 半無機高分子(semiinorganic polymers)의 필요성이 대두되었다. 실리콘 플라스틱이 이론 과학에서 생성되어 널리 사용되는 예이다. Polysiloxane에서 주체는 無機成分인 Si-O結합이고 側基(side group)는 有機成分으로 되어 있다. 이렇게 無機成分 主體에 有機成分 側基를 도입한 새로운 형태의 플라스틱이 나가 합성되었는 때, 그 중에서 Allcock가 개발한 플라스틱은 물성과 용도로 보아 그 전망이 가장 밝다고 할 수 있다. 또한 포스파제 플라스틱은 生物融化性(biocompatibility)가 좋아서 生醫學的 材料(biomedical materials)로서도 연구가 이루어지고 있다. 본 총립에서는 새로운 半無機高分子인 포스파제 플라스틱을 주로 또는 phosphonitrilic polymer 라 정합에 대하여 그 合併과 物性 및 用途에 대하여 개괄적인 기술을 하겠다.

2. 포스파제 고분자의 합성

2.1. Hexachlorocyclotriphosphazene

 대부분의 포스파제 화합물은 고리 三合體(cyclic trimer)인 hexachlorocyclotriphosphazene (I)이나 고리 亜合體(cyclic tetramer)인 octachlorocyclohexaphosphazene(II)로부터 유도된다. 이들 자체는 영화작품이나 오염화물용 클로로
이제에 다른 용기고무도 생성되지만 고리 삼합체와 사합체가 90% 이상을 점하게 되고 6:4의 비율로 삼합체가 더 많이 생성된다. Hexachlorocyclotriphosphazene(I)은 화학의 결정구고체로서 113~114°C에서 녹는다. I은 유기물질에 잘 녹고 보통의 전조한 대기중에서 안정하지만, 수분 존재하에서는 쉽게 가수분해하여 영상, 암모니아, 인산염으로 변화한다.

화학반응의 관점에서 보면 I은 유기산염화물(organic acid chloride)과 유사한 반응성을 보인다. 즉 I이 아민과 반응하면 아미노과정fade가 되고, 소리울 알코사이드나 아미노사이드와 반응하면 alkoxy- 또는 aryloxy-cyclotriphosphazene가 생성된다. 이때 부분적으로 침착되거나 혼합 침착물 수도 있다. 염소는 다른 화합전이나 이소리오사이드 안트 등으로 침착될 수 있고, 유기물질, Grignard 반응 등에 의하여 여러 가지 유기기가 침착된 organocyclotriphosphazene V로 합성될 수 있다. 2,3.

[그림 1. 아미노과정fade의 합성]

I과 같은 6원자 고리포스파겐 화합물의 전자구조는 보통의 벤젠고리 화합물과는 다르다. 인의 3d-계열의 진입과의 P-d-계열의 π-결합이 가능하다고 알려져 있지만 벤젠 같은 공영구조는 나타나지 않는다. 화합물 I에서 P-N 결합은 매우 안정한데, 순수한 σ-결합의 결합길이 보다는 높고 고리 안에서 그 길이는 동일하다. 일체적으로는 평반이거나 굵은(puckered) 고리의 구조를 갖는다.

2.2. 포스파겐 플리머의 역사적 배경

고리 삼합체 I을 가열하면 "무기고무"(inorganic rubber 또는 phosphonitrilic rubber)라고 알려진 고무같은 투명한 물질이 생성되다고 오래전부터 알려져 왔다. 그러나 이에 대한 자세한 연구는 근래에 이르기까지 발생한 이후 이루어지고 있었다. Hexachlorocyclotriphosphazene(I)이 화학적응되어 생성되는 플리머는 poly(dichlorophosphazene)(V)으로 밝혀졌는데, 오랫동안 이 플리머는 "rubber-like phosphonitrilic chloride"라고 불리어 왔다.

\[\text{II} \xrightarrow{\text{NPCl}_2} \text{III} \xrightarrow{\text{Cl}^-} \text{IV} \xrightarrow{\text{V}} \text{VI} \]

이제 알려지는 무기고무 V은 벤젠결합된 형
태이므로 보통의 유기용제에 불용성으로 좋은 항
성성의 성질을 나타내지만 가수분해가 매우 쉽
게 일어난다. 즉 플리머 V는 대기에로서 가수
분해가 시사히 일어나 인산암모니아와 염화암모
니아의 페어리로 변한다.

이런 가수분해의 불안정성은 무기-산소 결합에

다시 가단으로 염소 원자를 다른 비가수분해성
유기물로 대체로 바꾸어서 포스파겐 플리머를 안정
화시키는 연구가 시작되었다. 생성된 poly
(dichlorophosphazene)의 염소를 유기물로 적절
치환시키려는 초기의 시도는 이 플리머 V가 불
용성이어서 실패하였다. 다른 시도는 유기기가
침착되어 있는 고리삼합체인 organocyclotriphos-
phazenes V를 적절 중합시켜 플리머플라스틱을
만들려는 것이었다. 그러나 V의 중합은 열적학
이나 반응온가르나로 보아 불가능하기 알려져
고, 다만 페닐기와 화합전을 함께 갖고 있는
phenylhalocyclotriphosphazene의 경우 중합이 가
능하다는 것이 최근에 보고 되었다.2 V의 적절
중합에 관하여는 다음 2.5.4 항에서 자세히 논
의하였다.

생성된 플리머 VI의 모든 용액에 불용성이고
벤젠이나 THF에서 페닐이 되는 사실은 VI가 가
교결합을 하였기 때문이므로 가교결합이 일어나
기 전상태의 선행 poly(dichlorophosphazene)을 만들려는 연구가 시작되었다. 1965년에 Allcock 과 Kugel은 동제된 조건하에서 I을 용융증합시켜 유기음에 합성된 이산체, poly (dichlorophosphazene) (W)를 합성하였다. 보통의 유기음에 가용성이 선형폴리머 W을 키나체(nucleophile)와 반응하여 가수분해에 안정한 새로운 플리보스파렌을 합성할 수 있게 되었다.

2.3. 가용성 poly (dichlorophosphazene)의 합성2,6,10

Hexachlorocyclotriphosphazene (I)을 전공하여 벨크(bulk)로 용융증합시키면 가용성인 선형의 poly(dichlorophosphazene) (W)가 합성된다. 200~350℃의 온도에서 중합이 되는데, 반응된 플리타트가 가용성인 플리시그 순도, 중합시간 및 온도에 따라 실험적으로 보통 30~70%이다. 생성된 플리미 W의 중합도(DP)는 매우 높아서 10~15,000이 되는 이 수준은 분말화는 매우 쉽다. 염소, 원자 이외에 F, Br, NCS가 치환된 I의 수용체로부터도 역시 선형 포하겐플리미가 합성되었다.

선형 플리미 W은 부드럽고 무색투명한 탈성체로 중합시간이 길어지면서 산화결합이 일어난다. 가교결합도가 증가되면서 다단환합물로가 된다. 가교결합이 안전한 선형 플리미 W은 랜젠, 투글렌, THF 같은 유기 화합물에 용해되고 용액 상태에서 키나체(nucleophilic substitution)로 poly(organophosphazenes)의 합성이 가능하다. Poly(dichlorophosphazene)의 유리전이온도 (Tg)는 약 -63℃이다. 연산기나 낮은 온도에서는 결정성인데 이때 용융온도 (Tm)는 -80℃ 온도로, 이 이상의 온도에서는 300℃ 온도로 낮아져 탈성체를 갖는다.

선형 플리미 W는 적화 탈성체에서는 안정한 좋은 탈성체이지만 수분 존재하에서는 “학생성” (aging)이라 불리우는 탈성체의 변형가 발생하므로, 이에서 가수분해에 의하여 플리미 가수분해가 일어나며, 다음 단계에서는 중합이 이어져서 가수분해가 일어나지 않게 하기 위해서는 100℃의 온도에서 용해시키고, W의 가수분해는 즉시 완전된다.

2.4. 중합방응 메카니즘2

Hexachlorocyclotriphosphazene (I)의 중합방응에 관한 운동론과 반응메카니즘이 기술나는 많은 연구가 있는 대로 반응이 되는 방식을 제시하였다. 240~320℃에서 중합반응에서는 이차반응을 하고 반응가능 에너지 42~57 kcal/mole로 알려졌다. 그리고 작용반응을 사용한 중합반응에서는 매우 복잡한 방향으로 이어지는 이차반응이라고 보고되었다. I과 같은 할로포사렌 포모어의 관계에 탈성체의 반응메카니즘은 다음과 같은 사서로부터 간단히 합성함으로 설명되었다.

1) 정제된 용액 (NPCI₂₃, I,의 전도도) (conductivity)와 전자량 (dielectric constant)이 중합이 일어나는 온도인 210℃ 이하에서는 매우 낮지만, 그 이상의 온도에서는 급격히 증가하였다. 그렇지만 같은 계열에서 유기기가 치환된 (NP(OPh)₂₃)는 350℃에서도 이 두가지 값이 매우 낮았다.
나) 벤조산, 메틸알코올, 아연 등 약물에서 염소를 제거하는 화합물에 의하여 중합반응이 촉진되었다. 또한 (NPCl₂)₃의 중합반응에서 미량의 염화수소가 검지되었다.

다) 할로포스파펜 (NPX₂)의 중합에서 어느 정도 이상의 온도가 되어야 중합속도가 증가하였다. X가 Br, Cl, F의 카이로 양에 따라 증가되는 온도가 높아졌다. (X = Br < Cl < F의 순으로 인해 중심체의 중합에서도 증가되는 사실에 일치한다).

라) (NPCl₂)₃를 250~300°C로 중합시킬 때 약 75% 이상이 소모되며 가교결합이 발생되었다.

마) 흔 (2.1)과 phosphate (3.0)의 큰 전기적 음성화 차이 (0.9)로 보아 P-N 결합이 어느 정도의 이온성이 있다.

바) 타다영의 구조에 의한 영향이 거의 없고 ESR 실험에서 타다영이 검지되지 않았다.

이상의 사실들이 이온성 중합이라고 결론 것 같지만, 개시반응, 전파반응, 가지화반응 (branching) 가교결합반응, 중합반응, 핵생중합반응을 다루어 이온중합반응 메카니즘에 의한 타다영을 설명할 수 있다.

개시 반응 : 흔으로부터 phosphate 이온이 해리된다.

\[
\begin{align*}
\text{PCl}_3 + \text{N} & \rightarrow \text{N} = \text{PCl}_3
\end{align*}
\]

중합반응 및 가교결합반응 : 생성된 포스파펜 플립이 사슬의 중간에서 염소 이온의 해리에 의하여 가가가 생성되고, 두 사슬끼리 반응하면 가교결합이 형성된다.

에서 반응 : 다른 유기고분자의 이온중합과 마찬가지로 미약의 수분, 전기적 영향, 용매, 유리반응기 표면의 하이드록실기 등에 의해 반응이 증합될 수 있다. 또는 낮은 온도에서 P=Cl 이온성의 감소된 음성을 의해 반응이 증합될 수 있다. 이런 메가니즘을 바탕으로 반응 용액내에서 세지된 고체 플립이 내에서 서서히 일어나는 가교결합반응을 설명할 수 있다.

\[
\begin{align*}
N &= \text{PCl}_3 + \text{PCl}_3 \\
&\rightarrow N = \text{PCl}_3
\end{align*}
\]

해 결합반응 : 중합반응 메가니즘의 역으로서 unzipping이나 back-biting에 의해 고리 삼각체, 사슬체 또는 유사한 물질의 생성을 설명할 수 있다.

\[
\begin{align*}
N &= \text{PCl}_3 + \text{PCl}_3 \\
&\rightarrow N = \text{PCl}_3 + \text{PCl}_3
\end{align*}
\]

이상의 암이온중합 메가니즘으로서 설명하였지만 반응조건 (온도, 산소, 수분, 용매, 물질 등의 존재)에 따라 다른 반응메가니즘이 가능하다.
2.5. Poly(organophosphazenes)의 합성

수분해에 안정한 포스파젠 플리머, poly(organophosphazenes)의 합성은 앞에서 언급한 유해 가능환 선행의 poly(dichlorophosphazene)(Ⅵ)의 염소 원자를 다른 유기기반으로 교체하게 되었다. 보통의 고분자에 대한 유기교체는 여러 경우뿐만 아니라 플리머의 기능에 따라 결정되는데 염소의 치환반응은 매우 빠르고 완전하였다. 플리머Ⅵ은 치환반응성이 매우 큰 본질 플리머(precursor polymer)라 할 수 있다.

여러 종류의 유기기반으로 검색된 플리머의 편리성이 사용되어서 본 방식에서는 이러한 치환반응의 대표적인 예를 간단히 담론할 수 있다.

치환된 유기기인 공통이나 암일없이 탄성적 특성을 보이게 되고 플리머의 혼합(polymerization) 포스파젠 플리머(mixed phosphazene copolymer) 또는 hybrid copolymer)로 분류하게 된다.

생성된 유기포스파겐 플리머의 분자량은 매우 커서 10만 이상이 된다. 본질의 유기성분 중 치환체에 따라 결정되는 수치도 유기성분의 최대한으로 되고, 또한 이들 치환체의 종류에 따라 유연성을 높여서에 있는 가성성 플라스틱이거나 탄성체의 성질을 갖는 것들이 된다.

이렇게 유기성분 치환체의 종류에 따라 다양한 물질을 갖는 새로운 플리머가 형성되는 것이다.

2.5.1. Poly(alkoxyphosphazenes)과 poly(aryloxyphosphazenes)

벤젠이나 THF, 다이클로리 등의 유기에 폐인 포스파젠 플리머Ⅵ와 알코올이나 아릴울사이트로 합치 반응시키면 poly(alkoxyphosphazenes), poly(aryloxyphosphazenes), Ⅵ가 생성되 고 두 가지의 알코올사이트를 합치 반응시키면 유기기이 혼합된 포스파젠 플리머가 생성된다.

보통 한 가지 유기기이 치환된 호모플리머는 유연한 필름 형성의 열가성 플라스틱이고, 두 가지 이상의 유기기가 혼합된 혼합포스파젠 플리머는 탄성체가 된다. Poly(diphenyloxyphosphazene), [NP(OPh)₂]ₙ은 물에 대하여 악취하고 유연한 필름을 만드는 결함성 물질이다. 이에 반하여 poly(bis(ethoxy)phosphazene), [NP(OC₂H₅)₂]ₙ은 비결함성의 부유한 탄성체로 Tₙ가 -84℃이다.

Poly(fluoroalkoxyphosphazene) 플리머Ⅸ은 poly[bis(trifluoroethoxy)phosphazene](X)를 sodium heptafuorobutoxide로 교환반응시켜 형성되었다. 플리머X는 필름 형성이 되는 반투명한 열가성성 물질이고, IX는 Tₙ가 -77℃인 탄성체이다. 가교합을 갖는 플루오로알코토스파젠 플리머Ⅸ는 X 올 다이알촉 사이드와 치환반응시킨다.
2.5.2. Poly(aminophosphazenes)2,4,6,15–18

유기응외 중에서 몽체 폴리머 VI를 여러 종류의 아미노 반응시키면 염기가 아미노로 치환된 poly(alkylaminophosphazene)과 poly(arylaminophosphazene) M, N 또는 혼합된 아미노포스파젠 코폴리머가 생성된다.

\[
\begin{align*}
\text{VI} & \quad \text{N} \quad \begin{array}{c}
\text{Cl} \\
\text{Cl}
\end{array} \\
\text{RHH} & \quad \begin{array}{c}
\text{NHR} \\
\text{NHR}
\end{array}
\text{XII}
\end{align*}
\]

암모니아를 폴리머 VI와 THF 용액에서 25 °C 이하의 온도로 반응시키면 \([\text{NP}(\text{NH}_2)_2]\text{Cl} \text{Cl}\)
라고 추측되는 불안정하고 가교결합이 안 된 폴리머가 얻어진다. 이 유리질 같은 폴리머는 내기중 수분과 접하하면 암모니아 기체를 발생시키면서 가교결합을 하게 된다. 그러나 같은 반응을 25°C 이상의 온도에서 행하면 부분적으로 치환된 불용성인 가교결합된 폴리머가 생성된다.

일차아미노 폴리머 VI를 반응시키면 가교결합 반응으로 매우 복잡하게 된 \text{M}와 같은 폴리머가 만들어진다. 유기지체의 크기에 따라 입체관계 현상이 나타나고, 이로 인한 불완전한 치환으로
해석되거나 단자원자로부터 가교결합반응이 일어날 수 있다. 즉 불완전하게 치환된 폴리머 \text{M}는 원전히 치환이 일어난 폴리머 \text{XIV}로 될 수도 있고, 입체가리로 더 이상 치환이 불가능하여 먼 가교결합된 폴리머 \text{XVII}가 생성될 수도 있다.

아닐도이나 직접 분리한 일차아미노는 원전치환으로 가교결합이 발생하지 않지만, 피페시아민 이나 피페시아민을 제외한 일차아미노가 가지고 있는 일차아민 (branched primary amine)은 불완전한 치환으로 더 이상의 반응을 가능하게 가교결합이 생겨진다.

\[
\begin{align*}
\text{Cl} & \quad \text{N} \quad \begin{array}{c}
\text{P} \\
\text{Cl}
\end{array} \\
\text{R} \text{NH} & \quad \begin{array}{c}
\text{R} \text{NH} \\
\text{R} \text{NH}
\end{array}
\text{XIV}
\end{align*}
\]

2.5.3. 혼합 포스파젠 코폴리머 (mixed phosphazene copolymer or hybrid copolymer)2,4–6,12,14,16

많은 폴리머의 결성은 그 구조의 대칭성에 서 기인하는 에가 많은 때, 대칭을 파괴하면 불안정성, 무성형 폴리머가 되고, 탄성도 갖게 된다. 포스파젠 형이 품질의 불안정성을 제거함으로도 여전한 유기지체의 대칭성에서 기인하므로 이들 치환체를 서로 달리하여 혼합 치환된 코폴리머로 만들면 탄성체로서의 성질을 나타낼 수 있다. 포스파젠 탄성체는 보통의 유기지체성 질리름 고무에 비하여 가속, 가속력, 체적연료, 유압기 기름등에 대한 저항성이 높고 낮은 온도에서도 유연성이 양호하다.

혼합된 유기지체를 갖는 혼합 포스파젠 코폴리머를 혼합하는 방법에는 다음의 세 가지로 나누어 볼 수 있다.

첫번째 방법은 풍수가 만든 폴리에 포스파젠 코폴리머 X의 혼합제와의 표면분리로 두 종류 이상의 품질의 실험을 폴리에 실험 VI와 동시에 반응시키는 것이다. 두 종류 이상의 알코올을 반응시키는 이 방법은 혼합 포스파젠 코폴리머 혼합반응에 가장 많이 이용되고 있다.

두번째 방법은 이미 혼합된 유기포스파젠 호모폴리머 사슬에 결합되어 있는 유기지체의 일부를 다른 치환체로 교환시키는 방법이다. 이 방법은
법은 간단한 순간에 깨끗하지만 치환체에 따른 제한이 많다.

세번째 방법은 친핵체의 담백나질로 인한 불 완전한 치환이 일어나는 사실을 이용한다. 큰 유기치환체의 임계점에 보체 육리는 육의 염
소 원자 중에서 일부만이 치환되며, 나머지 염
소는 임계 점에서 약물이 되어버린다. 벤질간, 소
두음 알코올의 같은 친핵체와 더 반응할 수 있
다. 실험에서 있어서 허라밀이나 반응시키면 단지
50%의 염소가 치환된 허라밀 에이지가 생성된다.
플리어 육은 비교적 가벼운 분량에 안정된 말라. 메
틸아미그나 알코올과 같은 다른 친핵체와 반
응시키면 에이지이나 에이지 같은 혼합 포스파제 플리어
를 합성하게 된다.

2.5.4. Organocyclophosphazene로부터의

직접 합성

할로겐이나 유사 할로겐의 포스파제 고리 산
합체, (NPF2), (NPCl2), (NPBr2), (NP(N
CS)2) 등은 대용량의 포스파제 플리어 (NPX2)
으로 쉽게 합성되지만, 유기자가 치환된 고리 산
합체인 organocyclophosphazene, (NPR2)₃(V)
는 플리어 (NPR)₂으로 직접합성한 것이 간단하고
알러지나. 유기자가 치환된 고리 산합체 V가
중합되지 않는 이유가 무엇인가? 그 이유를 설
명하기 위하여는 반응매커니즘과 열역학적인 관
점에서 살펴봐야 한다.

Hexachlorocyclophosphazene의 중합반응은
앞에서 설명한 바와 같이 P-Cl 결합의 해리에
의한 양이온 중합반응 메카니즘으로 생각되고
있다. 즉 인과 치환체 사이의 결합이 어느 정도의
이온성이 있어야 이런 메카니즘에 의한 중합이
가능하다고 볼 수 있다. 유키로스파제 고리 산
합체 V에서 구조-해석의 결합은 거의 완전한 공
유 결합이므로 메카니즘은 주로 물가, 단지 주측주
따라 고리 산합체의 치환체 중에서 하나 이상이 치환된 것으로 치환이야
반응매커니즘상 중합반응이 가능하다고 보았다.

그러나 실제로 있어서 (NP(CH₃)₂), (NPPH₂),
(NP(OCH₃CF₃)₂) 등의 고리 산합체 V는 높은
에서 고리 산합체 II, 고리로합체 III. 또 미량
의 다른 물리적공학과 균형을 이루고 있으면서,
고분자 물질은 생성되지 않았다.

(NPR₂)₅=(NPR₂)₄=(NPR₂)₃=...

V II III

이런 경우와는 앞서 설명한 양이온중합
메카니즘에 상반되는 결과로 보인다. 즉 유기치
환체의 해리가 불가능하여도 고리 산합체, 사합
체, 오염체의 온도가 이루어지는 것으로 보아
더 이상의 단합체 플리어까지도 생성 가능하
다고 할 수 있다. 그러므로 모든 치환체가 유기기
일 때 중합이 안 되는 이유를 반응매커니즘과
다른 관점에서 살펴보아야 한다.

그것은 유기치환체의 크기에 따른 일정지에
의 영향이다. 분자모형에서 보면 고리가 열리 사합
체은 유기치환체 간의 거리 또 유기치환체와
사합 원자 사이의 거리가 더욱 가까워지게 된다.
Figure 1에서 보면 (a)에서는 치환체 사이의 거
리가, (b)에서는 치환체와 사합원자 사이의 거리
가 플리어 사합에서 더욱 근접할 수 있다.
 즉 고리가 열리 플리어를 되면 치환체의 반반모
하여 분산이가 증가하게 된다. 따라서 이런 열
역학적인 요소 때문에 유기치환체가 결합된 or-
ganocyclophosphazene의 중합이 증가된다. 단
 핵심적 조합효과로 합성한 큰 유기기가 치환된 포
스파제 플리어를 200°C 이상의 온도로 가열하면
해석이 일어나서 고리 산합체나 고리 사합체가
생성되는 것으로 보아 이 사실을 확인할 수
있다.

유기기가 불어 있는 고리 산합체 V의 직접증
항은 설명한 바와 같이 이론적으로 거의 불가능하다고 되어 있지만, 할로겐과 유기기와 함께 처리되어 있는 고리 삼각체의 직접화합물이 가능하다고 최근에 발표되었다. 포스파렌 고리 삼각체 를에서 치환체 R의 하나만이 페닐기거나 trifluoroethylene이고 다른 치환체가 염소이거나 불소이면 동합이 가능하다. 그러나 할로겐 대신에 유기치환체가 맺어지면 중합반응이 감소되었다. 각각의 인원에서 하나 이상의 유기기과 치환되면서 중합반응이 전혀 일어나지 않았다. 이 상에서 언급한 바와 같이 어떤 포스파렌 고리 삼각체나 사상체의 직접화합의 가능성은 반응체계와 단도의 고화의 배합에 따른다. 임계효과라고는 모든 인원의 결합을 무효스럽게 설명하지 못한다. 예를 들어 고리 삼각체 V에서 R이 Br이며, 즉 hexamethylenetetrahydrophosphazene, (NBr2)3는 중합이 가능하지만 크기가 비슷한 임계요소가 동일하다고 생각되는 메틸기와 치환된 [NP(CH3)2]3는 중합이 안 되었다. 여기에서는 B-Br 결합의 해리에 의한 중합이 고려될 수 있다.

2.5.5. 다른 합성법

앞에서 설명한 poly(alkoxyphosphazene), poly(aminophosphazene), 폴란 포스파렌 코폴리머의 합성은 모두 유해성 poly(dichlorophosphazene)을 낙화 폴리머로 하여 체적 중합반응을 사전에 연구한 인간의 방법이다. 이와는 다른 방법으로 산염의 유기요소소프로폴리머를 만들다는 많은 연구가 있었지만 별 성과를 거두지 못하고 있다. 다만 앞에서 언급한 유기 고리 포스파렌의 직접중합법은 새로운 시도이긴 하지만 많은 논문이 가로막혀 있다.

유기포스파렌 포모로 부터의 직결중합은 앞에서 설명한 바와 같이 반응체계나 유지하는 영역 합로로 보아 거의 불가능하다. 따라서 poly (dichlorophosphazene)를 포함 폴리머로 사용하여 알로사이드나 아민 에의 체적 중합을 이용하여 새로운 유기포스파렌 폴리머를 합성하려는 연구가 당연히 시도되었다. 즉 P-N 폴리머 주결에 있어 크기가 빠르게 소시가 있는 것도 인 생각에 가장 중도의 결과를 언급하고 있다. 이로 인해 여러 연구 중에서 Allcock 등이 최초로 이러한 폴리머의 성공적인 합성법을 최근에 발표하였다. 그들은 유형은 poly(difluorophosphazene), (NPF2)n, (XXII)을 hexafluoroacetonephosphazene, (NPF2)n, (XXII)로부터 합성하여 폴리머 XXII를 포함 폴리머로 하여 유기금속화합물과 반응시켰다. 적당한 용매를 사용하여 폐쇄 또는 아릴 범 영역에 더게거나 알로사이드를 포함 폴리미 XXII가 반응시키면 부분적 중합이 이루어져서 유해성 고분자, poly (aryl- or alkylphosphazene), (XXIV)를 생산한다. 폴 리미 XXII의 분포로를 무지 마치 채용시키는 시도는 폴리머 수술의 결과가 현재 완성되는 결과

\[
\begin{align*}
\text{(NPF2)} & \xrightarrow{350^\circ C} \text{(N=\text{F}} \\
\text{XXII) & \text{F)}_n \text{F)}_n \text{for RLi} \text{or R}_3 \text{Mg} \\
\text{XXIV) & \\
\text{XXV) & \text{CF}_3 \text{CH}_2 \text{Na)} \\
\text{XXVI) & \text{OCH}_3 \text{CF}_3 \\
\text{(R=Ph or Et)}
\end{align*}
\]

"Polymer (Korea) Vol. 2, No. 3, June 1978"
3. 포스파젠 폴리머의 구조와 물성

3.1. 구조

포스파젠 폴리머의 주체는 무기성분의 인과 질소 원자에 의하여 구성되므로 보통의 무기성분과는 다른 특성을 갖게 된다. 또한 폴리머 주체의 니트로 결합된 전자결합의 종류에 따라 특특한 성질을 갖는 포스파젠 폴리머가 된다.

보통의 C-C 단일결합의 길이는 약 1.54Å로 비교하여 P=N 결합의 결합길이는 1.55~1.68Å로 더 길다. 이는 인의 공유결합 결합의 길이(1.10Å)가 덜 소(0.77Å)에 비하여 더 긴 데서 기인한다. 포스파젠 화합물에서 인의 결합角(skeletal bond angle)은 약 120°이고, 결합결합에서는 약 119~148°로 인에 불은 전자결합에 따라 변한다. 따라서 포스파젠 폴리머 주체의 P-N 결합은 상당한 유연성을 갖게 된다.

포스파젠 화합물에서 인과 질소는 각각 5개의 원자간 결합을 갖는다. 인에서의 광결합은 카본의 폴리에 3sp³ 혼성체의 사면체 구조와 유사하게 보아 4개의 원자간 결합을 사용하여 이들 결합의 두 결합을 두 결합(전화되어 결합한다. 결합결합에서는 sp² 형태의 혼성으로 두개의 전자로 이들 결합과 결합하고 두결합(전화되어 결합한다. 결합결합에서는 sp² 형태와 혼성으로 두개의 전자로 이들 결합과 결합하고 두결합(전화되어 결합한다.
3.2. Properties

Poly(organophosphazene)의 모체 폴리머인 poly(dichlorophosphazene)의 중합도 (DP)는 약 15,000이고 치환반응에 의하여 유기기기부중된 유기폴리에의 분자량은 \(10^5 < M < 4 \times 10^6\) 정도로서 매우 큰 분자량 값을 갖는다. 치환반응동에서 가지치기기반응이 발생되어 분자량분포가 영향에 따라 상당히 넓게 나타난다 (polydispersity, \(M_w/M_n\)이 10이상 되는 경우도 있다).

완전한 치환이 이루어진 poly(organophosphazene), \((NPR_2)_n\)은 분전 분자 단체가 이음고, 파마이나 파마와의 싸위에 의하여 액체분해가 임의의 위치에 형성되며, 이는 유기조성체의 균등성 효과에 의한 폴리에 주체의 "물리적 구조" 때문이라고 생각된다. 그렇지만 강산에 의하여 분해가 일어난다. 야만인포스 파마 폴리에의 양기로 작용하여 무기화물과 같은 질을 만들기도 한다. 대부분의 유화성 폴리에 폴리에의 대체에 사용되는 불포화 분해 반응물, \(CF_2\)체계의 경로가 치환된 폴리에는 치환성이지만, 더 긴 풀로오카본 분체인 \(CF_2\)체계의 경로가 치환되면 보통의 용 매에 불용성으로 된다.

Table 1. Some Properties of Typical Polyphosphazenes

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Tg(°C)</th>
<th>T(1)(°C)</th>
<th>Tm(°C)</th>
<th>Td(°C)</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>((NPF_2)_n)</td>
<td>-96</td>
<td>-40</td>
<td>-68</td>
<td>190</td>
<td>Benzene</td>
</tr>
<tr>
<td>((NPCI)_n)</td>
<td>-63</td>
<td>-30</td>
<td></td>
<td></td>
<td>Benzene</td>
</tr>
<tr>
<td>((NPPB)_n)</td>
<td>-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((NP(O)Me)_2)</td>
<td>-76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((NP(O)Et)_2)</td>
<td>-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((NP(O)CH_2CF_2)_2)</td>
<td>-66</td>
<td>80</td>
<td>240</td>
<td></td>
<td>Acetone</td>
</tr>
<tr>
<td>((NP(O)CH_2CF_2)</td>
<td>-8</td>
<td>160</td>
<td>390</td>
<td>380</td>
<td>Fluorocarbons</td>
</tr>
<tr>
<td>((NP(O)CH_2-3)</td>
<td>-14</td>
<td></td>
<td></td>
<td></td>
<td>Benzene</td>
</tr>
<tr>
<td>((NP(O)CH_2-4)</td>
<td>-35</td>
<td></td>
<td></td>
<td></td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Cl-p))</td>
<td>4</td>
<td>167</td>
<td>365</td>
<td>410</td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Cl-m))</td>
<td>-24</td>
<td>66</td>
<td>370</td>
<td>380</td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Cl-p,4))</td>
<td>2</td>
<td></td>
<td>210</td>
<td></td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Me-p))</td>
<td>-25</td>
<td>90</td>
<td>348</td>
<td>350</td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Et-p))</td>
<td>0.3</td>
<td>152</td>
<td>350</td>
<td>310</td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Ome-p))</td>
<td>-18</td>
<td>43</td>
<td>285</td>
<td></td>
<td>THF</td>
</tr>
<tr>
<td>((NP(O)CH_2Me-p))</td>
<td>6</td>
<td></td>
<td>125</td>
<td>340</td>
<td>Chloroform</td>
</tr>
<tr>
<td>((NP(O)H)_2)</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td>THF</td>
</tr>
<tr>
<td>((NP(NHMe)_2)_2)</td>
<td>14</td>
<td>140</td>
<td></td>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>((NP(NHMeH)_2)_2)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Aqueous acid</td>
</tr>
<tr>
<td>((NP(NHPh)_2)_2)</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>Benzene</td>
</tr>
<tr>
<td>((NP(NHMe)_2)_2)</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td>Aqueous acid</td>
</tr>
<tr>
<td>((NP(NB)_2)(NHMe)_2)</td>
<td>8</td>
<td>174</td>
<td></td>
<td></td>
<td>THF</td>
</tr>
<tr>
<td>((NP(NB)_2)(NHMeH)_2)</td>
<td>-11</td>
<td>111</td>
<td></td>
<td></td>
<td>Benzene</td>
</tr>
</tbody>
</table>
포스파겔 플러머의 전이점의 온도와 분해온도, T의 Table 1에서 알 수 있다. 알루미늄과 폴리에폭아황산기로 치환되면 상당히 낮은 유리전이온도 (-60°C ~ -80°C)를 갖고, 아릴구조나 아미노기로 치환되면 다소 높은 유리전이온도를 갖는다. 포스파겔 플러머는 보통의 고체결합성 고분자와 다른 전이점의 온도를 보이고 있다. 즉, 전이점에서 두 온도에서 일어나고 그 온도간격이 150~200°C로 편차되었다. 강한 일차점이 온도 T1은 DSC나 DTA, TMA로 낮은 온도에서 측정되었다. 더 높은 온도에서 일차점이 온도 Tm은 보통 플러머에서와 같은 결정점을 나타낸다. Figure 4에 poly[bis(trifluoroethoxy)phosphazene], [NP(OCH2CF3)2]x, X의 합물에 대한 DSC 조자를 보였는데, T1이 80°C이고 Tm은 240°C임을 알 수 있다.

포스파겔 플러머의 결정에서 대부분의 무적심화는 T1에서 일어난다. 이 때 T1의 온도, 엔탈피 변화는 Tm에서 보다 약 10배 정도 더 크다. T1은 플러머의 구조에 민감하고 Tg에 비례하는 경향이 있다. 실험적인 관점에서 보아 T1 이상의 온도에서는 플러머가 충분히 석화되므로 양측성이에 의하여 플라스틱으로 전환될 수 있다. 또한 이것은 포스파겔 플러머의 실제 사용온도가 T1을 이하여야 한다는 것을 시사하고 있다.

대부분의 포스파겔 플러머는 사회가 대하여 매우 안정하다. 분해온도 Td가 상당히 높은 것을 Table 1에서 알 수 있다. 위화제에 따라 어떤 플라스틱은 점화이지만 대개의 포스파겔 플러머는 점화이이다.

4. 用途

일반적으로 한 종류의 유기분만이 포함된 포스파겔 플라스틱은 다수의 성질이 용해가 되는 플라스틱과 플라스틱의 성질을 보이고. 여러 종류의 유기분만이 용해가 되는 플라스틱과 플라스틱의 성질의 변화를 나타낸다. 유기포스파겔 플러머의 특이한 성질 때문에 플라스틱의 공학적 발전이 많이 연구되어 왔으며, 사용법에 따라 여러 가지의 용도를 나누어 왔다. 또한 제품의 재활용이 가능하다는 특성으로 사용되고 있다. 미국의 Materials and Mechanics 연구소, Firestones 연구소, Horizon 등에서 포스파겔 플러머의 실제적인 용도의 제품을 개발하고 있다.

유기포스파겔 플러머의 실제적인 용도는 다음과 같이 범위가 다양하다. 첫째로 혼합 포스파겔 코폴리머의 유구성과 재생분해성의 응용이 특별히 유용하다. 특수용도의
Table I. Some Physical Properties of Mixed Poly[(fluoroalkoxyphosphazene) Copolymers

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(γ), d/l/g</th>
<th>Solubility</th>
<th>Tg, °Fb</th>
<th>Td, °Fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NP(OCH₂CF₃)(OCH₂C₆F₇))ₙ</td>
<td>2.4</td>
<td>Freon E-2a</td>
<td>-95</td>
<td>572</td>
</tr>
<tr>
<td>(Freon E-2)</td>
<td></td>
<td>Freon TA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((NP(OCH₂CF₃)(OCH₂C₆F₆CF₂H))ₙ</td>
<td>2.2</td>
<td>EtOH, THF</td>
<td>-89</td>
<td>617</td>
</tr>
<tr>
<td>(Acetone)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NP(OCH₂CF₂CF₂H)(OCH₂C₆F₆CF₂H))ₙ</td>
<td>2.5</td>
<td>EtOH</td>
<td>-83</td>
<td>617</td>
</tr>
<tr>
<td>(Acetone)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Freon E-2: F(CF(CF₃)(CF₂O))₁CHFCF₃
b) Freon TA: Azeotrope of CCl₃FCClF(89%)-acetone(11%)
c) By differential thermal analysis

d) By thermal gravimetric analysis in air

Table II. Limiting Oxygen Index (ASTM D2863) of poly(aryloxyphosphazenes) and Some Commercial Plastics

<table>
<thead>
<tr>
<th>Polymer</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(aryloxyphosphazenes)</td>
<td>27~65</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>17</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>18</td>
</tr>
<tr>
<td>Nomex</td>
<td>27</td>
</tr>
<tr>
<td>Nylon 66</td>
<td>29</td>
</tr>
<tr>
<td>Polyvinylidene fluoride</td>
<td>44</td>
</tr>
<tr>
<td>Polyvinyl chloride</td>
<td>47</td>
</tr>
</tbody>
</table>

마지막으로 유기포스파젠 폴리머의 응용은 생물 의학의 인피니때도 있다. 포스파젠 폴리머는 生物 합성성(biocompatibility)이 좋다고 알려져 있다. 이의 適用可能性에 대하여는 다음節에서 상세히 살펴 보려 한다.

5. 生物學的 應用

 최근에 이르러 高分子物質의 醫學的 利用이 많은 관심이 높고 있다. 22. 다음의 三分野에서

Polymers (Korea) Vol. 2, No. 3, June 1978
5.1. 人造신체 代用物료의 利用

현재 알려진 많은 폴리머는 生體內에서 血液 溶解 등의 不作용을 유발하므로 生體內에서의 作用은 근본한다. 但 醫学上之 無濁性이 큰 테트로필리나 Marlex 폴리프로필렌, 폴리에틸렌 等이 사용 되어 왔다. 服饰類는 소수이지만 매우 크고 유연성이 있으므로 현재까지 生體內에 代用物로 많이 이용되고 있다.

생기 유기포스파르 폴리미중에서 폴리오필 틀로스 폴리머는 테트로필리나 실리콘 고무에 비하여 더 醫学上之 無濁性이 크고 유연성이 있으므로 그 使用可能성이 매우 높다. 시험관 내에서 행하여진 이 폴리머의 血液相容性(blood compatibility) 시험에서 보면 실리콘에 비하여 값거나 더 좋았다. 즉 이는 포스파르 폴리머는 생체 내에서 아무런 상호작용이 없으므로人造신체 代用物료의 개발이 가능하다. 현재 物理師生體內의 실형이 여러 연구기관에서 진행되고 있다.

5.2. 生物分解性 폴리머로의 利用

유기포스파르 폴리미는 生物分解性 폴리머 (biodegradable polymer) 분야에서 큰 역할을 할 것으로 보인다. 醫学上之 無濁性(surgical suture)는 사용된 후 醫学上之 無濁로 前向로 분해되어야 하고, 다른 物理師生體내에 사용된 폴리에도 새로운 細胞가 성장하면서 分解되어야 한다. 포스파르 폴리미는 주사가 인과 殻로 되어 있어서 無害한 物質로 加水分解 될 수 있다.

\[
\begin{align*}
\text{Cl} & \quad \text{H}_2\text{NRCO}_2\text{R} & \xrightarrow{\text{Et, H}} & \text{NHCO}_2\text{R} \\
\text{Cl} & \quad \text{NHRCO}_2\text{R} & \xrightarrow{\text{Et, H}} & \text{NHCH}_2\text{CO}_2\text{R}
\end{align*}
\]

치환법에 사용된 아미노산 에스테르는 glycidoylethoxy ester, leucino methyl ester, alanino methyl ester, phenyl alanino methyl ester가 있는데, 이 중에서 glycidoylethoxy ester의 경우에 완전히 치환 되었고 나머지 경우에는 일부만 치환 되어 방출되지 않은 염소를 매달아 밀드로 치환시켰다. Glycidoylethoxy ester로 치환된 poly[bis(ethyl glycido) phosphazene]과 일부 치환된 포스파르의 化学構造는 각각 XXIV와 XXV이다. 포스파르 폴리미가 XXIV와 XXV을 빌로, 알_DBG 설명 이용한 유기용해에 녹고 특히 폴리미는 溶解性이다. 폴리미는 XXIV와 XXV이 분해 되면 아미노산, 水, 알로노아 등의 細胞에無害한 物質이거나 新陳代謝物로 分解하는 기대를 갖게 되었다.

연구결과 생기 포스파르 폴리미는 25°C의 용액이나 고체상태에서 分子량의 감소가 서서히 일어났다. 예를 들어 폴리미는 25°C 온도의 고체상태에서 8~9 일에 2만의 分解단위(uniting)의 分解가 이루어져서 1일 동안에 일어났다. 유리 치환된 폴리미는 分解단위가 8년에서 서 일정히 비해, 변화하는 기간은 25~30일이 걸려고, 다른 폴리미에도 비슷한 현상이 일어났다. 그러나 영하 35°C 이하로 보관하였을 때는 거의 抑制되었다. 아미노산 에스테르 치환체가 이런 분해 작용을 유발하게 된다고 설명되었다.
폴리머는 중성 수용액에서 불용성이었지만 인산염 수용액의 완충용액(pH 7.5)에서는 아주 늦게 글리산의 방출이 검출되었고 여러 주입 이 지나면 폴리머의 용해가 일어났다. 폴리머는 중성 수용액에 불용성이라고 pH 7.4의 완
충용액에서는 사슬의剪断과 함께 글리산이 방 출 되었다. 动物生体内에서의 실험은 현재 진행 중이다.

5.3. 生物 機能性 폴리머로의 利用

현재 사용되는 低分子量의 醫療에서 볼 수 있
는 여러 가지 바람직한 藥理効果를 高分子醫藥에
서 기대할 수 있다. 포스파세 폴리머는 高分
子医藥品의 과정에서 보아 有用한 生物學의 機能
을 수반할 수 있는 有望한 고분자이다. 포스파세 폴리머 주로 생物品이 有生物活性이 있는 藥理楽(pha-
rmacoon)을 附加시켜 특별한 약리효과를 줄 수
있고, 또 무해하게 폴리머가 生体内에서 分解가
능하다. 포스파세 폴리머를 機能性하게 利用하
려는 연구가 대방향으로 進行되고 있다.

그 한 방향의 연구는 포스파세 폴리머가 轉移
金屬과 鑄合物를 가지 쉽게 형성하는 사실에
서 시작되었다. 특히 아미노 포스파세 폴리
머는 水溶性이고 導物 形이 잘 된다.

平面 四角形 구조를 하고 있는 白金 鑄合物
은 抗癌性이 크다고 알려져 있어서 抗癌剤로의
개발이 많은 관심을 모으고 있다. 그러나 臨床
實験의 결과 cis-Pt(II) (NH₃)₂Cl₂와 같은 白金
鑄合物는 抗癌効果는 크지만 신한 有毒性을 수반
하는 것으로 나타났다. 이런 有毒性(특히 腎臓
破壊 症状)은 低分子量의 白金 化合物가 너무 많
게 신장의 生透膜을 통하여 排泄 되기 때문이라
고 생각되므로 白金鑄合物을 高分子에 부착시켜서
이러한 排泄와 腎臓의 被毒를 감소시키려는 연구
가 행하여졌다.

効果적인 高分子 白金抗癌剤를 合成하기 위하여
는 다음의 두 사항이 요구된다. ①) 高分子는 水溶性으로 무독성이 있어 하 고 白金이 配位할
수 있는 基리를 갖고 있어야 한다. ②) 合成된
白金鑄合物 내에서 두 聯소 원자는 시스(cis) 위
치여야 한다.

Allcock 등 24)은 白金 白金鑄合物을 만든
기 위하여 탁한 폴리머의 poly(bis(methylamino)
phosphazene) [NP(NHCH₃)₂]ₙ (n = 15, 000) 인
때, 이 폴리머는 수용성으로 生物融化学이 있고
혈액의 抗凝固性(anticoagulant) 임이 알려졌다. 그들은 또한 이 폴리머의 吸收과 라고 할 수 있는
방식의 구조의 고리 사례에서 octamethylyclocyclot-
phosphazene, [NP(CH₃)]₉과 octamethylyaminocyclo-
triphosphazene, [NP(NHCH₃)]₉로도 같은
白金鑄合物을 만드는 데 사용하였다. 그러하여
合成된 白金 포스파세 鑄合物는 乳酸으로 둔는 물
질로 구조식 각각 (PtCl₆)(NP(NHCH₃)]₉, (Xi) (여기서 x : n = 1 : 17), PtCl₆(N₂H₄)₂CH₃]₉, (Xii), PtCl₆(N₂H₄)(NHCH₃)]₉ (Xiii) 이것은
高分子 鑄合物 XIII는 水溶性으로 유연성의 有機조
성 플라스틱 성질을 보였고, 두 고리 사례의 鑄
合物 XII와 XIII는 물에 약간 녹는 结晶體였다.
이들 세 白金 포스파세 鑄合物는 모두 수용액에서
安定하였다. X-선에 의한 结晶構造 分析에 의
하면 鑄合物 XIII에서 백금과 결합한 염소 원자
이외의 복배 리간드는 化和체의 결손이 아니
라 骨格構造상의 결손 원자임이 밝혀졌다.25) 다
른 白金鑄合物 XII와 XIII에서도 두 리간드는 역시
폴리머 주유체의 결손과 골격상의 결손이 할 수
있다. 이들 白金鑄合物은 抗癌試験(Ehrlich Aspires
tumor regression test와 P 388 lymphocytic leu-
kemia survival test)에서 상당히 높은 값을 나
타내었다. 즉 새로이 합성된 白金 포스파세 鑄
合物는 抗癌剤로 利用될 수 있는 가능성이 큰 것
이이다.

生物學的 機能을 나타내는 또 다른 방향에서의
연구는 포스파세 폴리머를 “類似蛋白質”(pseudo
protein)의 모델로서 이용하는 것이다. 金屬을
 포함하고 있는 水溶性 氨基酸에서 탄백질의 역할이
무엇인지 잘 알려지지 않고 있다. 一例로 해드
글로브리나 마이오크로브리의 철(II)-폴리머
鑄合物는 글로브리 사슬의 이미자 몰 殘基와 配位結合
되어 있다. 여기서 탄백질 부분이 없으면
철(II)이 不可逆으로 철(III)으로 酸化되어 酸素
의 運搬能力이 없어졌다. 즉 이런 탄백질의 역
할에 대한 연구에서 포스파세 폴리머를 이용할

Polymer (Korea) Vol. 2, No. 3, June 1978
수 있다.

앞서 언급한 poly[bis(methy]amino phosphazene]은 수소성이며 응기성이고, 배합 수합화 합 자리를 갖고 있다. 이 폴리머는 헤민(hemion)과 강한 수소성으로 결합하여 젊은 농도의 온도에서 나선 필름 상태에서는 형(Ⅰ)이 산화되어 형(Ⅲ)으로 변하지 않았다. 또한 헤민과 결합한 폴리피엔 폴리머는 산소와 호의적으로 결합하는 것이 관찰되었다. 더 많은 연구를 요구하는 분야지만 단백질과 금속의 결합, 폴리머 사이의 모인 상태에서 생체내에서의 생화학적 폴리머를 설명할 수 있는 한 방법으로서 추론되고 있다.

6. 問題點과 展望

이상에서 새로운 자료로서 특별히 생물학적 활성을 나타내며 다중한 기능을 갖는 새로운 유공물과 잘 복합된 포스파겐 폴리피엔에 판계하여 개독적으로 기술하였다. 포스파겐 폴리피엔은 실리콘 고무에 비하여 약간의 특이성이고, 수중에서의 사용선형과 넓은 탄성도의 이용이 유망하다. 포스파겐 폴리피엔의 원료 포모더미 고리종합체 hexachloroclo-

tropriophosphazene]은 부분적으로, 시계나 수화물의 생가물로부터 복합체로서, 후단으로 구성될 수 있다. 또한, 고체부분의 대용물, 생물학적 및 생물학적 용도로, 포모더미 폴리피엔은 poly(dichlorophosphazene)에 적당한 기능을 벌써부터 고급적으로 기술하여 생물학적 기능을 이용한 폴리피엔의 형성 및 성장이 발견될 수 있는 것

이상과 같이 포스파겐 폴리피엔은 많은 유용한 장점은 갖고 있지만, 해결되고 결합되어야 할 문제는 제시되지 않았다. 제시로 포스파겐의 모체 폴리피엔 형성에서 나타나는 문제이다. 폴로머 hexachloroclo-
tropriophosphazene]의 형성에서, 복합성, 수화물과 포스파겐 모체 폴리피엔을 위하여 과학적, 지식의 변화를 결합하여 자전적로부터 초하르로 복합시키는 형(Ⅰ)이 산화되어 형(Ⅲ)으로 변하지 않다. 또한 헤민과 결합한 폴리피엔 폴리피엔은 산소와 호의적으로 결합하는 것이 관찰되었다. 더 많은 연구를 요구하는 분야지만 단백질과 금속의 결합, 폴리피엔 사이의 모인 상태에서 생체내에서의 생학적 폴리피엔을 설명할 수 있는 한 방법으로서 추론되고 있다.

인용 문헌

2. H.R. Alcock, "Phosphorus Nitrogen-Com-