FACILITATED TRANSPORT OF CARBON DIOXIDE THROUGH AN IMMOBILIZED LIQUID MEMBRANE OF K₂CO₃/KHCO₃ AQUEOUS SOLUTION

Sang-Wook Park*, Nam-Hwan Heo, Jeung-Seug Kim and Dong-Soo Suh

Department of Chem. Eng., Pusan National University, Pusan 609-735, Korea
*Technical Research Lab., POSCO., Pohang 790-600, Korea
(Received 19 May 1997 • accepted 28 July 1997)

Abstract — The facilitated transport of CO₂ through a hydrophilic polymeric membrane immobilized with K₂CO₃/KHCO₃ buffer solution has been investigated. The reactions of dissolved CO₂ in electrolyzed alkaline solution must consider hydration of CO₂ with water, chemical reaction of CO₂ with OH⁻ and dissociation of HCO₃⁻ into CO₃²⁻. It is necessary to simplify these reactions as a simple model, which is used to analyze the transport system. From experiments in the liquid membrane with alkaline buffer solution, it is shown that the flux of CO₂ into K₂CO₃/KHCO₃ aqueous solution can be enhanced by the presence of CO₃²⁻. A diffusion model with an overall reaction based on the film theory is proposed that predicts the experimentally observed facilitation factor with reasonable accuracy. The present model is compared with the rigorous diffusion model involving the complicated conventional chemical reactions.

Key words: Facilitated Transport, Alkaline Buffer Solution, CO₂ Film Theory Immobilized Liquid Membrane

INTRODUCTION

Separation of CO₂ is considered to be very important gas separation process [Kohl and Riesenfeld, 1985]. Recently, application of the membrane separation technique separating CO₂ has been the center of attention due to low energy consumption compared to traditional separation methods such as gas absorption and adsorption.

Membranes have been developed which make certain membrane separation processes economically and technically feasible since 1970's. Although several polymers such as silicone rubber and cellulose acetate are useful membrane materials, in general, polymer materials are not desirable as semipermeable membranes. Most polymer materials are relatively impermeable to all gases and liquids, and the separation factor of a permeate is low [Kesting and Fritzschke, 1993].

To overcome the problem of low selectivity, use of facilitated transport membrane has been proposed [Ward and Robb, 1967; LeBlanc et al., 1980]. Facilitated transport membranes containing carriers, which react reversibly and selectively with permeant species, has been attracting attention since they have much higher selectivity compared with polymer membranes without carriers [Kemenes et al., 1983].

The most common reaction occurring in the carrier facilitated transport membrane is represented as

\[A + B \rightarrow AB \]

where, A is the component being transported across the membrane, B and AB represents the active chemical carriers, and the active carrier complex, respectively.

As the governing differential equations for this system are nonlinear due to reaction kinetics, a general analytical solution is not available. Many attempts have been made to obtain approximate solution of facilitation factor which is defined as the ratio of facilitated transport flux to the flux without carriers. Olander [1960] described simultaneous mass transfer combined with an equilibrium chemical reaction. Goddard et al. [1970] analyzed the behavior of facilitated transport membrane near chemical equilibrium condition. Friedlander and Keller [1965] used a linearized form of the reaction rate expression to describe the flux of permeate with reversible chemical reaction to the simple diffusional flux. Their assumptions were based on the reaction system being near equilibrium. Ward [1970], Smith et al. [1973] and Schultz et al. [1974] presented the two limiting conditions, reaction limited and diffusion limited. Chee et al. [1986] used the concept of a reaction boundary layer approximation to explain the physical problems with assuming instantaneous reaction equilibrium at the membrane boundary.

The chemical reactions of the dissolved carbon dioxide in the alkaline solutions are complicated by reactions of CO₂ with water and hydroxide ion, and dissociation of bicarbonate ion [Ward and Robb, 1967], therefore, it is necessary to simplify these complicated reaction for the optimal design of the immobilized membrane separator.

The purpose of this work is to propose a model that can handle the governing differential equations easily by means of simplifying the complicated chemical reactions to overall chemical reaction. The system of complicated chemical reactions carried out on this study is the K₂CO₃/KHCO₃ alkaline buffer aqueous solution, where is immobilized into pores of supporting membrane. The supporting membrane is a flat
Facilitated Transport of CO₂ through an Immobilized Liquid Membrane

THEORY

The total flux of CO₂ through an alkaline solution is the sum of the flux of physically dissolved CO₂ and that of HCO₃⁻ and CO₃²⁻ ions produced from the reactions [Ward and Robb, 1967]. In the K₄CO₃/KHCO₃ buffer solution, the several reactions take place:

\begin{align*}
\text{CO}_2 + \text{H}_2\text{O} &\rightleftharpoons \text{H}^+ + \text{HCO}_3^- \\
\text{CO}_2 + \text{OH}^- &\rightleftharpoons \text{HCO}_3^- \\
\text{KHCO}_3 &\rightleftharpoons \text{K}^+ + \text{HCO}_3^- \\
\text{K}_2\text{CO}_3 &\rightleftharpoons 2\text{K}^+ + \text{CO}_3^{2-} \\
\text{H}^+ + \text{CO}_3^{2-} &\rightleftharpoons \text{HCO}_3^- \\
\text{H}_2\text{O} &\rightleftharpoons \text{H}^+ + \text{OH}^-
\end{align*}

(1) CO₂ is absorbed and dissolved at the high pressure side of the film.
(2) CO₃²⁻ obtained in aqueous solution reacts in alkaline solution to produce OH⁻ ion:

\[\text{CO}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{HCO}_3^- + \text{OH}^- \]

(3) The dissolved CO₂ reacts near the high pressure side of the liquid film:

\[\text{CO}_2 + \text{OH}^- \rightarrow \text{HCO}_3^- \]

(4) The produced HCO₃⁻ at the high pressure side is then diffused to the lower pressure side.

(5) The diffused HCO₃⁻ is dissociated at the lower pressure side:

\[\text{HCO}_3^- \rightarrow \text{OH}^- + \text{CO}_2 \]

\[\text{HCO}_3^- \rightarrow \text{H}^+ + \text{CO}_3^{2-} \]

(6) The produced CO₂ in step (5) is released and separated. The CO₃²⁻ ion in step (5) is then diffused again to the higher pressure side and the whole processes are repeated.

Therefore, CO₂, K₄CO₃, KHCO₃, HCO₃⁻, CO₃²⁻, H⁺, OH⁻ and alkali metal (M) exist in the system under consideration. At steady state, the material balance for each of the species can be expressed by the following form of equation,

\[\frac{d^2 C_i}{dx^2} = R_i \]

The rate limiting reactions from (1) through (6) which occur in the aqueous alkaline solution are as follows [Kern, 1960],

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \frac{k_{11}}{k_{12}} \text{H}^+ + \text{HCO}_3^- \]

\[\text{CO}_2 + \text{OH}^- \rightleftharpoons \frac{k_{21}}{k_{22}} \text{HCO}_3^- \]

The resulting depletion rate expression of CO₂ is

\[R_A = (k_{11} + k_{12} |\text{OH}^-|) [\text{CO}_2] - (k_{21} |\text{H}^+| + k_{22}) [\text{HCO}_3^-] \]

The dissociation of water and HCO₃⁻ are sufficiently rapid, the equilibrium may be assumed,

\[K_e = [\text{H}^+] [\text{OH}^-] \]

\[K = \frac{[\text{H}^+] [\text{CO}_3^{2-}]}{[\text{HCO}_3^-]} \]

At any point in liquid film, the condition of electrical neutrality is

\[[\text{H}^+] + [\text{M}^+] = [\text{OH}^-] + [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}] \]

Compared concentrations of H⁺ and OH⁻ with the other ion concentrations, these are negligible. The above equation can then be simplified to

\[C_A = [\text{M}^+] \equiv [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}] \]

The reaction rate equation and the mass balance of CO₂ can be derived from Eqs. (7) and (10) using Eqs. (11), (12) and (14):

\[\frac{d^2 C_A}{dx^2} = R_A \]

\[R_A = k_{11} C_A - \frac{2 K k_{12} C_E^2}{(C_T - C_E)} + K_k k_{32} C_A (C_T - C_E) - k_{22} C_E \]

The total material balance of carbon is

\[N_e = N_A + N_F + N_B \]

Since the concentration of metal ion in Eq. (14) is constant, the following equation can be obtained in liquid film:

\[\frac{dC_B}{dx} = \frac{1}{2} \frac{dC_E}{dx} \]

If the diffusivities of HCO₃⁻ and CO₃²⁻ are equal, then

\[N_B = \frac{1}{2} N_F \]

Substitution of Eq. (19) into Eq. (17) gives

\[D_A C_A + \frac{D_F}{2} C_E = a_1 x + a_2 \]

The governing equations can be derived in dimensionless form from Eqs. (15) and (20);
\[
\begin{align*}
\frac{d^2\alpha}{dt^2} &= m_1 \alpha - m_2 \beta^2 + m_3 \alpha (1 - \beta) - m_4 \beta \\
\alpha + p\beta &= a'_1 \eta + a'_2 \\
&\text{where } \alpha = \frac{C_A}{C_{A0}}, \quad \beta = \frac{C_p}{C_T}, \quad \eta = \frac{x}{L}, \\
m_1 &= \frac{k_1}{D_A}, \quad m_2 = \frac{2Kk_12C_pL^2}{C_{A0}D_A}, \\
m_3 &= \frac{k_2}{2K2C_pL^2}, \quad m_4 = \frac{k_3C_pL^2}{C_{A0}D_A}, \\
p &= \frac{D_eC_T}{2D_A C_{A0}}.
\end{align*}
\] (22a)

The boundary conditions of CO_2 are
\[
\alpha(0) = 1, \quad \alpha(1) = \alpha_i
\] (23)

Since HCO_3^- is a non-volatile species, the following boundary condition can be applied to the system:
\[
\frac{d\beta}{d\eta} \bigg|_0 = \frac{d\beta}{d\eta} \bigg|_1 = 0
\] (24)

The diffusional mass transfer rate of CO_2 at high pressure side can be derived using the film theory as follows:
\[
N_i^* = \frac{D_A}{L} \left(C_{A0} - C_{A}\right)
\] (25)

The facilitation factor of CO_2 defined as ratio of \(N_i^*\) to \(N_i\) can be expressed as following dimensionless form,
\[
\phi = \frac{d\alpha}{d\eta} \bigg|_{\eta=0,1}
\] (26)

By adding up Eqs. (2), (5) and (6), the complicated reactions of CO_2 through several steps can be simplified to an overall reaction, a forward- and a backward-reaction represented by Eq. (27).
\[
CO_2 + CO_3^- + H_2O \xrightarrow{k_1} 2HCO_3^-
\] (27)

The rate of reaction for CO_2 is
\[
R_r = k_1 C_A C_{P} - k_2 C_{E}^2
\] (28)

The following material balance of each component and boundary conditions can be derived from Eqs. (7) and (28):
\[
\begin{align*}
\frac{d^2C_A}{dx^2} &= k_1 C_A C_P - k_2 C_{E}^2 \\
\frac{d^2C_p}{dx^2} &= k_1 C_A C_P - k_2 C_{E}^2 \\
\frac{d^2C_E}{dx^2} &= -k_1 C_A C_P + k_2 C_{E}^2 \\
x &= 0, \quad C_A = C_{A0}, \quad \frac{dC_p}{dx} = \frac{dC_E}{dx} = 0 \\
x &= L, \quad C_A = C_{A}\,\text{ or } \quad \frac{dC_p}{dx} = \frac{dC_E}{dx} = 0
\end{align*}
\] (29a)

The dimensionless forms of Eqs. (29a) to (33) are

EXPERIMENTAL

Chemicals in this study were reagent grade and used without further purification. The supporting membrane was a hydrophilic microporous cellulose acetate-nitrate membrane (AAWP Type, 150 μm thick and 47 mm in diameter having an average pore size of 0.8 μm from Millipore Co.).

A schematic of the apparatus was shown in Fig. 1. The feed gas (mixture of N_2 and CO_2) and the sweep gas (N_2) were introduced through the upper and lower part of the gas permeation cell, respectively. The feed and sweep gases were humidified with distilled water to prevent the membrane drying, and their flow rates were controlled by a mass flow controller (Brooks Instrument Division Emerson Electric Co., 5850 Series).

Fig. 2 shows the detailed feature of the permeation cell. This cell was divided into up and downstream chamber by the microporous membrane and the perforated stainless steel plate (thickness of 0.2 cm). The permeation cell was sealed by a set of silicone rubber O-rings. The volume of up and downstream chambers are same, 4.4 cm³, and diameter of the cir-

Figure 1. Schematic diagram of experimental apparatus.

- a. gas permeation cell
- b. mass flow controller
- c. CO_2 cylinder
- d. N_2 cylinder
- e. air chamber
- f. rotameter
- g. saturation bottles
- h. soap film meter
- i. gas chromatography
cular membrane exposed to gases is 4.4 cm.

The supporting membrane was immobilized with K$_2$CO$_3$ / KHCO$_3$ buffer solution.

The feed and sweep gases were analyzed by gas chromatography (Shimadzu TCD GC-8A) with an auto gas sampler and integrator (Shimadzu C-R6A Chromatopac). A Porapak Q (80/100 mesh) column was used for analyzing the permeated species in the gas streams. The diameter of stainless column was 1/8 inch and length of 6 feet. Temperatures of the oven and the injection port were 70 and 130 °C, respectively. The flow rate of carrier gas (He) was 20 cm3/min.

The mass transport rates of CO$_2$ through the liquid film was determined by measuring the concentrations of CO$_2$ in inlet and outlet of the chambers at the steady state without change of outlet concentration of CO$_2$.

Experiments were carried out at 25 °C and 1 atm. The pressure of downstream chamber was regulated to 560 mmHg by a vacuum pump while the partial pressure of CO$_2$ in the upstream chamber was fixed at 0.2 atm. The concentration of K$_2$CO$_3$ in K$_2$CO$_3$/KHCO$_3$ solution was ranging from 0-0.5 mol/l. The buffer ratios, the concentration ratio of CO$_2$ to HCO$_3^-$, were varied at 1, 5, and 10, by adding KHCO$_3$ to K$_2$CO$_3$ aqueous solution to maintain the buffer ratio according to the following reaction,

$$K_a \quad \text{CO}_3^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{OH}^- \quad (39)$$

The equilibrium constant (K_a) for reaction (39) at 25 °C is 2.15×10^{-4} mol/l [Danckwerts and Sharma, 1966].

RESULTS AND DISCUSSION

1. Measurements and Estimations of Physical Properties

To determine the mass transfer rate of CO$_2$ experimentally and theoretically, we have founded the physical properties of diffusivity, solubility and chemical reaction constants which are affected by the ionic strength of K$_2$CO$_3$/KHCO$_3$ buffer solution and the concentrations of HCO$_3^-$, CO$_3^{2-}$ and OH$^-$. 1-1. Solubility of CO$_2$

The solubility of CO$_2$ in the dilute electrolyte solutions at 25 °C and 1 atm can be estimated by the method of van Krevelen and Hofijzer [Danckwerts, 1970].

$$\log \left(\frac{H}{H^*} \right) = hl \quad (40)$$

where H^* is the Henry constant in water given in the literature [Danckwerts, 1970], h is the salting-out parameter referring to the species of ions present in electrolyte solution and to the species of gas. I is the ionic strength of the solution defined by

$$I = \frac{1}{2} \sum_{i=1}^{n} z_i^2 \quad (41)$$

Where C_i is the concentration of component i having the valency z_i. The quantity h in Eq. (40) is the sum of contributions referring to the species of positive and negative ions and to the species of gas:

$$h = h_p + h_n + h_o \quad (42)$$

For the CO$_2$ absorption into the alkaline solution, h_p, h_n and h_o are 0.074, 0.021, -0.019 l/g-ion, respectively [Danckwerts, 1970].

1-2. Diffusivity

Diffusivity of CO$_2$ in K$_2$CO$_3$/KHCO$_3$ buffer solutions at 25 °C and 1 atm is calculated by the modified equation from the correlation of Hikita et al. [1976].

$$\frac{D_A}{D_{A0}} = 1 - (\xi_a[\text{CO}_3^{2-}] + \xi_b[\text{HCO}_3^-] + \xi_c[\text{OH}^-]) \quad (43)$$

Where ξ_a, ξ_b and ξ_c are the correlation constants having the values of 0.261, 0.140 and 0.129 l/mol, respectively. D_{A0} is diffusivity of CO$_2$ in water and has the value of 1.97×10^{-5} cm2/s [Hikita et al., 1976]. It is assumed that the ratio of diffusivity of CO$_2^-$ and HCO$_3^-$ to the diffusivity of CO$_2$ are equal to those in the infinite dilute solution. D_A/D_{A0} and D_b/D_{A0} are 0.51 and 0.56, respectively [Hikita et al., 1976].

1-3. Reaction Rate Constants

The reaction rate constant k_{11} is 0.0375 s$^{-1}$ [Kern, 1960] and k_{22} is calculated from the following equation proposed by Pintsen et al. [1956].

$$\log k_{11} = \log k_{11}^0 + 0.20 \cdot I - 0.0182 T^2 \quad (44)$$

$$\log k_{22}^0 = 13.635 - 2895/T \quad (45)$$

k_{11} and k_{22} is 5.5×10^7 l/mol·s and 2×10^{-4} s$^{-1}$ in the literature of Gibbons and Edsall [1963], respectively.

The reaction between CO$_2$ and alkaline buffer solution such as Eq. (27) falls in a slow reaction regime [Doraiswamy and Sharma, 1984]. The following equations hold for this case,

$$N_a = k_{11}A_B = k_{22}A \quad (46)$$

Eq. (46) can be solved to give

$$A* \quad N_a \quad A = \frac{k_{11} + \frac{1}{k_{22}B}}{k_{11}B_{0}} \quad (47)$$

where, B_{0} is the concentration of OH$^-$ in the alkaline buffer solution, and it can be calculated from the following equation using Eq. (39) [Danckwerts and Sharma, 1966].

$$B_{0} = K_a \frac{[\text{CO}_3^{2-}]}{[\text{HCO}_3^-]} \quad (48)$$

The forward reaction rate constant (k_1) can be obtained from the measured mass transfer rate of CO$_2$ at the given concent-
Fig. 3. Dependence of concentration of \(\text{K}_2\text{CO}_3 \) on the absorption rate of \(\text{CO}_2 \) into \(\text{K}_2\text{CO}_3/\text{KHCO}_3 \) aqueous buffer solution.

The mass transfer rates of \(\text{CO}_2 \) were measured in a flat agitator used in the previous study [Park et al., 1995] in the range of \(\text{K}_2\text{CO}_3 \) from 0.1 to 0.5 mol/l and the buffer ratio, 1, and the results are shown in Fig. 3. The plot of \(\Lambda^*N_a \) against \(\text{[HCO}_3^-]/\text{[CO}_3^{2-}] \) is a straight line from the experimental data as shown in Fig. 3. The forward reaction rate constant \((k_1) \) could be obtained from the slope of this straight line, and it is \(4.9 \times 10^{-8} \) mol \(\cdot \) s at 25 °C. The equilibrium constant Eq. (27) were \(7.7 \times 10^7 \) at 25 °C from the literature [Ward and Robb, 1967].

The backward reaction rate constant \((k_3) \) was calculated as \(6.4 \times 10^{-4} \) mol \(\cdot \) s from \(k_1 \) and the equilibrium constant.

1-4. Measurement of Tortuosity of Liquid Membrane

To measure the tortuosity of hydrophilic microporous membrane, the flux of \(\text{CO}_2 \) through the membrane immobilized with water was measured with the changes of the partial pressure of \(\text{CO}_2 \) at inlet of high pressure side in the permeation cell. The flow rates of feed and sweep gas were 40 and 20 cm\(^3\)/min, respectively. A plot of the permeation rate of \(\text{CO}_2 \) versus the partial pressure difference of \(\text{CO}_2 \) between the high and low pressure side is shown in Fig. 4. In this figure, the plots have a linear relationship with the slope of \(1.508 \times 10^{-8} \) mol/cm\(^2\) \(\cdot \) s \(\cdot \) atm. The thickness of liquid membrane is calculated by the slope obtained in Fig. 4 and Eq. (49) derived from Fick's law, and the value is 0.0457 cm. As nominal thickness of the polymer membrane used in this work is 0.015 cm, the tortuosity defined as the ratio of L to the nominal thickness is 3.05.

\[
N_a^* = \frac{D_{1,0}}{H \cdot L}, \tag{49}
\]

2. Effects of the Experimental Variables on \(\text{CO}_2 \) Permeation Rate

The mass transfer rate of \(\text{CO}_2 \) without chemical reaction should be measured to determine the facilitation factor of \(\text{CO}_2 \) in \(\text{K}_2\text{CO}_3/\text{KHCO}_3 \) buffer solution. The mass transfer rate of \(\text{CO}_2 \) was measured through the NaCl electrolyte solution having the same ionic strength as a given concentration of \(\text{K}_2\text{CO}_3/\text{KHCO}_3 \) solution. The flow rate of feed gas is 40 cm\(^3\)/min having the partial pressure of 0.2 atm. Fig. 5 shows the effect of ionic strength of the buffer solution on the permeation rate of \(\text{CO}_2 \) when buffer ratio was 1. The ionic strength corresponding to the buffer solution was adjusted by NaCl solution. In this figure, the calculated values from Eq. (25) were also plotted as solid line. The solubility of \(\text{CO}_2 \) was decreased with the ionic strength of solution, then the value of \(N_a^* \) is decreased with increasing the concentration of NaCl. The experimental results were well agreed with the calculated ones from Eq. (25).

The concentrations of \(\text{CO}_2, \text{HCO}_3^- \) and \(\text{CO}_3^{2-} \) were ob-

Fig. 4. Effect of \(\Delta P \) on the flux of \(\text{CO}_2 \) with \(\text{H}_2\text{O} \) as a carrier.

Fig. 5. Effect of ionic strength on mass transfer rate of \(\text{CO}_2 \).

September, 1997
Facilitated Transport of CO₂ through an Immobilized Liquid Membrane

Fig. 6. Dimensionless concentration profile in the immobilized K₂CO₃ aqueous solution.
(CO₂ = HCO₃⁻ = 1, [K₂CO₃] = 0.3 mol/l)

Fig. 7. Effect of carrier concentration on facilitation factor.
(--- two step reaction model, --- overall reaction model, -- fast reaction, - - slow reaction)

Obtained from numerical solutions of mass balance Eq. (21), (22) with reactions (8) and (9) (hereafter two-step reaction model), and (34)–(36) with reaction (27) (overall reaction model) by successive approximation technique.

Fig. 6 shows typical concentration profile of CO₂, CO₂⁻, and HCO₃⁻ as dimensionless forms like α, β, and γ in the membrane for the case of partial pressure of CO₂, 0.2 atm, concentration of K₂CO₃, 0.3 mol/l, and buffer ratio, 1. The solid lines represent the concentration profile calculated from the overall reaction model and the dotted lines those from two-step reaction model. These two concentration profiles are different from each other especially in the middle part of the membrane. In spite of such a large difference between the two concentration profiles, numerically obtained facilitation factor by overall reaction model, i.e., 3.78, is closed to that obtained by two-step reaction model, 3.70. This suggests that profile of the overall reaction model agrees with profile of the two-step reaction model near the feed side interface. This behavior is indeed clearly seen in the figure as can be expected from the nature of the present overall reaction model, i.e., the reaction of CO₂ in K₂CO₃/KHCO₃ buffer solution acts as the overall reaction as Eq. (27).

The facilitation factor of CO₂ was calculated numerically in the range of the concentration of K₂CO₃ from 0.1 to 0.5 mol/l. The results are shown in Fig. 7 for the buffer ratios of 1, 5 and 10. In this figure, the facilitation factor of CO₂ increases as initial concentration of K₂CO₃ increases. This is caused by the increase of OH⁻ concentration as increase of initial concentration of K₂CO₃ by Eq. (39). However, the facilitation factor of CO₂ is not affected by the buffer ratio. This result is agreed with the previous work [Hikita et al., 1976] analyzed the absorption of CO₂ as the step reactions (8) and (9) in the CO₂⁻ /HCO₃⁻ buffer solution.

Analytical solutions for two limiting cases are available. One is the diffusion-rate limited case, and the other is reaction-rate limited. If the rate of overall reaction in Eq. (27) is very fast, the reversibility of reaction exists throughout the membrane. Adding Eq. (29) to Eq. (31), the following equation is derived.

\[D_A \frac{d^2 C_A}{dx^2} + D_B \frac{d^2 C_B}{dx^2} = 0 \] (50)

The solution of Eq. (50) is

\[D_A C_A + D_B C_B = a_1^2 x + a_2^2 \] (51)

where \(a_1^2 \) and \(a_2^2 \) are constants. The overall mass transfer rate of CO₂ for the diffusion-rate limited is defined as follows.

\[N_{f,a} = -D_A \frac{dC_A}{dx} - D_B \frac{dC_B}{dx} \] (52)

Because Eq. (52) can be applied throughout the whole region of the membrane, as equilibrium state between CO₂ and HCO₃⁻, \(N_{f,a} \) is denoted as follows.

\[N_{f,a} = \frac{D_A}{L} (C_{A0} - C_{A1}) + \frac{D_B}{L} K_{eq} (C_{A0} - C_{A1}) \] (53)

In this case, the facilitation factor, \(\phi_{f,a} \), is available from Eqs. (25) and (53).

On the other hand, if the rate of overall reaction in Eq. (27) is very slow, \(C_A \) and \(C_B \) remain constant as \(C_{A1} \) and \(C_{B1} \), respectively. The analytical solution can be obtained from Eq. (29) by replacing \(C_B \) and \(C_B \) as \(C_{A1} \) and \(C_{B1} \), respectively as follows,

\[C_A = \frac{B_1}{k_1} \sinh (\sqrt{k_1/D_A} x) + \frac{B_2}{k_1} \cosh (\sqrt{k_1/D_A} x) + \frac{k_1 C_{B1}}{k_1} \] (54)

where, \(C_{B1} = \frac{k_2 (C_{A0} + C_{A1})}{2k_2} \),

\[B_1 = k_1 (C_{A1} - C_{B1}) - k_2 C_{B1} \cosh (\sqrt{k_1/D_A} L) \sinh(\sqrt{k_1/D_A} L), \quad B_2 = k_1 C_{A1} - k_2 C_{B1} \cosh (\sqrt{k_1/D_A} L) \sinh(\sqrt{k_1/D_A} L) \]

Korean J. Ch. E.(Vol. 14, No. 5)
The mass transfer rate of CO$_2$ in the case of reaction-rate limited is derived from the concentration gradient of Eq. (54) and is expressed as follows,

$$N_{\text{slow}} = -D_a \frac{B_i \sqrt{k_i/k_a}}{k_1}$$ (55)

The facilitation factor in this case of, ϕ_{slow}, can be obtained from Eqs. (25) and (55).

The facilitation factors for two limiting cases are also represented in Fig. 7 as a function of the initial concentration of K_aCO$_2$ in the liquid membrane. Comparing the facilitation factors for two limiting cases with the experimental values is shown in Fig. 7. The experimental values were closer to those of reaction-rate limited. Thus, this implies that the facilitated transport of CO$_2$ in K$_2$CO$_3$/KHCO$_3$ buffer solution can be analyzed in terms of slow reaction, and this is agreed with the previous work [Ward and Robb, 1967].

The mass transfer rates of CO$_2$ were measured in the range of feed- and sweep-gas flow rate from 10 to 40 cm3/min. Fig. 8 shows the experimental fluxes of CO$_2$ for the concentration of K$_2$CO$_3$, 0.2 mol/l and buffer ratio 1. The solid line represents the numerical value for the overall reaction model. The mass transfer rate of CO$_2$ was held constant to the change of feed-gas or sweep-gas flow rate. The effects of the pressure difference between up- and downstream on the permeation of CO$_2$ were also tested for the concentration of K$_2$CO$_3$, 0.2 mol/l and buffer ratio 1. The measured mass transfer rate of versus the pressure difference are shown in Fig. 9 in the range of the pressure of downstream from 760 to 560 mmHg with fixing total pressure and partial pressure of CO$_2$ in upstream to 1 and 0.2 atm. The solid line represents the theoretical value for overall reaction model. It is confirmed that the immobilized liquid mem-

Fig. 9. Effect of pressure difference between upstream and downstream on the flux of CO$_2$.

brane is stable because it was not affected by the flow rate and the pressure difference of gas outside the membrane, as shown in Fig. 8 and 9.

The mass transfer rates of CO$_2$ were measured in the range of partial pressure of CO$_2$ in the feed gas from 0.1 to 0.5 atm for K$_2$CO$_3$ concentration, 0.3 mol/l, buffer ratio, 1, and flow rate of upstream, 40 cm3/min, and is shown in Fig. 10.

The solid line represents the numerical value for the overall reaction model. As shown in Fig. 10, the fluxes of CO$_2$ increased as the partial pressure of CO$_2$ increased. This is due to the increase of solubility of CO$_2$ by the increase of

Fig. 10. Effect of P_{CO_2} on the flux of CO$_2$ in upstream.

(\cdots numerical value).
Facilitated Transport of CO$_2$ through an Immobilized Liquid Membrane

partial pressure of CO$_2$, but it was noted that some deviation between the experimental and the numerical values occurred above 0.3 atm of partial pressure of CO$_2$. This is because the estimation method such as Eq. (40) used in this study for the solubility of CO$_2$ can be valid only in the case of the dilute electrolyte solution.

CONCLUSION

The mass transfer rates of CO$_2$ through the reactive liquid membrane supported with a hydrophilic microporous polymeric membrane immobilized with aqueous K$_2$CO$_3$/KHCO$_3$ buffer solution were measured at an atmospheric pressure and room temperature by varying the flowrates of CO$_2$ from 10 to 40 cm3/min, the concentration of K$_2$CO$_3$ from 0 to 0.5 mol/l and buffer ratio of 1, 5, 10.

The mass transfer rate of CO$_2$ through the buffer solution is analyzed from a diffusion model with simplifying the reaction of CO$_2$ as an overall reaction. Reaction is first order respect to CO$_2$ and CO$_2$ in forward reaction and 2nd-order with HCO$_3^-$ in backward reaction. Comparing this to the conventional diffusion model including the hydration reaction with CO$_2$ and the reaction of CO$_2$ with OH$^-$ ion, it can be used for the analysis of the facilitated transport of CO$_2$ through the buffer solution. The measured flux of CO$_2$ was close to the numerical value based on the overall reaction model.

The measured mass transfer rates of CO$_2$ were increased as K$_2$CO$_3$ concentration and partial pressure of CO$_2$ increased, respectively, and held constant to the change of the buffer ratio. The reaction of CO$_2$ in buffer solution was found to fall within the slow reaction region. The stability of liquid membrane immobilized within the microporous polymeric support was confirmed by the experimental results without significant changes of gas flowrate and pressure.

ACKNOWLEDGEMENT

This paper was supported by special fund for UNIVERSITY RESEARCH INSTITUTE, Korea Research Education.

NOMENCLATURE

|α, β, γ| dimensionless concentration of CO$_2$, CO$_2^+$ and HCO$_3^-$, respectively
|\(\eta\) | dimensionless distance
|\(\zeta\) | correlation constant of i component [l/mol]
|\(\phi\) | facilitation factor

REFERENCES

