Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method

Jo Hee Yoon and Bong Gill Choi†

Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913, South Korea
(Received June 30, 2016; Revised July 11, 2016; Accepted July 11, 2016)

Abstract
In this report, polyoxometalate (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance (561 mF/cm²), a high rate capability (85%), and a good cycling performance (97% retention).

Keywords: polyoxometalate, polypyrrole, pseudocapacitor, nanocomposite, electrochemical performance

1. Introduction
Pseudocapacitors accumulate electrical charges using fast and reversible faradic redox reactions of conducting polymers and metal oxides (or hydroxides) as electrode materials[1-5]. These pseudocapacitive materials are capable of delivering higher theoretical capacitance compared to carbon-based electrode materials which are widely used electrical double layer capacitors[6,7]. For instance, hydrous ruthenium oxide-based electrodes were reported to achieve as high as specific capacitance of 1200 F/g using aqueous electrolytes[8]. Despite this remarkable performance, the relative high cost of ruthenium for the preparation of ruthenium-based electrode materials limits their widespread applications. In this regard, conducting polymers, such as polyaniline and polypyrrole, have attracted great of attention as alternative materials to conventional activated carbons because of their high theoretical capacitances, high electrical conductivity, low cost, and environmental friendliness[9-12]. Although conducting polymers provide high theoretical capacitance values, conducting polymer-based electrodes suffer from poor cyclic stability due to mechanical degradation during the doping/dedoping process over long periods of time[9-12].

To address this issue, a number of studies have been attempted, including well-controlled nanostructures of conducting polymers, hybridization with carbon materials, and development of anionic dopants[13-17]. In particular, the employment of advanced anionic dopants for polymerization of conducting polymers have influenced electrical conductivity, morphology, and redox reaction behavior during electrochemical reactions, resulting in enhanced long-term stability. Zhitomirsky et al. synthesized sulfanilic acid azochromotrop-doped polypyrrole electrode mate-

† Corresponding Author: Kangwon National University,
Department of Chemical Engineering, 346 Joongang-ro, Samcheok, Gangwon-do 25913, South Korea
Tel: +82-33-570-6545 e-mail: bgchoi@kangwon.ac.kr
pISSN: 1225-0112 eISSN: 2288-4505 @ 2016 The Korean Society of Industrial and Engineering Chemistry. All rights reserved.
2. Experimental

2.1. Materials

All chemicals were commercially available and used without further purification. Phosphomolybdic acid hydrate (H₃PMo₁₂O₄₀ ⋅ xH₂O, denoted POM) and pyrrole (98%) were obtained from Sigma-Aldrich. H₂SO₄ (95%) was purchased from Junsei Chemical Co., Ltd. The de-ionized (DI) water (18.2 MΩ cm, Millipore Milli Q water system) was used in all experiments.

2.2. Preparation of POM-Ppy/CC

The POM-Ppy/CC was prepared by an electrochemical deposition method using a chronoamperometric technique by a VersaSTAT 4 (Princeton Applied Research) potentiostat. A constant potential of +0.65 V vs. Ag/AgCl was applied for different deposition times to obtain optimized POM-Ppy/CCs. The electrolyte solution for POM-Ppy electroplating was prepared by mixing 7 mM of pyrrole monomer and 5 mM of POM dispersed in DI water. After electrodeposition, the POM-Ppy/CCs were washed several times with ethanol and DI water and then dried at 60 °C under vacuum.

2.3. Electrochemical measurements

All of electrochemical measurements, including cyclic voltammetry (CV) and galvanostatic charge/discharge, were conducted on a VersaSTAT 4 (Princeton Applied Research) using a conventional three-electrode system. The Pt wire and an Ag/AgCl electrode were used as the counter and reference electrode, respectively. The electrolyte used is a 1 M H₂SO₄ aqueous solution. In order to evaluate supercapacitor performance, CV tests were carried out at various scan rates from 10 to 100 mV/s. Galvanostatic charge/discharge measurements were made at current densities from 1 to 30 mA/cm². Cycle life performance was tested using galvanostatic charge/discharge measurements at a constant current density of 1 mA/cm² over 1000 cycles.

3. Result and Discussion

POM-Ppy/CCs were typically fabricated by co-electrochemical deposition of POM and Ppy on carbon fiber surface of CC (Inset of Figure 1). A chronoamperometric technique allowed to incorporation of POMs into Ppy during electrochemical polymerization of pyrrole monomers. Figure 1 shows a typical chronoamperometric curve for preparation of POM-Ppy/CC samples. The current decays with reaction time, which is according to the Cottrell behavior as a result of natural convection effects and coupled chemical reactions. After co-electrodeposition of POM and Ppy, black color of CC changed to dark green. The POM-Ppy/CCs shows the excellent mechanical flexibility, and after bending, twisting, or folding they retains their original state without any cracks or damage. The coating of POM-Ppy was optimized by deposition time for a chronoamperometric process (Figure 1). Scanning electron microscope (SEM) images of Figure 2 showed the coating...
전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성

Table 1. Elemental Weight Ratio of POM-Ppy/CC

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>K</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (%)</td>
<td>22.56</td>
<td>6.67</td>
<td>25.76</td>
<td>1.98</td>
<td>43.03</td>
<td></td>
</tr>
</tbody>
</table>

In order to optimize deposition time, CV measurement for POM-Ppy/CCs was performed under a three-electrode system (Figure 4). CV is a useful technique for characterizing the electrochemical and capacitive behavior; area of current density and shape of CV in anodic and cathodic directions. All CV curves showed three-redox peaks in a potential range of -0.1 to 0.9 V due to the multiple redox properties of POMs. The three reversible redox reactions are according to the following equations[28]:

\[\text{PMo}_{12}\text{O}_{40}^{3-} + 2e^- + 2H^+ \leftrightarrow \text{H}_2\text{PMo}_{12}\text{O}_{40}^{3-} \]
\[\text{H}_2\text{PMo}_{12}\text{O}_{40}^{3-} + 2e^- + 2H^+ \leftrightarrow \text{H}_4\text{PMo}_{12}\text{O}_{40}^{3-} \]
\[\text{H}_4\text{PMo}_{12}\text{O}_{40}^{3-} + 2e^- + 2H^+ \leftrightarrow \text{H}_6\text{PMo}_{12}\text{O}_{40}^{3-} \]

The areal capacitance of POM-Ppy/CCs was evaluated from the CV curves using the following equation[4]:

\[C = \frac{\text{\int i dV}}{2AV} \]

where \(i \) is the current (A), \(\text{\int i dV} \) is the integration area for the CV curves, \(v \) is the scan rate (V/s), \(A \) is the area (cm\(^2\)) of electrode, \(\Delta V \) is the potential window (V). When depositing POM and Ppy during 700 s, we obtained maximum specific capacitance of 486 mF/cm\(^2\) for POM-Ppy/CC (Figure 5). In this work, we selected deposition time of 700 s and further characterized the POM-Ppy/CC sample synthesized at deposition time of 700 s.

Figure 6a shows the CV curves of a typical POM-Ppy/CC and...
Ppy/CC electrodes in 1 M Na2SO4 aqueous electrolyte. Compared to Ppy/CC, POM-Ppy/CC obviously showed three characteristic redox peaks, which were attributed to the phosphomolybdate anion being progressively reduced/oxidized. Area of CV curve for POM-Ppy/CC was much higher than that of Ppy/CC, indicating higher specific capacitance. The CV analysis of POM-Ppy/CC was further characterized at various scan rates of 10-100 mV/s (Figure 6b). As the scan rate increased, the POM-Ppy/CC maintained reversible and redox three peaks and had increased current densities, indicating potential of high rate capability.

The charge-discharge behavior of POM-Ppy/CC was intensively characterized using a galvanostatic charge-discharge measurement. Figure 7a showed charge-discharge profiles of POM-Ppy/CC measured at different current densities in the range of 1-30 mA/cm². These curves are symmetric, but non-linear due to the redox reactions of POMs which are consistent with CV characterization. The areal capacitance (mF/cm²) was calculated from the discharge curves based on the following equation[4]:

\[C_{\text{area}} = \frac{I \Delta t}{A \Delta V} \]

where, \(I \), \(\Delta t \), \(A \), and \(\Delta V \) are the current (A), the discharge time (s), the potential window of the discharge (V), and the geometric surface area (cm²), respectively. At low current density of 1 mA/cm², the POM-Ppy/CC had a maximum areal capacitance of 561 mF/cm². This result are much better than previously reported values from the Ppy-based electrode materials[24]. As the current density was increased to 30 mA/cm², the areal capacitance of the POM-Ppy/CC decreased slightly; 561 mF/cm² (1 mA/cm²), 555 mF/cm² (2 mA/cm²), 532 mF/cm² (5 mA/cm²), 525 mF/cm² (7 mA/cm²), 506 mF/cm² (12 mA/cm²), 488 mF/cm² (20 mA/cm²), and 476 mF/cm² (30 mA/cm²), respectively. These high areal capacitance values were attributed to the combination of pseudocapacitive behavior of POM and Ppy and facilitated electron and ion transfer within 3D CC structures. These values were plotted in Figure 7b. The POM-Ppy/CC had a high level of 85% capacitance retention when increasing current densities from 1 to 30 mA/cm², indicating a high rate capability of POM-Ppy/CC.

In order to evaluate the durability of the POM-Ppy/CC, galvanostatic charge-discharge measurement was characterized at an applied constant current density of 1 mA/cm² under a three-electrode system over 1000 cycles. Figure 8 showed capacitance retention of the POM-Ppy/CC.
Figure 8. Cycling performance of POM-Ppy/CC measured at an applied constant current density of 1 mA/cm² during 1000 cycles.

during 1000 cycles. After 1000 cycles, capacitance fading was negligible; 97% capacitance retention was observed at the POM-Ppy/CC. This result indicated an excellent cycle life of the POM-Ppy/CC. The 3D CC structures effectively enhanced electron and ion transfer, and thus improved redox reactions of POM and Ppy over the long-term charge-discharge periods of time.

4. Conclusion

We prepared POM-doped Ppy-coated CC through a simple synthetic method of co-electrodeposition process and demonstrated its electrochemical behaviors in 1 M H₂SO₄ aqueous electrolyte. Coating amount of POM-Ppy was controlled by deposition times for a chronoamperometric technique; deposition time of 700 s was optimized. After optimization, the POM-Ppy/CC electrode exhibited excellent capacitive performances, such as, a high areal capacitance of 561 mF/cm² at 1 mA/cm², a high rate capability of 85% capacitance retention, and long-term cycling stability of 97% capacitance retention over 1000 cycles.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1C1A1A02036556).

References

