Absorption of carbon dioxide into non-aqueous solutions of N-methyl diethanolamine

Sang-Wook Park¹, Joon-Wook Lee, Byoung-Sik Choi and Jae-Wook Lee*¹

Division of Chemical Engineering, Pusan National University, Busan 609-735, Korea
*Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
(Received 17 January 2006 • accepted 16 March 2006)

Abstract—The chemical absorption rate of carbon dioxide was measured in non-aqueous solvents, which dissolved N-methyl diethanolamine (MDEA), such as methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, and propylene carbonate, and water at 298 K and 101.3 kPa using a semi-batch stirred tank with a plane gas-liquid interface. The overall reaction rate constant obtained from the measured rate of absorption of carbon dioxide under the condition of fast pseudo-first-order reaction regime was used to get the apparent reaction rate constant, which yields the second-order reaction rate constant and the reaction order of the overall reaction. There was approximately linear dependence of the logarithm of the rate constant for the overall second-order reaction on the solubility parameter of the solvent. In non-aqueous solutions of (MDEA), dissolved carbon dioxide is expected to react with solvated (MDEA) to produce an ion pair.

Key words: Absorption, Carbon Dioxide, N-Methyl diethanolamine

INTRODUCTION

The removal of acid gases such as CO₂, H₂S, and COS by absorption using aqueous alkanolamine solutions has been widely used in the chemical industries. Particularly, the removal of CO₂ from the gas produced by burning fossil fuel has been of great interest owing to the global warming caused by the increase of the concentration of CO₂ in the atmosphere. Industrially important chemical absorbers are monoethanolamine, diethanolamine, triethanolamine (TEA), MDEA [Astarita et al., 1983]. Due to the instantaneous reaction rate for the reaction of H₂S with tertiary alkanolamine (TEA, MDEA) and a very slow reaction rate for the reaction of CO₂ with the aqueous alkanolamine solutions they are frequently used as a selective solvent for selectively absorbing H₂S while permitting CO₂ unabsorbed [Astarita et al., 1983].

Although many studies have been done towards the mechanisms and kinetics of the reaction between CO₂ and various alkanolamines, the reaction media are limited to aqueous solutions [Danczkiewicz, 1970]. In practice, non-aqueous systems comprising methanol solution of alkanolamine have been commercially employed for absorption of CO₂, H₂S, and COS, etc., because of their high solubility and capacity, their low corrosiveness, and their low energy consumption during generation of used liquor [Astarita et al., 1983]. Non-aqueous systems, which are essentially used in a closed loop, should be considered more for acid gas removal.

The kinetics of reaction between CO₂ and alkanolamine was analyzed by using simple mass balances resulting from the autoionization mechanism of the reaction of CO₂ with alkanolamine such as primary and secondary amine proposed by Danczkiewicz [1979]. It would be expected that the mechanism of the reaction of CO₂ with alkanolamine in aqueous solutions could be applied to that in non-aqueous solvents, and the condition of the fast or instantaneous reaction regime might also be satisfied in non-aqueous solvents. Tertiary alkanolamines such as TEA and MDEA do not form carbamates since there is no hydrogen atom to be displaced by carbon dioxide [Sadik et al., 1989]. It has been reported that TEA and MDEA act as homogeneous base catalysts for carbon dioxide hydrolysis and that negligible monoalkylcarbamate formation takes place [Ko and Li, 2000]. In view of the possibility of base catalysis in carbon dioxide hydrolysis, it is of interest to investigate the reaction kinetics in non-aqueous solutions.

In the present work, therefore, the absorption of carbon dioxide into aqueous and non-aqueous solutions of MDEA was carried out by using a stirred tank with a plane gas-liquid interface. The absorption rate data under a fast-reaction regime were analyzed in terms of the chemical absorption theory of second-order reactions. An attempt was made to correlate the reaction rate constants, which were derived for the different non-aqueous solvents with the physicochemical properties of each solvent.

THEORY

1. Reactions of CO₂ in Aqueous Alkanolamine Solutions

The first reaction to be considered is the hydration of CO₂:

\[\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{HCO}_3^- + \text{H}^+ \] (1)

This reaction is very slow [Pinsent et al., 1956] and may usually be neglected.

The second reaction is the bicarbonate formation with hydroxyl ion:

\[\text{CO}_2 + \text{OH}^- \leftrightarrow \text{HCO}_3^- \] (2)

This reaction is fast and can enhance mass transfer even when the concentration of hydroxyl ion is low. The forward reaction for the reaction of CO₂ with OH⁻ can be described [Pinsent et al., 1956]:

\[\text{R}_\text{con}^+ \leftrightarrow \text{K}_\text{eq} [\text{CO}_2][\text{OH}^-] \] (3)

For the reaction of CO₂ in aqueous solution with tertiary alkanola-
min e (R_N), Donaldson and Nguyen [1980] proposed the following reaction mechanism:

$$\text{CO}_2 + R_N + \text{H}_2\text{O} \leftrightarrow R_N\text{NH}^+ + \text{HCO}_3^-$$

(4)

The forward reaction for the reaction of CO$_2$ with R_N in Eq. (4) can be described:

$$R_{\text{CO}_2-}\text{MD EA} = k_2 [\text{CO}_2] [\text{MD EA}]$$

(5)

Mono- or diethanolamine can react with CO$_2$ to form a zwitterionic intermediate [Danckwerts, 1979], but tertiary alkanolamine cannot react directly with CO$_2$, because its reaction mechanism is essentially a base-catalyzed hydration of CO$_2$ as shown in Eq. (4).

For the absorption of CO$_2$ into MDEA + H$_2$O, the CO$_2$ overall reaction rate can be expressed as follows:

$$R_{\text{ov}} = R_{\text{CO}_2-\text{MD EA}} + R_{-\text{CO}_2-\text{OH}}$$

(6)

In most literature [Blaufhoff et al., 1984; Versteeg and van Swaaij, 1988a] on CO$_2$ kinetics with tertiary alkanolamines, it is assumed that reaction of CO$_2$ with MDEA is a pseudo-first-order reaction combining Eq. (3), (5) and (6), and one has

$$k_{\text{ov}} = k_2 [\text{MD EA}]$$

(7)

The overall reaction rate constant (k_{ov}) in Eq. (7) has the following expression:

$$k_{\text{ov}} = k_2 [\text{MD EA}]$$

(8)

On the other hand, the apparent reaction rate constant (k_{app}) is defined as $k_2 [\text{MD EA}]$, and is obtained as follows:

$$k_{\text{app}} = k_2 [\text{MD EA}]$$

(9)

The enhancement factor (β) of CO$_2$, which is defined as the ratio of absorption rate of CO$_2$ with chemical reaction of MDEA to that without one for a pseudo-first-order reaction of Eq. (7), is given [Daraiswany and Sharma, 1984] by

$$\beta = \frac{m}{\tanh m}$$

(10)

where $m = k_{\text{ov}} D_j k_2^2$ and m is defined as Hatta number (Ha).

2. Reactions of CO$_2$ in Non-Aqueous Alkanolamine Solutions

Because tertiary alkanolamines such as TEA and MDEA do not form carbamates and act as homogeneous base catalysts for carbon dioxide hydrolysis, the reaction (4) cannot be used to explain the reaction mechanism between CO$_2$ and MDEA in non-aqueous solution. Sada et al. [1989] have proposed that in non-aqueous solutions of tertiary alkanolamine the dissolved carbon dioxide will react with solvated tertiary alkanolamine to form an ion pair as follows:

$$R_N\text{H(Sol)} + \text{CO}_2 \leftrightarrow R_N\text{NH}_2^+ + \text{CO}_2\text{Sol}^-$$

(11)

where Hsol designates solvent.

It is assumed that reaction of CO$_2$ with MDEA is a pseudo-first-order reaction in non-aqueous solutions as follows:

$$R_{\text{CO}_2-\text{MD EA(Sol)}} = k_2 [\text{CO}_2] [\text{MD EA(Sol)}]$$

(12)

and the overall reaction rate constant (k_{ov}) has the following expression:

$$k_{\text{app}} = k_2 [\text{MD EA(Sol)}]$$

(13)

The apparent reaction rate constant (k_{app}) is defined as follows:

$$k_{\text{app}} = k_2 [\text{MD EA(Sol)}]$$

(14)

EXPERIMENTAL

1. Chemicals and Absorption Rate of CO$_2$

All chemicals in this study were of reagent grade, and used with-

<table>
<thead>
<tr>
<th>Solvent</th>
<th>δ (J/m3)$^{1/2}$</th>
<th>μ (cP)</th>
<th>C_{Ai} (kmol/m3)</th>
<th>$D_j \times 10^3$ (m2/s)</th>
<th>$D_k \times 10^8$ (m3/kmol·s)</th>
<th>k_1 (m/s)</th>
<th>k_2 (m3/kmol·s)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>48.1</td>
<td>0.894</td>
<td>0.035</td>
<td>1.95</td>
<td>8.38</td>
<td>6.505</td>
<td>4.79</td>
<td>1.02</td>
</tr>
<tr>
<td>Methanol</td>
<td>29.7</td>
<td>0.547</td>
<td>0.159</td>
<td>8.15</td>
<td>19.74</td>
<td>3.24</td>
<td>2.22</td>
<td>1.05</td>
</tr>
<tr>
<td>Ethanol</td>
<td>26.1</td>
<td>1.099</td>
<td>0.125</td>
<td>3.88</td>
<td>8.28</td>
<td>5.867</td>
<td>1.91</td>
<td>0.98</td>
</tr>
<tr>
<td>n-Propanol</td>
<td>23.4</td>
<td>1.942</td>
<td>0.096</td>
<td>2.73</td>
<td>4.37</td>
<td>4.413</td>
<td>1.72</td>
<td>1.07</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>23.3</td>
<td>2.01</td>
<td>0.093</td>
<td>0.876</td>
<td>3.61</td>
<td>3.806</td>
<td>1.75</td>
<td>1.04</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>29.9</td>
<td>17.33</td>
<td>0.027</td>
<td>0.121</td>
<td>0.55</td>
<td>1.477</td>
<td>2.21</td>
<td>1.13</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>25.8</td>
<td>42.93</td>
<td>0.248</td>
<td>0.054</td>
<td>0.22</td>
<td>0.934</td>
<td>1.91</td>
<td>0.99</td>
</tr>
<tr>
<td>Propylene carbonate</td>
<td>27.2</td>
<td>2.493</td>
<td>0.127</td>
<td>1.077</td>
<td>4.44</td>
<td>3.895</td>
<td>2.36</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Fig. 1. Effect of MDEA concentration on R_α.

Korean J. Chem. Eng.(Vol. 23, No. 5)
out further purification. The purity of both CO$_2$ and N$_2$ was more than 99.9%. The solvents used in the absorption of CO$_2$ were methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, propylene carbonate, and water. MDEA solutions were prepared from distilled solvent. The distilled solvents were degassed with boiling. MDEA was Aldrich reagent grade with purity of 99.7%. The concentration of MDEA solution was determined by titration of a liquid sample with HCl by using methyl orange as an indicator. The MDEA concentrations in this study range from 1 to 3 kmol/m3.

The absorption rates of carbon dioxide into MDEA solutions were measured by using a semi-batch stirred tank with a plane gas-liquid interface at 298 K and 101.3 kPa. The experimental enhancement factor of CO$_2$ by reaction of CO$_2$ with MDEA was obtained from the ratio of the specific rates of absorption of CO$_2$ with MDEA and those without MDEA. The absorption rate was independent of the stirring speed in the range of 40-70 rpm; all experimental runs were performed at a stirrer speed of about 50 rpm. The gas-liquid interface appeared to be carefully smoothed, and therefore was well defined. The experimental procedure to get the absorption rate was duplicated as reported in published research [Park et al., 2004] in detail.

2. Physicochemical Properties

Table 2. Experimental data of the reaction of CO$_2$ with MDEA at 289 K

<table>
<thead>
<tr>
<th>Solvent</th>
<th>C_m (kmol/m2)</th>
<th>$R_x \times 10^9$ (kmol/s)</th>
<th>k_{aq} (1/s)</th>
<th>k_{ap} (1/s)</th>
<th>H_i</th>
<th>E_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.04</td>
<td>5.85</td>
<td>22.49</td>
<td>4.97</td>
<td>3.22</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>1.51</td>
<td>6.53</td>
<td>28.12</td>
<td>7.00</td>
<td>3.60</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>2.03</td>
<td>7.30</td>
<td>35.21</td>
<td>10.72</td>
<td>4.03</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>2.48</td>
<td>7.69</td>
<td>39.09</td>
<td>12.02</td>
<td>4.24</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>2.97</td>
<td>8.13</td>
<td>43.70</td>
<td>14.08</td>
<td>4.49</td>
<td>564</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.02</td>
<td>1.890</td>
<td>2.25</td>
<td>2.25</td>
<td>1.65</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1.48</td>
<td>22.50</td>
<td>3.46</td>
<td>3.46</td>
<td>2.05</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.01</td>
<td>25.10</td>
<td>4.42</td>
<td>4.42</td>
<td>2.31</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>2.53</td>
<td>29.50</td>
<td>6.16</td>
<td>6.16</td>
<td>2.73</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>31.10</td>
<td>6.97</td>
<td>6.97</td>
<td>2.91</td>
<td>83</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.98</td>
<td>9.50</td>
<td>1.83</td>
<td>1.83</td>
<td>1.44</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1.53</td>
<td>11.70</td>
<td>3.19</td>
<td>3.19</td>
<td>1.89</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>2.02</td>
<td>12.10</td>
<td>3.45</td>
<td>3.45</td>
<td>1.97</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>2.47</td>
<td>13.90</td>
<td>4.73</td>
<td>4.73</td>
<td>2.31</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>2.98</td>
<td>15.10</td>
<td>5.66</td>
<td>5.66</td>
<td>2.53</td>
<td>111</td>
</tr>
<tr>
<td>n-Propanol</td>
<td>1.04</td>
<td>5.81</td>
<td>1.72</td>
<td>1.72</td>
<td>1.55</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>1.51</td>
<td>7.08</td>
<td>2.84</td>
<td>2.84</td>
<td>1.99</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1.96</td>
<td>7.81</td>
<td>3.55</td>
<td>3.55</td>
<td>2.23</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2.52</td>
<td>8.71</td>
<td>4.51</td>
<td>4.51</td>
<td>2.51</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>3.01</td>
<td>9.61</td>
<td>5.55</td>
<td>5.55</td>
<td>2.79</td>
<td>126</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>1.01</td>
<td>3.75</td>
<td>1.67</td>
<td>1.67</td>
<td>1.01</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>1.48</td>
<td>4.30</td>
<td>2.80</td>
<td>2.80</td>
<td>1.30</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>2.04</td>
<td>4.76</td>
<td>3.81</td>
<td>3.81</td>
<td>1.52</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>2.51</td>
<td>5.01</td>
<td>4.38</td>
<td>4.38</td>
<td>1.63</td>
<td>174</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>1.03</td>
<td>4.52</td>
<td>5.37</td>
<td>5.37</td>
<td>1.80</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>1.53</td>
<td>0.44</td>
<td>2.22</td>
<td>2.22</td>
<td>1.11</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>2.01</td>
<td>0.53</td>
<td>3.95</td>
<td>3.95</td>
<td>1.48</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>2.48</td>
<td>0.55</td>
<td>4.39</td>
<td>4.39</td>
<td>1.56</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>3.01</td>
<td>0.68</td>
<td>5.64</td>
<td>5.64</td>
<td>2.06</td>
<td>753</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>0.97</td>
<td>2.50</td>
<td>1.77</td>
<td>1.77</td>
<td>1.05</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.51</td>
<td>2.96</td>
<td>3.21</td>
<td>3.21</td>
<td>1.41</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1.97</td>
<td>3.02</td>
<td>3.40</td>
<td>3.40</td>
<td>1.45</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2.53</td>
<td>3.53</td>
<td>5.18</td>
<td>5.18</td>
<td>1.79</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>3.04</td>
<td>3.59</td>
<td>5.41</td>
<td>5.41</td>
<td>1.83</td>
<td>79</td>
</tr>
<tr>
<td>Propylene carbonate</td>
<td>0.99</td>
<td>5.99</td>
<td>2.36</td>
<td>2.36</td>
<td>1.29</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1.49</td>
<td>6.86</td>
<td>3.54</td>
<td>3.54</td>
<td>1.58</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>1.98</td>
<td>7.18</td>
<td>3.99</td>
<td>3.99</td>
<td>1.68</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>2.51</td>
<td>8.26</td>
<td>5.64</td>
<td>5.64</td>
<td>2.00</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>3.01</td>
<td>8.92</td>
<td>6.72</td>
<td>6.72</td>
<td>2.18</td>
<td>153</td>
</tr>
</tbody>
</table>
The reaction rate constant \(k_{\text{app}}\) for the reaction of the bicarbonate formation was estimated by the following equation [Pinisetty et al., 1956].

\[
\log(k_{\text{app}}) = 13.635 - 2895.7/T
\]

(15)

The hydroxyl ion concentration for very small amount of the \(CO_2\) loading in alkanolamine solution was estimated from the relations given by Asta et al. [1983]:

\[
[OH^-] = \frac{(K_w/C_{\text{initial}})^{1/2}}{K_p}
\]

(16)

\(K_w\) is the dissociation constant for water and its value is \(1 \times 10^{-14}\) kmol/m\(^3\) at 298 K, and \(pK_p\), where \(K_p\) is the protonation constant of MDEA, was obtained from Littel et al. [1990], and its value was 8.68.

A nitrous oxide analogy to get the solubility was used to approximate these properties in the reactive solvents in the most papers [Ko and Li, 2000; Sada et al., 1989]. But, in this study, the solubility of \(CO_2\) in MDEA solution was assumed to be equal to that in pure solvents, and measured by the pressure measuring method, which was used by measuring the pressure difference of \(CO_2\) between before and after equilibrium in gas and liquid phase similar to the procedure reported elsewhere [Kennard and Meisen, 1984]. The experimental procedure was duplicated as reported in the published research [Park et al., 2002] in detail.

The diffusivity \(D_A\) of \(CO_2\) and diffusivity \(D_B\) of MDEA in solvent were estimated by the method of Wilke [Danckwerts, 1970]. The diffusivity of MDEA in MDEA solution was obtained from the assumption that the ratio of \(D A\) to \(D B\) was equal to the ratio in solvent [Nijssing et al., 1999]. The diffusivity of \(CO_2\) in water at 25 °C was taken as \(1.95 \times 10^{-9}\) m/s [Danckwerts and Sharma, 1966]. The viscosity of solvent was measured with a Brookfield viscometer (Brookfield Eng. Lab. Inc, USA).

The liquid-side mass transfer coefficient \(k_v\) of \(CO_2\) in solvent was obtained by using the measured rate of absorption of \(CO_2\).

The values of solubility parameter [Brandrup and Immergut, 1975], viscosity of solvent, \(C_p\), \(D_A\), \(D_B\), and \(k_v\) of \(CO_2\) in solvent are listed in Table 1.

RESULTS AND DISCUSSION

To get the reaction rate constant in the reaction of \(CO_2\) with MDEA, the absorption rates of \(CO_2\) were measured according to the change of MDEA concentration in each solvent, as shown in Fig. 1.

As shown in Fig. 1, \(R_A\) increases as the MDEA concentration increases. The enhancement factor was estimated by using \(R_A\). The \(k_{\text{app}}\) at the given MDEA concentration was obtained from the measured enhancement factor and Eq. (10). The values of \(k_{\text{app}}\) and \(OH^{-}\) were estimated from Eq. (15) and (16). The \(k_{\text{app}}\) was obtained by using Eq. (9) and (14) for aqueous and non-aqueous solution, respectively. The experimental results are listed in Table 2.

As shown in Table 2, the \(k_{\text{app}}\) increases as MDEA concentration increases, and a comparison of the values of \(k_v\) and \(k_{\text{app}}\) shows that the contribution of the \(CO_2\)-OH\(^-\) reaction cannot be neglected in aqueous solution.

To obtain the reaction rate constant and reaction order, the \(k_{\text{app}}\) was plotted in logarithmic form against MDEA concentration in Fig. 2. As shown in Fig. 2, an approximately straight line can be drawn. Thus, the reaction mechanism in non-aqueous solution by the solvated alkanolamine can be presented in terms of Eq. (11). The slope and intercept of the plots in Fig. 1 and Eq. (13) yield the reaction order and \(k_v\), and these values are listed in Table 1. As shown in Table 1, the values of the slopes are almost constant as 1.0. Thus, the reaction order for MDEA can be described as the first order with respect to MDEA, and the same as the results of references [Versteeg and van Swaaij, 1988b].

To ensure the pseudo-first-order fast reaction as shown in Eq. (7), the following conditions were used [Dattarwany and Sharma, 1984]:

\[
1<<Ha<<Ei
\]

(17)

where, \(Ei\) is an enhancement factor for an instantaneous reaction and defined as follows:

\[
Ei = 1 + \left(D_A/D_B\right)^{1/2}C_{\text{in}}/C_v
\]

(18)

The calculated values of \(Ha\) and \(Ei\) are listed in Table 2. As shown in Table 2, Eq. (17) is satisfied, and then the reaction with MDEA concentration higher than 1.0-3.0 kmol/m\(^3\) can be a pseudo-first-order fast reaction regime.

The rate constants in organic reaction in a solvent generally reflect the solvent effect. Various empirical measures of the solvent effect have been proposed and correlated with the reaction rate constant [Herbrandson and Neufeld, 1966]. Of these, some measures have a linear relation to the solubility parameter of the solvent. Then using the data of \(k_v\) and solubility parameter of solvent (listed in Table 1), the logarithms of \(k_v\) were plotted against the solubility parameter of the solvent in Fig. 3.

As shown in Fig. 3, the plots satisfied a linear relationship, except one point at \(\delta=27.2\) (J/m\(^3\))\(^{1/2}\) with experimental error, between the
reaction rate constant and solubility parameter of the solvent. The solvent polarity is increased by the increase of solubility parameter of the solvent. It may be assumed that increase of stability and solvation of \(R_3NH^+CO_2SO_4^- \) due to the increase of solvent polarity makes the formation reaction of \(R_3NH^+(HSO_4) \) and \(CO_2 \) in Eq. (11) by solvation [Morrison and Boyd, 1983] easier, respectively, and then, \(k_2 \) increases as increasing the solubility parameter as shown in Fig. 3.

The comparison of observed and calculated enhancement factors in the total concentration range of 1-3 molar MDEA is shown in Fig. 4. The observed enhancement factors agreed within an error of 4.6% with the theoretical values calculated with estimates of rate constants derived from the absorption rate data under the fast reaction regime.

CONCLUSIONS

The reaction kinetics of carbon dioxide with MDEA in solvents such as methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, propylene carbonate, and water were investigated via chemical absorption technique by using a stirred tank with a plane gas-liquid interface at 298 K and 101.3 kPa. Based on the condition of the pseudo-first-order fast reaction in the \(CO_2 \) absorption, the overall pseudo-first-order reaction rate constants were determined from the kinetic data measurements. The logarithm of the rate constant for the overall second-order reaction depended linearly on the solubility parameter of the solvent. In non-aqueous solutions of MDEA, dissolved carbon dioxide is expected to react with solvated MDEA to produce an ion pair.

NOMENCLATURE

- \(C_i \): concentration of species, \([\text{kmol/m}^3]\)
- \(D_i \): diffusivity of species, \([\text{m}^2/\text{s}]\)
- \(k_{\text{app}} \): apparent reaction rate constant in reaction (9) and (14) \([1/\text{s}]\)
- \(k_o \): overall reaction rate constant in reaction (6) and (11) \([1/\text{s}]\)
- \(k_2 \): second-order reaction rate constant in reaction (5) and (12) \([1/\text{s}]\)
- \(k_L \): liquid-side mass transfer coefficient of \(CO_2 \) in absorbent \([\text{m/s}]\)

Greek Letters

- \(\beta \): enhancement factor of \(CO_2 \)
- \(\delta \): solvent parameter \([\text{J/m}^3]^{1/2}\)

Subscripts

- \(A \): \(CO_2 \)
- \(B \): MDEA
- \(i \): gas-liquid interface
- \(o \): feed

ACKNOWLEDGMENTS

This work was supported from the Basic Research Program of the Korea Science and Engineering Foundation (KOSEF) through the Applied Rheology Center (ARC) Brain Korea 21 Project.

REFERENCES

Absorption of carbon dioxide into non-aqueous solutions of N-methyl diethanolamine

H. J. Ko, M. H. Li, J. J. Kim, and K. W. Park

Korean J. Chem. Eng. (Vol. 23, No. 5)