기획특집
신약개발을 위한 정밀화학기술

광학활성 화합물 생산을 위한 생육매의 산업적 응용
조 남훈† · 김 종근 · 홍 준배 · 임 종호
SK(주) 대덕기술원

Industrial Application of Biocatalysts for the Production of Chiral Compounds
Nahm-Ryune Cho†, Jong-Keun Kim, Jun-Bae Hong, and Jongho Lim
SK Corp., Daedeok R&D Center

Abstract: 최근 정밀화학 제품, 특히 의약품 분야에서의 광학활성 화합물에 대한 수요 증가는 단일 이성질체만을 순수하게 제조하는 기술의 개발을 촉진시키고 있다. 그 중에서도 생물 유래의 생육매(Biocatalysts)는 높은 기질 선택성, 입체선택성, 위치선택성, 비선택 광학 특성 등의 장점으로 최근 광학활성 화합물 합성의 중요한 수단이 되고 있다. 본 논문에서는 실제로 산업화되어 있는, 생육매를 이용한 광학활성 화합물 합성 공정을 해외의 연구사례와 당사의 연구사례를 중심으로 소개하고자 한다.

Keywords: 생육매, biocatalysts, hydrolase, lactamase, protease, lipase, 산화환원효소, dehydrogenase, Yeast, enzymatic resolution, asymmetric synthesis, chemical resolution, catalytic debenzylation

1. 서 언

광학활성을 갖는 많은 화합물은 의약품, 항약, 농약 등 중요한 화합물질의 합성에 필요한 중간체 및 화합성분으로 우리의 일상생활과 밀접한 관계를 갖고 있다. 이러한 광학활성 화합물은 일반적으로 이성질체간에 서로 다른 생리활성을 나타내며, 불필요한 이성질체는 인체나 환경에 많은 부작용이나 피해를 주기 때문에 원하는 활성을 갖는 단일 이성질체만을 순수하게 제조하는 기술은 주요 연구 대상이 되어 왔다.

또한 신규 제조 화합물질에 대한 연구개발이 활발해짐에 따라 화합물의 구조의 복잡해져 광학활성을 갖는 화합물의 합성과 생활화학물질 연구의 초기부터 광학 활성 중간체를 사용하는 것이 비용절감에 크게 기여함에 따라 광학활성을 갖는 중간체의 수요가 폭발적으로 증가하고 있는 추세이다.

현재 이러한 광학활성 화합물을 합성하는 방법은, (1) 결정화(Crystallization) 방법을 사용하거나, 화학촉매나 생육매를 이용하여 라세믹 화합물을 분할(Resolution)하는 방법, (2) 자연계에 풍부한 탄수화물, 아미노산, 태르펜, 알카로이드 등이 생물활성화물이나 효소활성화물과 같은 광학활성 천연물(Chirality Pool)로부터 끊임없이 라세믹화 합성을 통해 광학활성 화합물을 합성하는 방법, (3) Chiral Auxiliary 및 Chiral reagent를 사용하거나, 비대칭 합성촉매 또는 생육매를 이용하여 프로키랄성의 구조를 갖는 전구물질로부터 비대칭적으로 합성하는 방법 등이 3가지로 나눌 수 있다.

이와 같은 다양한 방법들을 통해 광학활성 화합물을 합성할 수 있지만, 최근에 신규로 합성되는 광학활성 의약 중간체들은 자연계에 존재하지 않는 물질이기 때문에 이를 자연계로부터 직접 얻기 보다는 라세믹 화합물을 분할하거나, 프로키랄성의 구조를 갖는 전구물질

† 주저자 (E-mail: cnr@skcorp.com)
로부터 키릴형의 구조를 갖는 물질로 합성하는 방법이 주된 연구대상이 되고 있다.

라세믹 화합물의 분할이나 프로키릴형의 전환을 통한 키릴형의 물질을 얻기 위한 방법으로 기존에는 결정화 방법이나 화학적 분할과 같은 물리-화학적인 방법이 주로 사용되어 왔으나, 특별한 관능기를 갖는 분비임체 이성결체(diastereomer)를 통해 쉽게 임체 특이성을 만들 수 없는 경우에는 특수한 촉매를 개발해야 하는 어려움이 있는데, 이의 해결방안으로서 임체 특이성을 보일한 생체형(Biocatalysts)의 사용 가능성이 크게 대두되고 있다. 생체형을 이용한 화합물의 합성은 상온, 상압에서 반응이 진행되고, 환경 친화적이며, 또한 생체형에 의해 생성된 새로운 유기 물질은 높은 임체선택성(stereoselectivity), 위치선택성(regioselectivity), 비선택광학적 특성을 높은 선택성을 가지고 있다는 장점이 있다. 이러한 반응에 사용되는 생체형으로는 lipase, protease, lactamase와 같은 가수분해 효소류와 reductase, dehydrogenase와 같은 산화환원 효소류 등이 많이 이용되고 있다. 이와 같이 생체형을 이용하여 고화합물의 물질을 합성하는 방법은 이로 정밀화학 산업에서 표준기술로 활용되고 있으며, 실제로 생물학적 기능을 이용한 상업적 규모의 생산에 대한 애도 많이 축적되어 있다[1].

SK(주)에서도 산업용 효소 및 미생물 균주를 이용한 의약중간체 개발을 수행하고 있으며, 산업적인 응용이 가능하도록 개발에 성공한 경험이 보유하고 있다. 본 고에서는 생체형을 이용하여 고화합물 화합물을 합성하는 대표적인 방법인, 가수분해 효소를 이용한 리세믹 화합물 분할 방법과 산화환원 효소를 이용한 비대칭 합성 방법에 대하여 해외의 연구사례와 당시의 연구사례를 소개하고자 한다.

2. Hydrolytic Enzyme을 이용한 광학 활성 화합물의 합성

현재 많은 종류의 생체형 반응 중에서 Protease, Lipase, Esterase, Lactamase와 같은 가수분해 효소를 이용하여 아미드 결합이나 에스테르 결합을 가진 화합물의 광학선택적으로 분할하는 가수분해 반응이 가장 많이 연구되고 있다. 이는 보조인자(Cofactor)가 필요하지 않고 활성이 큰 산업화 효소들을 쉽게 얻을 수 있기 때문에 현재까지 연구된 생체형 이용기술 중 약 2/3 정도를 차지하고 있다. 또한 역반응을 통해 에스테르 화합물이나 아미드 화합물을 합성하는 연구 또는 소량의 물과 다양한 유기용융을 사용한 시스템을 통해 연구가 활발하게 이루어지고 있으며, 인산 에스테르 결합, 에폭사이드 결합이나 니트릴 결합을 갖는 화합물을 형성하거나 가수분해를 수행하는 효소 또한 연구가 진행되고 있다[2].

생체형의 가수분해 반응을 이용한 많은 연구결과 중에서 화학적 분할이나 결정화 방법에 비해 원동한 결과를 보여주는 Chiroscience사의 라세믹 Lactam 분할공정과, 당시에서 연구되었던 Protease를 이용한 THFA ester의 분할공정에 대해 알아보겠다.

2.1. gamma-Lactamase를 이용한 Carbocyclic nucleoside synthon 합성

2-Azabicyclo[2.2.1]hept-5-en-3-one은 많은 carbocyclic nucleoside의 생산에 활용되는 synthon이다. carbocyclic nucleoside는 nucleoside의 리보오스와 산소원자(ribose oxygen)가 메틸렌기(methylene group)로 대체된 형태로, 이 구조로 인해 세포에서의 급속한 대사로부터 장기간 활성을 유지할 수 있다. 이들은 carbovir. (-)-aristeromycin과 같은 항바이러스제의 중간체로 사용되어 왔고 현재는 강력한 역전사효소 억제제(reverse transcriptase inhibitor)인 abacavir와 같은 HIV 또는 herpes 치료제의 중간체로 사용되고 있다.

그러나 cyclic amide인 lactam은 non cyclic amide보다 protease에 의한 가수분해에 안정한 편으로 lactamase에 의해서만 가수분해 되는데, 상업적으로 판매되는 lactamase를 확보하기가 용이하지 않아, (+)-lactam만을 선택적으로 가수분해하는 효소를 찾기 위해서 자연계로부터 직역 스크리닝을 시도하였다. 그 결과 (+)-lactam을 매우 선택적으로 가수분해하여 반응액 내에 (-)-lactam만을 남기는 Pseudomonas cepacia라는 미생물을 스크리닝 할 수 있었고, 동시에 (-)-lactam만을 선택적으로 가수분해하는 균주도 수 종 스크리닝 할 수 있었다(Figure 1).

이들은 용이한 공정개발과 비용절감을 위해 스크리닝된 균주로부터 lactamase를 분리, 정제하려는 시도를 하였으나 조작과정에서 불안정하다는 것이 증명되어 whole-cell biocatalyst을 사용한 생물전환 공정을 개발하는 데 그쳤지만, 이 공정으로도 1996년까지 ton 규모로 (-)-lactam을 생산하는 데에 성공하였다. Whole cell 공정은 반응이 끝난 뒤 반응액의 원심분리 등 간단한 조작만 필요한 장점을 갖고 있다. 그러나 whole cell을 이용하며 라세믹 lactam을 가수분해 하는 공정은, 반응 중에 세포의 용출(lysis) 이 일어나 용액을 이용한 lactam의 회수가 불가능하기 때문에 복잡한 탄소 흡착/용출 시스템을 필요로 하고, 균주가 다양한 lactam에 사용되어 1 kg의 (-)-lactam을 제조하는 데에 1 kg의 세포가 필요하기 때문에 제조 원가의 상승을 일으킨다는 결점이 드러났다. 또한 (-)-lactam에 대한 요구 가 증가함에 따라 새로운 수요를 충족하기 함

d들었기 때문에 더욱 효율적이고 선택성이 뛰어난 값은 촉매 개발이 필요하게 되었다. 이를 해결하기 위해 집중화 된 미생물 스크리닝, 효소 분리 및 특성분석과 병행해서 over-expression 을 위한 효소의 클로닝이 시도되었고, 그 결과, Pseudomonas cepacia 보다 일안정성이 우수한 균주인 Comamonas acido- vorans을 찾아내 는 것을 성공하였다. 이 균주는 고농 도의 라세믹 lactam에 대해서도 사법하지 않 을 뿐 아니라 균주의 조제로 용출물(crude cell lysate)은 60℃에서 4시간 동안 배양 후에도 활성을 유지하는 것을 보였다. 생축매의 원가를 감소하기 위해 lactamase를 발현시키는 유전자를 찾아 이들 E. coli의 플로닝(cloning)하여 발현시키고 sequencing를 실시하였다. 이렇게 lactamase 유전자를 포함하는 히질 전환된 E.coli는 배양액의 단위 부피 당 많은 효소를 생산할 수 있기 때문에 단위 부피당 Lactamase 활성이 수백 배 증가하게 된다. 발효를 통해 생산된 lactamase를 회수하고 반 경제하여 새로운 생물전환공정을 개 발하였는데, 이러한 새로운 (-)-lactam process 는 매우 향상한 결과를 보였고, 기질농도 500 g/L에서도 효소가 안정하므로 초기에 비해 5배의 생산성 증가를 보였다. 또한 매우 농축된 효소를 사용하기 때문에 생성물의 분리가 매우 단순해져 Dichloromethane를 이용한 추출을 통해 직접 분리가 가능하게 되었다. 최종단계는 용매 종류를 사용하여 생성물을 재결정시

Figure 1. 생축매를 이용한 라세믹 lactam의 분리와 (-)이성질체의 carbocyclic nucleoside 합성제의 용용.
2.2. Protease를 이용한 (S)-Tetrahydro-2-furoic acid 합성 (1st Generation Process)

광학활성의 Tetrahydro-2-furoic acids (THFA)는 항생제, 고혈압치료제, 비만치료제 등의 합성에 많이 사용되는 유용한 의약 중간체이다. 이 중 (S)-tetrahydro-2-furoic acid를 만드는 방법으로는 광학분할제로 (+)-epheedrine을 사용하는 chemical resolution 방법이 알려져 있었다(Figure 2). 그러나 이 방법은 매우 비싼 광학분할제를 사용하며, 또한 낮은 광학 순도의 (S)-THFA를 만들기 위하여 여러 번의 재정정 과정을 거쳐기 때문에 전체 수율이 약 12% 정도로 매우 낮아 산업적으로 적합하기에는 적합하지 않다[6].

SK(주)에서도 (S)-THFA를 제조하기 위하여, (R)-(+) -methylbenzyl amine 등 여러 종류의 광학활성 아민을 사용하여 수율을 높이기 위한 연구를 수행하였으나 성공하지 못하며, 새로운 방법으로서 효소를 이용한 resolution 방법을 개발하게 되었다. 이 효소로 이용한 resolution 과정에서는 먼저 THFA 를 여러 종류의 에스테르화합물로 만든 다음, 이 에스테르화합물을 일련의 효소 반응의 과정으로 사용하였다(Figure 3).

Figure 3에 나타난 바와 같이 이 과정에는 효소를 이용한 가수분해 반응이 두 번 포함되어 있다. 효소를 이용한 resolution 반응은 첫 번째 효소 반응 단계에서 이루어진다. 첫번째 효소 반응 단계에서는 (R)-THFA ester가 acid로 가수분해되고 (S)-THFA ester가 남는다. 반응 후 회수된 (S)-THFA ester는 두 번째 효소반응에서 acid로 가수분해되어 광학적으로 순수한 (S)-THFA가 만들어진다. 이와 같은 라세믹 THFA ester 화합물에 대해 광학특이성(enantioselectivity)을 가지는 효소를 찾아내기 위하여 상업적으로 유용한 수실 종의 가수분해 효소를 스코리닝하였으며, 그 결과 (R)-THFA ester에 대해서만 가수분해 작용을 하는 몇 종의 효소를 발견하였다. 그 중 가장 뚜렷한 활성은 가진 효소는 Bacillus licheniformis 유래의 Protease였다. 이 Protease를 이용하여 라세믹 THFA Butyl Ester 화합물을 가수분해 하였으며, 그 결과 광학 순도 99% ee 이상의 (S)-THFA Butyl Ester를 얻을 수 있었고, 이때의 resolution yield는 약 35%이었다.

첫번째 효소 반응 후 회수한 (S)-THFA Butyl Ester 화합물을 가수분해하여 최종 Product인 (S)-THFA를 만들기 위하여 처음에는 산 또는 염기를 이용한 chemical hydrolysis를 시도하였다. 그러나 산을 이용한 가수분해의 경우 re-esterification의 문제가 발생하였고, 염기를 이용한 가수분해의 경우에는 racemization의 문제가 발생하였다. (S)-THFA의 광학순도를 유지하기 위하여 마지막 가수분해 반응 역시 enzymatic hydrolysis를 적용하기로 하고 적합한 효소를 스코리닝하였다. 그 결과 광학순도를 유지하면서 가장 뚜렷한

![Figure 2. Chemical resolution에서 의한 (S)-THFA 합성.](image)

![Figure 3. Enzymatic resolution에 의한 (S)-THFA 제조 공정 (1st Generation Process).](image)
가수분해 환경을 보이는 *Candida antarctica* 유래의 lipase (*CAL B*)를 발견하였다. 결국 이 두 가지 효소를 이용한 enzymatic resolution process를 통해 광학수도 99% ee 이상의 (S)-THFA를 제조할 수 있었으며, 그 때의 overall yield는 약 26.4%이었다[7,8].

이 두 가지 효소를 사용하는 enzymatic resolution process가 기존의 chemical resolution process에 비해 수율이 2배 이상 증가되었으나, 여전히 전체 수용이 낮다는 문제점이 존재하였다. 전체 수용을 떨어뜨리는 주 원인은 두 번째 가수분해 반응 후 최종 Product인 (S)-THFA를 회수하는 과정에 있었다. (S)-THFA의 경우 물에 대한 용해도가 높아 product를 회수하기 위해서는 복잡하고 시간이 많이 소요되는 work-up 과정이 요구되었다. 실제로 (S)-THFA를 회수하기 위하여 Dichloromethane으로 6회 추출을 실시하였으나 최고 회수율은 82% 밖에 되지 않아, work-up 과정은 전체 수용을 떨어뜨리는 주요 요인으로 작용하였다. 반면에, ton-scale의 상업 생산 시 전체 과정을 복잡하게 만들고 생산성을 떨어뜨리는 요인이 되었다.

2.3. Protease를 이용한 (S)-Tetrahydro-2-furoic acid 합성 (2nd Generation Process)

SK(주)에서는 1st Generation Process에서 제거되었던 문제점을 해결하기 위하여, 마지막 효소 공정을 유기 용매 하에서의 촉매 반응 공정으로 대체하는 연구를 수행하여, 유기합성, biocatalytic와 catalytic debenzylation을 결합한 새로운 process를 개발하였다(Figure 4).

이 새로운 (S)-THFA 제조 공정의 경우, 마지막 반응 공정이 금속 촉매를 이용한 수소화 공정이기 때문에 효소 반응의 기질로서 1st Generation Process에서 사용하였던 THFA Butyl Ester를 사용하지 못하고 Benzyl ester 화합물을 사용하였다. 효소 반응의 기질이 THFA Benzyl Ester로 바뀌었기 때문에 새로운 효소를 스💬리당하였으며, 그 결과 가장 뛰어난 활성을 가진 효소는 1st Generation Process에서 사용한 효소와 같은 Bacillus 유래의 protease로 밝혀졌다. 또한 THFA Benzyl Ester를 기질로 사용할 경우 Enzymatic resolution 단계에서의 resolution yield가 약 41%로서 Butyl ester를 사용할 경우 (35%) 보다 월등히 높아졌다[7,9].

Enzymatic resolution 반응 후 회수한 (S)-THFA Benzyl Ester를 Pd/Alumina 촉매로 debenzylation 한 결과, 광학수도 99% ee 이상의 (S)-THFA를 제조할 수 있었으며, 이때 촉매 수소화 후 (S)-THFA의 recovery yield는 99% 이상으로 1st Generation Process의 경우 (82%) 보다 월등히 높았다. 이와 같이 효소반응과 촉매기술을 결합한 새로운 2nd Generation Process에서는 전체 수용이 39%를 달성하여 이전의 Chemical resolution 및 효소를 이용한 1st Generation Process 보다 현저한 개선 효과를 이루었고, 유기 용매 상에서 연속 수소화 공정을 수행함으로써 수용량상에서 가수분해 반응을 수행할 시 발생하는 문제점을 해결할 수 있어 전체 공정을 단순하게 만들 수 있었다(Figure 5).

2.4. Non-Conventional Hydrolase Process (Enzymatic ammoniolysis reaction)

(S)-THFA와 마찬가지로 (R)-THFA 또
한 penem계 항생제의 side-chain intermediate로서 다양한 기능을 수행하는 중요한 항생활성 화합물이다. (R)-THFA의 경우 Toray사에서 항생활성 야미드를 항생분할제를 사용하는 Chemical resolution 방법을 개발하여 상업화하였다(Figure 6)[10].

Toray Process에 의해 만들어지는 (R)-THFA의 overall yield는 30% 이상으로서, (S)-THFA의 경우보다 매우 높지만 여전히 개선의 여지가 있다. 그래서 SK(주)에서는 (S)-THFA의 제조에 적용하였던 방법(Figure 3, 1st Generation Process)과 유사한 방법으로 (R)-THFA 제조 방법을 개발하였다. 이때 (S)-THFA 제조시 사용되었던 효소와는 전혀 다른, 광학순도 99% ee 이상의 (R)-THFA를 제조할 수 있는 두 종류의 효소를 개발하였으며, 이때의 (R)-THFA 제조 overall yield는 약 35%이었다. 비록 새로운 효소에 의한 (R)-THFA 제조 방법이 상업적인 가치를 지니고는 있으나, (S)-THFA의 경우 미확인까지로 복잡하고 시간이 많이 소요되는 work-up 공정이 요구되는 단점이 있었다.

그래서 SK(주)는 Bio-venture 기업인 Genofocus과 함께 Enzymatic ammonolysis라는 완전히 새로운 Chiral THFA 제조 기술을 개발하였다(Figure 7).

Lipase나 protease와 같은 hydrolytic enzyme가 유기 용매상에서 aminolysis 또는 ammonolysis 반응을 통해 광학활성의 아미드를 만들 수 있다는 사실은 알려져 있었으나, 확정된 연구는 이루어지지 않고 있었다. SK-Genofocus는 amonia gas를 nucleophile로 하여 유기용매 상에서 효소를 이용하여, (R)-THFA ester는 그대로 좋은 제 (S)-THFA ester 만을 아미드로 만들어 공극적으로 광학활성의 (R)-THFA를 만드는 enzymatic ammonolysis process를 개발하였다. 이 enzymatic ammonolysis process를 이용하여 (R)-THFA를 만들 경우, resolution step에서의 수율은 약 40%이며, 전 공정에서의 overall yield는 약 37.9%를 달성하여 Toray process보다 높은 수율을 얻을 수 있었다. 이 새로운 공정의 또 하나의 장점은 높은 광학순도의 (S)-THFA를 동시에 만들 수 있다는 점이다. Enzymatic ammonolysis 과정에서 광학순도 85% ee 이상의 (S)-THFA amide가 얻어지는데 이 아미드는 제조공정에 의해 쉽게 광학순도 99% ee 이상의 (S)-THFA amide로 만들어지므로 이 후의 가수분해 과정을 거치면 광학순도 99%
3. Enzymatic reduction 반응을 이용한 광학적 화합물의 합성

환원작용에 사용되는 Dehydrogenase는 aldehyde 또는 ketone의 carboxyl group의 환원이나 탄소간의 이중결합의 환원에 널리 사용되어지는데, 모두 프로프니랄릴의 기질을 카탈가리의 생성물로 비대칭적으로 합성을 하기 때문에 매우 중요한 효소이다. 환원효소와 가수분해 효소의 가장 큰 차이는 환원효소가 반응하기 위해서는 보조인자(Cofactor)가 필요하다는 것으로 Cofactor로는 Nicotinamide adenine dinucleotide(NAD(H)), Nicotinamide adenine dinucleotide phosphate(NADP(H)), Flavin 유도체(FMN, FAD) 등이 있는데 보통 NAD(H) 80% 정도 이용하고 NADP(H)를 10% 정도 이용한다. 그러나 Cofactor는 대체적으로 불안정할 뿐 아니라 가격이 다른 물질로 대체하기가 쉽지 않기 때문에 보통은 또 하나의 산화환원 반응을 in situ로 사용하여 재생시킴으로써 산화환원 반응에서 반응물질의 당량비가 아닌 총체적으로 사용하도록 유도하여 생산비용을 절감시키는 방법을 사용한다.

그러나 Whole cell을 생체매료 사용할 경우에는 Cofactor-recycling은 문제가 되지 않는 다. 즉, 탄수화물을 환원원으로 사용할 경우 미생물은 이들을 대사하여 보조인자를 환원시켜 지속적인 반응이 가능하도록 한다[2].

환원효소를 보유한 균주를 이용한 많은 연구 결과 중에서 화학적 분리나 결정과 방법에 비해 원단형 결과를 보여주는 사례로 Zeneca사의 Fungli를 이용한 Ketosulfone의 선택적 환원제가 및 SK(주)에서 연구되었던 Yeast를 이용한 Alkyl 2-Chloromandelate의 선택적 환원제에 대해 알아보겠다.

3.1. 생물학적 환원계를 이용한 MK0507 합성

녹내장(Glaucoma) 치료에 사용되는 치료제로는 Pilocarpine, Phystostigmine 등이 있는데 이들은 모두 경구용 carbonic anhydrase inhibitors(CAIs)로 작용하기 때문에, 이들로 경구 투여시 많은 전신성 부작용이 나타난다. Merck는 이러한 부작용을 극복하기 위해 국부적으로 작용하는 수용성 약품을 개발하여 MK-0507이라는 명명하였고 이는 (Trusopt®)라는 상품으로 출시되었다.

MK-0507은 두개의 카릴 중심(Chiral center)을 포함하는데 methyl-(R)-3-hydroxybutyrate를 출발물질로 화학합성을 하게 되면 dihydrothiopyran ring의 6번 위치에 카릴 중심이 직접 도입되며, 이렇게 도입된 Chirality는 LiAlH4를 이용한 ketosulfide 중간체(중간체 1)의 환원을 통한 2번체의 카릴 중심을 도입하는데 사용된다(Figure 8). 그러나 cis형의 alcohol product를 trans형으로 전환할 경우 6번 위치의 탄소에서 epimerization이 발생하는 문제가 있다.

이와 같은 불완전한 epimerization의 문제는 Zeneca사에 의해 개발한 ketone group의 생물학적 환원방법을 통해 해결되었다. 생물학적 환원을 위한 기질로는 ketosulfide 중간체보다 물에 대한 용해도가 큰 ketosulfone 중간체를 사용하였다. 미생물 균주의 스코리님 결합 ketone를 (4S)-alcohol로 환원할 수 있는 몇 종의 미생물을 분리하는데 성공하였다. 그러나 물에 용해도가 높은 ketosulfone 중간체를 기질로 선택함에 따라 Merck사의 화학적 합성법에서 나타나지 않은 문제점이 나타났다. 즉,
pH 5 이상의 수용액상에서 ketosulfone 중간체는 ring-opened 중간체로 전환되어 자발적인 epimerization이 발생하게 되어 (6S)-methyl group의 광학활성이 없어지게 된다. 그러나 만약 이 ketone group이 환원된 상태가 되면 epimerization은 더 이상 이루어지지 않는다. 이를 해결하기 위해 Zeneca사는 pH 5 이하에서 환원작용을 수행하는 미생물을 스커리닝하여 이를 생축매로 사용하고 소량의 keto-sulfone substrate를 반응기에 첨가함으로써 문제를 해결하였다. 즉 이 공정은 fungus Neurospora crassa(IMI19419)를 배양하고 pH 4로 맞춘 후 ketosulfone substrate를 첨가하는 것으로 기질은 액체배지의 농도가 200 mg/L 아래로 유지되도록 충분히 천천히 첨가하므로서 완성되었다. 이 공정을 통해 (4S,6S)-hydroxysulfone을 수용 80%, 광학순도 99.8% 로 얻을 수 있었다. 반응액을 분석한 결과 (6R)-methyl epimer는 검출되지 않았고, 단지 0.2%의 (4R)-alcohol epimer만 검출되었다. (Figure 9).

또 하나의 광학활성을 부여하는 (6S)-methyl group 또한 생체물질로부터 얻을 수 있다. 즉 (R)-3-hydroxybutyrate의 homopolymer 또한 생분해성 플라스틱 제조를 위한 발효공정으로부터 만들어지는데, 이러한 고분자를 산성 methanol과 함께 가열함으로써 광학순도 99.9% e.e. 이상의 methyl (R)-3-hydroxybutyrate를 얻을 수 있다. 현재 Zeneca의 (4S,6S)-hydroxysulfone 공정은 multi-ton scale로 생산되고 있다[5,11].

Figure 8. MK 0507의 화학합성공정.

Figure 9. 생축매를 이용한 MK 0507 합성 공정.

이와 같이 생물전환기술을 사용하여 가수분해 반응에 비해 훨씬 복잡하고 Cofactor가 필요한 광학활성 화합물의 합성반응을 Plant 규모에서 효율적으로 합성할 수 있게 되었다. 특히 생물전환기술을 사용하여 화학적 환원으로 발생하는 Epimerization을 방지할 뿐 아니라 두개의 키알 중심 모두 광학선택적으로 도입시킬 수 있다는 것을 보여줌으로써 생축매를 이용한 광학활성 화합물 합성 반응의 발전 전망을 더욱 크게 하였다.

3.2. Baker’s Yeast를 이용한 Alkyl 2-Chloromandelate의 선택적 환원공정 개발
(R)-2-chloromandelic acid 및 그 에스테르 화합물은 Sanofi 사에 의해 출시된 혈전방지제인 Plavix ((S)-Clopidogrel bisulfate)의 합성에 필요한 중간체로 사용되고 있다. 1989년 Sanofi 사가 발표한 (S)-Clopidogrel bisulfate의 제조방법을 보면, racemic 2-chloromandelic acid에 tetrahydrothieno[3,2-c]pyridine을 도입한 후에 camphorsulfonic acid를 사용한 chemical resolution을 통하여 광학활성의 (S)-Clopidogrel bisulfate를 제조하였다(Figure 10). 이 방법의 경우 반응의 후단에서 Chemical resolution을 수행함으로써 수율 및 경제성이 떨어지는 단점이 있다[12].

중간체로서 광학활성의 (R)-2-chloromandelic acid를 얻는 방법으로는 (R)-N-benzyl-1-ph-
Figure 10. Clopidogrel bisulfate 제조 공정(Sanofi Process).

enylethylamine을 resolving agent로 사용하는 chemical resolution 방법[13], Chiral ligand을 가진 촉매를 이용한 asymmetric catalysis 방법[14] 등이 보고된 바 있다. Chemical resolution 방법의 경우 이론 수율이 50%를 넘지 못하고 원하는 광학순도를 얻기 위하여 여러 번의 제절정 과정을 거쳐야 하는 단점이 있다. asymmetric catalysis 방법의 경우에는 Chemical resolution 방법에 비해 이론 수율은 높지만 역시 원하는 광학순도를 얻기 위하여 여러 step의 반응 과정을 거쳐야 하고 또한 비대칭 반응을 수행하는 반응온도가 -42 ℃를 유지해야 하는 단점이 있다.

SK(주)는 광학분할 방법의 근본적 한계인 이론 수율이 50%를 넘지 못하는 단점을 극복하기 위하여 효소 또는 Whole Cell에 의한 asymmetric reduction 공정 개발에 착수하였 다. 먼저 생물학적 환원공정의 기질로서 alkyl 2-chloro-benzoylformate를 선정하고, 다양한 환경에서 미생물을 체내하여 기질을 선택적으로 환원시킬 수 있는 미생물의 스트레인에 착수하였다. 그 결과, Baker’s Yeast라는 미생물이 alkyl 2-chloro-benzoylformate를 선택적으로 환원하여 Alkyl (R)-2-Chloromandelate를 만들 수 있다는 사실을 확인하였다(Figure 11).

Baker’s Yeast는 적절 배양하여 사용할 수 도 있으나, 시그마 사와 같은 시약회사 또는 많은 Yeast 생산 회사에서 저렴한 가격으로 구매가 가능하다. 실제로 본 process에서도 국내에서 생산되는 Baker’s Yeast를 구매하여 사용한 결과, asymmetric reduction 반응 단계에서의 전환율은 99% 이상, 광학순도는 98% ee 이상의 좋은 결과를 얻을 수 있었다. 이 Baker’s Yeast를 이용한 전체 공정의 overall yield는 약 70%로서 기존에 알려진 resolution process에 비해 매우 높은 뿐 아니라, 생축매로 사용되는 Baker’s Yeast는 상업적인 제품을 매우 저렴한 가격으로 쉽게 구매할 수 있기 때문에 상업적으로 유용한 생물질환공정 개발이 이루어졌다. 특히 Methyl 2-chloro-benzoylformate를 반응 기질로 사용할 경우, 주요 혈전 치료제 의약품인 Plavix ((S)-Clopidogrel bisulfate)의 중간체로 사용되는 Methyl (R)-2-chloromandelate을 광학순도 98% ee 이상의 제품으로 만들 수 있어 추가의 가수 분해와 제절정 과정이 필요 없는 장점이 있다.

4. 결 론

생축매 반응은 기존기술에 비해 상대적으로 green technology이며 생축매를 이용한 반응은 고전적인 유기화학 반응으로 쉽게 수행하기 힘든 화합물의 제조에서 매우 유용한 보완 기술임이 입증되었다. 특히 생축매 반응은 단일 Enantiomer 중간체, 특히 의약 중간체를 제조하는 데 중요한 역할을 하며 이의 장점은 (1) 촉매를 이용하면서도 상온, 상업의 mild한 조건에서도 반응이 진행되고 (2) 원하는 생축매 를 생산하는 미생물 균주를 확인하게 되면 촉매의 대규모 생산이 가능하며 (3) 매우 경제적 이면서 높은 광학 선택성을 갖는 공정의 개발이 가능하다는 것이다. 그러나 생축매는 기존의 화학공정에서 사용되는 촉매에 비해 안정
성에 낮고 모든 반응에 적용하기에는 부족하든 다단점도 있다.
하지만 이러한 생물체의 뚜렷한 장점 때문에 화학물질의 합성에 생물체 효소를 응용하는 분야의 발전 전망이 커지고 있다. 다만 현재까지는 화학 공업에 효소를 응용하는 것이 다른 산업에 비해 낮은 수준이지만 향후에는 효소를 이용한 공정 개발, 특히 단일 형태의 싸각한 환경문제를 생산하여 의약이나 농약 등에 활용하는 분야는 향후 급속도로 발전할 것이다. 이는 활성성 미생물로부터 얻어 더욱 안정화 생물체를 얻고, 이를 이용한 공학 및 단백질 공학기술을 이용하여 생산성이 증가된 맞춤형 생물체로 만들 수 있게 될 뿐만 아니라, membrane bioreactor 등을 이용하여 multi-enzyme catalysis system을 도입하면 복잡한 다단계 반응도 단 시간 내에 효율적으로 수행할 수 있기 때문이다. 또한 대량 스크립팅 방법, 라이브러리 제조방법, 효소 염화 방법 등이 보편화되면서 화학 촉매보다는 생체 촉매가 제품 개발 속도를 향상시키는 경우가 많아졌다. 다른 한편으로는 청정화학의 개화 및 도입으로 환경을 생각하며 기술개발을 도모하는 추세에 생체 촉매를 이용한 화학 반응의 대체는 시대적 요구라고 할 수 있다.
이와 같은 흐름으로 세계적으로 많은 회사들이 현재 초기 단계에서 생물체 및 이를 이용한 공정 개발에 집중하고 있으므로 많은 새로운 개발이 수년 내에 이루어질 것으로 전망된다[15].

참고 문헌

1. O. Kirk et al., Current opinion in biotechnology, 13, 345 (2002).
5. A. N. Collins et al., Chirality in industry II - Developments in the Commercial Manufacture and Applications of Optically Active Compounds. West Sussex: John Wiley & sons (1997).
7. WO 01/92553: WO 01/92554
8. US 6440721
9. US 6455302
12. US 4847265
13. JP 2001072644
14. WO 0210095
지자 소개

조 남윤
1990년 강희대학교 생물학과 (학사)
1995년 고려대학교 생물학과 (석사)
1995년~현재 SK(주) 대닥기술원 신임연구원

홍 준배
1994년 연세대학교 화학과 (학사)
1996년 연세대학교 화학과 (석사)
2001년 연세대학교 화학과 (박사)
2001년~현재 SK(주) 대닥기술원 연구원

김 종근
1986년 서울대학교 미생물학과 (학사)
1988년~현재 SK(주) 대닥기술원 수석연구원

임 중호
1997년 서울대학교 화학교육과 (학사)
1999년 서울대학교 화학과 (석사)
1999년~현재 SK(주) 대닥기술원 연구원