Sustainable Block Copolymer-based Thermoplastic Elastomers

Jihoon Shin†, Young-Wun, Kim, and Geon-Joong Kim*

Division of Convergence Chemistry, Industrial Bio-Based Materials Research Group, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea.
*Department of Chemical Engineering, Inha University, 100 Inharo, Nam-gu, Incheon, 402-751, Republic of Korea.

(Received March 19, 2014)

ABSTRACT

Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow’s sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.

Keywords: ABA triblock copolymers; renewable; controlled polymerization; thermoplastic elastomers; toughening
bio-based polymers[9-13]. Controlled/living radical polymerization such as ringopening transesterification polymerization (ROTEP), atom transfer radical polymerization (ATRP), and reversible addition - fragmentation chain transfer (RAFT) is now a powerful tool for preparing well defined block copolymers composed of immiscible segments that form self-assembling, ordered microphase-separated structures that depend on the monomer composition, the polymer molecular weights, and the segment sequence[14-16]. A variety of sustainable sources have been explored for polymers, including vegetable oils[17,18], plant sugars[19], terpenes[20], polysaccharides[21], rosins[22], and lignin[23]. Relatively few studies have focused on renewable resources for the derivation of TPEs. This article focused on lactide, renewable lactone derivatives, and bio-based acrylates from plants and vegetable oils as promising renewable monomers to produce high-performance TPEs with well-defined macromolecular architectures using precision polymerization. The aim of this review is to deliver a discussion on the definition of design strategies for renewable elastomers, and to describe recent advances in the synthesis, properties, and potential applications of these materials, especially in soft tissue engineering and drug delivery. Some of our insights on bio-based elastomers also are shared.

2. Lactide

Polylactide (PLA) is a kind of biodegradable polyester and has been used for various biomedical purposes such as sutures, fracture fixation, oral implants, and drug delivery microspheres[24]. It can be synthesized by ring-opening transesterification polymerization (ROTEP) of the cyclic dimers of lactic acid. The polymerization of the racemic d,l-lactide usually results in atactic and amorphous polymers named poly(d,l-lactide) (PLA), whereas the polymerization of L-lactide or D-lactide results in isotactic and semicrystalline polymers called poly(L-lactide) (PLLA) or poly(L-lactide) (PDLA)[25,26]. PLA often fractures at very low strains (about 3%) after stretching, as such is not suitable for use in some fields where high elasticity and ductility are required. PLA related block copolymers, especially the ABA triblock copolymers, where A is a “hard”, high T_g block, or semicrystalline PLA polymer and B is a “soft”, low T_g, or amorphous polymer, often present the properties of thermoplastic elastomers and usually possess high elasticity, appropriate biodegradability, and good biocompatibility for potential use in biomedical fields. These block copolymers are synthesized mostly by ROTEP of lactide initiated by hydroxyl-capped macromolecular monomers. Typical triblock copolymers with PLA are introduced in the following.

2.1. Poly(lactide)-poly(ethylene oxide or ethylene glycol)-poly(lactide) (PLA-PEO or PEG-PLA)

A series of PLA-PEO (or PEG)-PLA triblock copolymers, PLA-PEO (or PEG)-PLA, were synthesized by bulk ROTEP of d,l-lactide or l-lactide initiated by the hydroxyl terminal groups of PEO diol with a low toxicity stannous octoate, Sn(Oc)₈, as a catalyst at elevated temperatures[27,28]. In order to develop highly flexible biodegradable polymers, chain extension of the triblock copolymers using hexamethylene diisocyanate (HDI) at 82 °C led to high molecular weight and superior mechanical properties of the multiblock poly(ether-ester-urethane)s (Fig-
In the design of the copolymers, amorphous PEO polymers spanning from 1 to 10 kg mol\(^{-1}\) were selected to act as soft segments because of their high flexibility and allowance for fine tuning of hydrophilicity, while PLLA polymers ranging from approximately 0.2 to 3.6 kg mol\(^{-1}\) were chosen to create the hard blocks because of their stiffness and allowance for fine tuning of hydrophobicity. PEO/PLLA multi-block copolymers displaying enhanced mechanical properties generated a phase segregated microstructure, where the PEO amorphous chains acted as a molecular spring and the crystalline PLLA blocks formed strong non-covalent crosslinking domains, as determined by differential scanning calorimetry (DSC) and X-ray analyses. These highly flexible thermoplastic elastomers attained ultimate tensile strength values as high as 30 MPa and elongation at break levels well above 1000%. Furthermore, the reinforcing effect of the crystalline and hydrophobic PLLA domains enabled some of these copolymers to retain noteworthy strength (8-9 MPa), even in their fully hydrated state. The equilibrium water uptake of the elastomers rose from 120 to 460% with increasing PEO content (Figure 1a (ii)). In the design of the copolymers, amorphous PEO polymers spanning from 1 to 10 kg mol\(^{-1}\) were selected to act as soft segments because of their high flexibility and allowance for fine tuning of hydrophilicity, while PLLA polymers ranging from approximately 0.2 to 3.6 kg mol\(^{-1}\) were chosen to create the hard blocks because of their stiffness and allowance for fine tuning of hydrophobicity. PEO/PLLA multi-block copolymers displaying enhanced mechanical properties generated a phase segregated microstructure, where the PEO amorphous chains acted as a molecular spring and the crystalline PLLA blocks formed strong non-covalent crosslinking domains, as determined by differential scanning calorimetry (DSC) and X-ray analyses. These highly flexible thermoplastic elastomers attained ultimate tensile strength values as high as 30 MPa and elongation at break levels well above 1000%. Furthermore, the reinforcing effect of the crystalline and hydrophobic PLLA domains enabled some of these copolymers to retain noteworthy strength (8-9 MPa), even in their fully hydrated state. The equilibrium water uptake of the elastomers rose from 120 to 460% with increasing PEO content (Figure 1a (ii)).

2.2. Poly(l-lactide)-poly(isobutylene)-poly(l-lactide) (PLLA-PI-B-PLLA)

ROTEP of l-lactide at ambient temperature was accomplished with ditosipptum-poly(isobutylene-alcohololate) telechelic polymer (\(M_n\) \(= 7.4\) kg mol\(^{-1}\) and \(D = 1.17\)) via dehydration with potassium metal, instead of tin(II) ethylhexanoate-catalyzed ROP at high temperature, to yield a PLLA-PIB-PLLA triblock copolymer (\(M_n\) \(= 23.0\) kg mol\(^{-1}\) and \(D = 1.42\)), a partially biodegradable thermoplastic elastomer (Figure 1b). The differential scanning calorimetry measurement of the copolymer showed two glass transitions (\(T_g = -69\) °C characteristic of PIB soft segment and \(T_g = 45\) °C characteristic of PLLA hard segment, showing strong evidence of microphase separation[30].

2.3. Poly(lactide)-poly(isoprene)-poly(lactide) (PLA-PI-PLA)

PI is an amorphous polymer with low \(T_g\) and has been used to improve the properties (for example, toughening) and expand the applicability of traditionally brittle polymers such as poly(styrene). Poly(styrene)-poly(butadiene)-poly(styrene) (SBS) and poly(styrene)-poly(isoprene)-poly(styrene) (SIS) triblock copolymers are thermoplastic elastomers (TPEs) commonly used as blend compatibilizers, elastomers, asphalt modifiers, and pressure-sensitive adhesives[1]. The PI polymers have been used as soft segments to prepare PLA-PI-PLA block copolymers by the reaction of \(\alpha,\omega\)-di hydroxyl-terminated poly(isoprene) (HOP-PI-OH) (\(M_n\) \(= 4.5-72.0\) kg mol\(^{-1}\) and \(D = 1.08\)) with lactide (PLA molar mass: 1.6-12 kg mol\(^{-1}\)) at 90 °C using aluminum alkoxide (AlEt\(_3\)) as a catalyst in toluene (Figure 1c (i)) [31]. The copolymers could be fabricated in larger quantities and at higher reaction concentrations when aluminum triisopropoxide (Al(i)OPr\(_3\)) was used instead of AlEt\(_3\) [32]. The tensile strength of the copolymers increased with an increase of PLA content and the microphase alignment significantly influenced the resultant tensile properties. Three PLA-PI-PLA triblock copolymers were prepared with spherical, cylindrical, and lamellar morphologies, as confirmed by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) (Figure 1c (ii)).

2.4. Poly(1-lactide)-poly(dimethylsiloxane)-poly(1-lactide) (PLLA-PDMS-PLLA)

Various amounts of \(\alpha,\omega\)-dihydroxyl-terminated PDMS, having low \(T_g\), high permeability for oxygen and water, and biocompatibility, were incorporated in PLLA main chains by ROP at very low contents of stannous octoate (Figure 1d) [34]. It was noteworthy that the peak of the proton is shifted from 3.7 to 4.0 ppm due to the methylene group of the \(\alpha,\omega\)-hydroxylpropyl-terminated PDMS linked to the PLLA ester group via ROP [35]. The molecular weight, \(T_g\), crystallinity, and heats of fusion of the synthesized polymers decreased as the composition of PDMS in the triblock copolymer increased. The molecular weight distribution broadened as the content of the PDMS increased, due to the occurrence of both initiation and propagation mechanisms. The incorporation of PDMS in the triblock copolymer improved its thermal stability compared to that of PLLA.

2.5. Poly(1-lactide)-poly(3-hydroxybutyrate)-poly(1-lactide) (PLLA-PHB-PLLA)

A telechelic PHB[36] was synthesized by ring-opening polymerization of \([RS]-\beta\)-butyrolactone (\(\beta\)-BL) in the presence of 1,4-butenediol (BD) with 1,3-dichlorotetradubutylkistannoxane (DTD) as the catalyst. The produced polymer was found to have a syndiotactic-rich sequence with high-elastic properties (610% elongation at break). This polymer was found to be terminated by secondary hydroxyl groups, having an (oxetetramethylene)oxy group in the main chain. This telechelic \([RS]-\text{PHB}\) was subjected to block copolymerization with \(l\)-lactide by the catalysis of tin (II) octoate to synthesize a ABA triblock copolyester having elastomeric \([RS]-\text{PHB}\) as a soft segment and PLLA as a hard segment (Figure 1e). In this block copolymerization, the molecular weight and the unit composition of the produced copolymer were successfully controlled by changing the \(l\)-lactide/\([RS]-\text{PHB}\) ratio in the feed. The DSC thermograms of the produced PLLA-\([RS]-\text{PHB-PLLA}\) triblock copolymers suggested a microphase separation structure if segment crystallization was induced. The Young’s modulus of the copolymer films increased from 30 to 160 MPa with increasing PLLA composition from 44 to 69% or increasing crystallinity from 9 to 23%. In contrast, the elongation at break decreased from 200 to 86%. Furthermore, the Young’s modulus of the copolymer films was much higher than that of the syndiotactic \([RS]-\text{PHB}\) and much lower than that of the PLLA, while their tensile strength was almost identical with that of \([RS]-\text{PHB}\). From these results PLLA-[RS]-PHB-PLLA can be used as a biodegradable thermoplastic elastomer[37].

2.6. Poly(l-lactide)-poly(1,3-trimethylene carbonate)-poly(l-lactide) (PLLA-PTMC-PLLA)

PTMC is a rubbery and amorphous polymer, degrading in vivo by
PVDF isothermally crystallized at 145°C. PLLA isothermally crystallized at 125°C. Molecular structure of PLLA-PVDF-PLLA (i) and POM images (4.4:1, 16:1, 34:1, 77:1, and 97:1 for PLLA:PBT (wt:wt)) (ii). (d)

Figure 2. (a) Molecular structure of PLLA-PTMC-PLLA (i) and Young’s modulus (E) and elongation at break (e) variation as a function of the PTMC weight fraction and the molar mass in the PTMC segment of the triblock copolymers (ii). (b) Molecular structure of PLA-PTMC-PLLA, (c) Molecular structure of PLLA-PBT-PLLA (i) and polarized optical micrographs of neat PLA and the copolymers (ii). (d) Molecular structure of PLLA-PVDF-PLLA (i) and POM images (i–4) (PVDF isothermally crystallized at 145°C, PLLA isothermally crystallized at 125°C, PVDF/PLLA blend isothermally crystallized at 145°C, and PLLA-PVDF-PLLA triblock copolymer isothermally crystallized at 145°C) (ii).

surface erosion without release of acidic compounds[38]. Although several cell types have been successfully cultured on TMC-based copolymers, there is limited resistance to creep under long-term static or dynamic loading conditions in practical application. A series of PLLA-PTMC-PLLA block copolymers with PTMC as soft segments were prepared by using 1,3-trimethylene carbonate (TMC) and lactide (D-LA, or D,L-LA) (Figure 2a (i)). First, the PTMC diols (Mn = 13.8–19.5 kg mol⁻¹) were synthesized by ROETEP of TMC initiated by 1,6-hexanediol with Sn(Oct); as a catalyst at 130 °C for 72 h. The LA monomers were then added into the diols to polymerize and obtain the final copolymers (Mn = 18.9–26.6 kg mol⁻¹) including PLLA-PTMC-PLLA, PDLA-PTMC-PDLa, and PLLA-PTMC-PDLa. PDLA-PTMC-PDLa copolymer containing 35.2 mol % DLLA segments showed high tensile strength (1.8 MPa), elongation at break (880%) and a high creep rate (1.4 × 10⁻⁵ s⁻¹), but poor recovery after cyclic deformation (11.5%). Both PLLA-PTMC-PLLA copolymer containing 18 mol% lactide segments and PDLA-PTMC-PDLa copolymer containing 14 mol% lactide segments present high flexibility and elasticity with low creep rates (2.7 × 10⁻⁶ and 2.5 × 10⁻⁶ s⁻¹, respectively) and little permanent deformation in cyclic tensile testing (2.5 and 6.4% respectively) (Figure 2a (iii)). As a result, the block copolymers had good mechanical properties with low creep rates when crystalline PLA blocks of sufficient lengths were used to form the hard blocks (> 42 mol%). For tissue engineering applications, the resistance to creep of the scaffolding materials under long-term cyclic deformation of 7–10% strain is very important[39,40]. PLLA-PTMC-PLLA shows significantly less permanent deformation (0.5%) than that of PTMC specimens (3.2%), while PS-PTMC-PS completely recovers, showing no permanent deformation even after 3,000 cycles. The copolymers are attractive for tissue engineering applications allowing dynamic cell culture. It was also reported that several metallic and organic catalytic systems successfully enabled controlled copolymerization of TMC and L-LA[41]. A stepwise approach from the “immortal” ROETEP of L-LA promoted by a PTMC-(OH)₃ pre-synthesized polymer or direct sequential copolymerization of the two monomers allowed the synthesis of both diblock (PTMC-PLLA) and triblock (PLLA-PTMC-PLLA), linear or star-shaped (GLY(PTMC-PLLA)₃) copolymers.

2.7. Poly(lactide)-poly(cyclohexene carbonate)-poly(lactide) (PLA-PCHC-PLA)

The synthesis of a di-zinc catalyst (Zn(O₂CCF₃)₂), with a macrocyclic ancillary ligand and trifluoroacetate co-ligand has been reported[42]. The complex is an efficient catalyst for the copolymerization of cyclohexene oxide (CHO) and carbon dioxide (CO₂), under ambient pressures[43]. The PCHC produced is of low molecular weight (2.5–9.2 kg mol⁻¹) and a MALDI-ToF analysis shows exclusively hydroxyl end-groups. The di-hydroxyl terminated PCHC is used as a macroinitiator in the ring-opening polymerization of lactide, using an active yttrium co-initiator. Near complete conversions of the di-lactide or l-lactide (> 95%) were achieved, yielding ABA triblock copolymers (Mn = 17.3–51.0 kg mol⁻¹ and D = 1.28–1.38) including PLA-PCHC-PLA and PLLA-PCHC-PLLA (Figure 2b), as determined through an analysis of the molecular weight using SEC and ¹H NMR spectroscopy. The block nature of the copolymers was confirmed by DSC experiments, which revealed two glass transition temperatures. All the polymers showed a Tg of approximately 60 °C, corresponding to the lactide portion of the polymer[24]. In some cases, a second, low intensity Tg was observed at 80–95 °C, which corresponds to the Tg of low-weight PCHC.

2.8. Poly(l-lactide)-poly(butylene terephthalate)-poly(l-lactide) (PBLA-PBT-PLLA)

PBT is an important aromatic polyester with an acceptable crystallization rate and excellent moldability[44]. It was found that the crystallization rate of the PLLA phase in the blends of PBLA and PBT was accelerated with the addition of para-phenylene disocyanate (PDDI)[45]. In order to reveal the potential effect of the copolymers on the crystallization of PLLA, a series of PBLA-PBT-PLLA triblock copoly-
mers were synthesized via ring-opening polymerization of \(\varepsilon \)-lactide with hydroxyl-functionalized poly(butylene terephthalate) (HOPBT) as macroinitiator \((M_n = 1.6 \text{ kg} \cdot \text{mol}^{-1})\) and stannous 2-ethylhexanoate (SnOct)\(_2\) as the catalyst in 1,1,2,2-tetrachloroethane (TCE) (Figure 2c(i))\([46]\). The conversion of \(\varepsilon \)-lactide was high (92–97\%) and the PLA block in the copolymers \((M_n = 9.8 - 81.1 \text{ kg} \cdot \text{mol}^{-1})\) and \(D = 1.42 - 1.55\) showed high optical purity \((\alpha_I = ca. -160^\circ)\). DSC and WAXD results demonstrated that the two blocks of the copolymers formed the same crystal type as the respective homopolymer, i.e., PLA or PBT. The polarized light optical microscope (POM) (Figure 2c (ii)) and isothermal DSC results confirmed that these copolymers had a nucleation effect on the crystallization of PLA. Moreover, the nucleation effect depended on the composition of the copolymers. When the molecular weight of the PLLA-PBT-PLLA triblock copolymer was 1.6 kg mol\(^{-1}\) PBT midblock and 10 kg mol\(^{-1}\) PLLA endblock, the nucleation effect was optimal and even exceeded that of t alc at the same content (5 wt \%). This indicated that the spherulite diameter was effectively reduced to around 10 \(\mu\)m, corresponding with the level of t alc and, from near the PL A to PL A blend containing 5 wt % the copolymer, \(t_i\) (the induction time) was shortened from 25.20 to 9.07 min and \(t_{1/2}\) (half crystallization time) was shortened from 109.91 to 19.18 min, respectively. The copolymer, even at a very low content (5 wt \%), showed an unexpected favorable effect on the crystallization of PLA and on this basis is a potential polymeric nucleating agent for PLA.

2.9. Poly(\(\varepsilon \)-lactide)-poly(vinylidene fluoride)-poly(\(\varepsilon \)-lactide) (PLLA-PVDF-PLLA)
PVDF demonstrates outstanding thermal, chemical and mechanical stability\([47]\), and is applied in the industrial fabrication of pipes, linings, and automobiles. However, its most appealing features are the reported ferro-, pyro-, and piezoelectric properties of its \(\beta \)-crystalline phase\([48,49]\). Many techniques have been developed to increase this widely exploited \(\beta \)-polymorph in PVDF and PVDF-based materials. The incorporation of PVDF segments into block copolymers is highly attractive, since PVDF-containing block copolymers can function as potential precursors for ordered nanostructured materials with outstanding properties. Double-crystalline PLLA-PVDF-PLLA triblock copolymers (Figure 2d (i)) were successfully synthesized through ring opening polymerization of \(\varepsilon \)-lactide and benzoyl peroxide initiated polymerization of vinylidene fluoride, followed by copper(I)-catalyzed azide-alkyne coupling of the functionalized PLLA and PVDF. Three triblock copolymers with different block ratios were prepared via this synthetic approach. The block copolymers were miscible in the melt, and an alternating crystalline lamellar nanostructure was formed upon crystallization from the homogeneous melt\([50]\). Two distinct crystallization temperatures were obtained due to the sequential crystallization of PVDF and PLLA. Crystallization behavior of the PLLA component depends strongly on the block composition. The crystallization temperature of the lower temperature crystallizing PLLA block increased considerably with respect to its parent homopolymer for rather symmetric block copolymers (49 and 58% of PLLA), indicating a strong nucleation effect. On the other hand, asymmetric block copolymers with low PLLA content (27%) demonstrated a large decrease of crystallization temperature, due to a fractionated crystallization process. A confined crystallization mechanism for the PLLA blocks was suggested. This was indicated by the low degree of crystallization compared to the respective homopolymers, and confirmed by a microstructure analysis performed during isothermal crystallization. Contrary to PLLA, crystallization of the higher temperature crystallizing PVDF component within the block copolymer was not influenced by the block composition and similar crystallization behavior was observed with respect to PVDF homopolymers (Figure 2d (ii)).

3. Lactone
One key to increasing the breadth of PLA applicability is through the controlled incorporation of other components, in particular in the form of block copolymers\([51]\). Particularly attractive targets are ABA triblock copolymers that incorporate PLA as the end blocks. With appropriate rubbery midblocks as “soft” amorphous, low \(T_c\) polymers, such TPEs can be used in a wide variety of consumer products such as footwear, asphalt additives, and hot melt and pressure sensitive adhesives\([2]\). The six or seven membered lactones derived from petroleum or bio-based materials are very interesting compounds that can be used as monomers in the syntheses of renewable or degradable polymers, providing aliphatic polymers with \(T_g\) below -20 \(^\circ\)C. Ring-opening polymerization transesterification polymerization (ROTEP) of lactones is the most commonly employed method. The ring size of monomer lactones is an important factor in their ability to ring-open; their propensity for ring-closing reactions, however, is equally important for achieving a high-molecular-weight polymer. The ideal ROTEP should exhibit a low depolymerization rate (a high equilibrium monomer concentration) and a high polymerization rate.

In searching for new lactones that enhance ductility for PLA, two critical aspects in addition to the flexibility of poly(lactone) are the reactivity of the individual lactone and copolymer segmental miscibility. If the reactivity of a lactone with PLA is low or if the addition is performed in sequence, blocky structures will be produced. If the resultant blocks also are immiscible, phase separation into harder and softer domains will occur. Harder PLA domains can subsequently act as physical cross-linking sites and result in a material with enhanced ductility\([52]\). Typical PLA related ABA triblock copolymers containing polyester from lactones as soft middle block are introduced in the following.

3.1. Poly(\(\varepsilon \)-lactide)-poly(1,5-dioxepan-2-one)-poly(\(\varepsilon \)-lactide) (PLLA-PDOX-PLLA)
A new family of ABA block copolymers (PLLA-PDOX-PLLA) containing PDOX (B) and PLLA (A) blocks has been synthesized (Figure 3a)\([53]\). The polymerization procedure was based on two-step sequential addition of monomers to a controlled polymerization system. In the first step, the middle block consisting of DXO \((M_n = 43.0 - 75.8 \text{ kg} \cdot \text{mol}^{-1})\) and \(D = 1.26 - 1.36\) was polymerized through ROTEP to high monomer conversion (< 99%) using cyclic tin alkoxide 1,1,6,6-tetra-n-butyl-1,6-distamna-2,5,7,10-tetraacycloclodecane as a cyclic difunctional initiator and the reaction was performed in chloroform at 60 \(^\circ\)C. In the second step, the \(\varepsilon \)-lactide was added and subsequently poly-
sitions exhibited some degree of crystallinity. Even at the lowest L-lactide content of 7%, X-ray diffraction revealed the characteristic patterns in the solution-cast films by microphase separation. All triblock copolymers showed a \(T_g \) of roughly -33 °C, corresponding to the PLLA portion and PDOXO of the polymer, respectively\([54]\). WAXD analyses suggested that all the polymer compositions exhibited some degree of crystallinity. Even at the lowest l-lactide content of 7%, X-ray diffraction revealed the characteristic patterns of crystalline PLLA. The glass-transition temperature was only slightly affected by an increase in the amount of L-lactide although the melting temperature and the heat of fusion decreased as the l-lactide block length was reduced.

3.2. Poly(l-lactide)-poly(capro lactone)-poly(l-lactide) (PLLA-PLC-PLLA)

Biodegradable poly(ester-urethane) multiblock copolymers were prepared by using a chain-extended PLLA-PLC-PLLA block copolymer and 1,6-hexamethylene diisocyanate (HDI) as an extender\([55]\). The PLLA-PCL-PLLA triblock copolymers (Figure 3b) were first synthesized by ROP of l-lactide initiated by PCL diols \((M_n = 2 \text{ kg mol}^{-1} \text{ and } D = 1.15 - 1.20) \) with Sn(Oct)\(_2\) as a catalyst at 145 °C for 1 h, and subsequently extended by using 1,6-HDI at 82 °C for 3 h under a nitrogen atmosphere to obtain chain-extended PLLA-PCL-PLLA block copolymers \((M_n \text{ SEC } = 89 - 124 \text{ kg mol}^{-1} \text{ and } D = 1.5 - 1.8) \). As the molecular weight of the PLLA blocks increased from 0.6 to 6 kg mol\(^{-1}\), the chain-extended copolymers became increasingly stiffer, accompanying an increase in the modulus and a decrease in elongation at break. When the molecular weight of and the PCL and PLLA blocks was 2 kg mol\(^{-1}\) and 2 kg mol\(^{-1}\), respectively, the initial molecular weight \((190 \text{ kg mol}^{-1}) \) of the chain-extended copolymers decreased to 83, 48, and 9.5 kg mol\(^{-1}\) after 1, 3, and 6 months, respectively, of in vitro degradation. The produced multiblock copolymers displayed enhanced mechanical properties, with ultimate tensile strength values of around 32 MPa, Young’s modulus as low as 30 MPa, and elongation at break values well above 600%. The longer the PLA block was, the slower in vitro degradation of the material proceeded, with all copolymers degrading faster than the respective homopolymers. A new biodegradable (AB)\(_n\) type of multiblock copolymer derived from PCL and PLA \((M_n = 5 \text{ kg mol}^{-1}) \) was prepared via a chain extending reaction among PCL oligomers, PLA oligomers and HDI\([56]\). Fourier transform infrared spectra (FT-IR), \(^1\)H NMR, thermal gravity analysis (TGA) and derivative thermograms (DTG) were used to characterize the copolymers and the results showed that PCL and PLA were coupled by the reaction between \(-\text{NCO} \text{ groups and terminal} -\text{OH and} -\text{COOH groups of} \text{PCL and PLA, respectively. The material displayed enhanced mechanical properties: Young’s modulus was as low as 2.7 ± 0.7 MPa, tensile strength was as high as 26 ± 2.0 MPa, and elongation at break value was above 790% at a PCL/PLA composition of 80/20 (w/w). Moreover, according to SEM micrographs, interfacial adhesion of the composites was improved. The thermal degradation temperature of the composites was higher than that of PLA but lower than that of PCL, which is advantageous for industry processes. A series of studies are currently being performed in the laboratory, including research on the effects of the composition of the copolymer on biodegradable properties and an experiment to assess compatibility between copolymers and cells.

3.3. Poly(lactide)-poly(menthide)-poly(lactide) (PLA-PM-PLA)

ABA triblock copolymers were prepared using the renewable monomers menth ide and lactide by sequential ring-opening polymerizations. Initially, hydroxy telechelic polymenth ide was synthesized by dieth ylene glycol-initiated and tin (II) ethylhexanoate-catalyzed polymerization of menth ide. The resulting \(100 \text{ kg mol}^{-1} \) poly mer was used as a macroinitiator for tin(II) ethylhexanoate-catalyzed ROP of d,l-lactide. Two PLA-PM-PLA triblock copolymers were prepared with 5 and 10 kg mol\(^{-1}\) PCL end blocks (Figure 3c (i))\([57]\). Transesterification between the two blocks and PLA homopolymer formation were minimized, and triblock copolymers with narrow molecular weight distributions were produced \((D = 1.07 - 1.09) \). Microphase separation in these systems was corroborated by DSC (Figure 3c (ii)), dy-
Amorphous ABA type block aliphatic polyesters can be useful as degradable and biorenewable thermoplastic elastomers[61]. Additionally, a Baeyer - Villiger protocol that uses non-chlorinated solvents with higher atom economy was developed for the synthesis of 6-methyl-ε-caprolactone (MeCL) in high yield (> 99%). These materials can be prepared by sequential ROTEP reactions and can exhibit a range of physical properties and morphologies. In this work a set of amorphous PLA-PMeCL-PLA aliphatic polyester ABA triblock copolymers (Figure 4a (i)) were prepared by consecutive controlled ROTEPs. ROTEP of neat 6-methyl-ε-caprolactone in the presence of 1,4-benzenedimethanol and tin (II) octoate afforded α,ω-hydroxyl-terminated PMeCL. High conversions of 6-methyl-ε-caprolactone (> 96%) afforded polymers with molar masses ranging from 12 to 98 kg mol⁻¹, depending on the monomer-to-initiator ratios, and with narrow, unimodal molecular weight distributions (Figure 4a (ii)). An array of PLA-PMeCL-PLA triblock copolymers with controlled molecular weights and narrow molecular weight distributions were synthesized using telechelic PMeCL samples as macroinitiators for ring-opening polymerization of D,L-lactide. The composition of the triblocks was in good agreement with the feed composition. The bulk triblock properties were investigated using DSC, SAXS, DMA, and tensile experiments. In the range of molar masses studied, the PLA Tg is lower than its homopolymer equivalent. Several triblocks adopted well-ordered microphase-separated morphologies, and both hexagonally packed cylindrical and lamellar structures were observed. The elastomeric mechanical behavior of two high molecular weight triblocks was characterized by tensile and cyclic recovery experiments (Figure 4a (iv)), an exceptional elongation (> 1800%) and tensile strength (>14 MPa) were noted (Figure 4a (iii)). The combined properties of the PLA-PMeCL-PLA triblocks are promising for engineering degradable thermoplastic elastomers and related materials.

3.5. Poly(lactide)-poly(δ-decalactone)-poly(lactide) (PLA-PDL-PLA) The bulk ROTEP of renewable δ-decalactone (DL) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene, a commercially available organo-catalyst[6-5,66], was carried out at temperatures between 7 and 110 °C (Figure 4b (i))[67]. The equilibrium monomer concentration for reactions within this temperature range was used to determine the polymerization thermodynamic parameters (ΔH_p = −17.1 ± 0.6 kJ mol⁻¹, ΔS_p = −54 ± 2 J mol⁻¹ K⁻¹)[68] for δ-decalactone. The polymerization kinetics was established and high molar mass PDL with a glass transition temperature of −51 °C was prepared. PDL samples with controlled molar mass and narrow molar mass distributions (M_w = 84 kg/mol and D = 1.27) (Figure 4b (ii)) were realized by controlling the monomer conversion (70 - 80%) and initiator concentration (Figure 4b (iii)). A high molar mass PLA-PDL-PLA triblock copolymer with a low polydispersity index (M_w = 100 kg mol⁻¹ and D = 1.40) was prepared by simple sequential addition of monomers. The product triblock exhibited two distinct glass transitions temperatures at −51 and 54 °C, corresponding to domains of PDL and PLA, consistent with microphase segregation. The low glass transition temperature of PDL makes it an attractive component for renewable triblock polymers with potential broad-based utility. Self-assembly and mechanical properties of the triblock copolymers that incorporate PDL will be actively being explored.

Figure 4. (a) Molecular structure of PLA-PMCL-PLA (i), SEC traces PLA-PMCL-PLA (12-98-12), PMCL (98), PLA-PMCL-PLA (7-12-7), and PMCL (12) (ii), representative stress-strain of PLA-PMCL-PLA (25-98-25) and (12-98-12) triblocks (iii), and reciprocating tensile and PMCL (12) (ii), representative stress-strain of PLA-PMCL-PLA (12-98-12), PLA-PMCL-PLA (7-12-7), PLA-PMCL-PLA (12-98-12), PMCL (98), PLA-PMCL-PLA (7-12-7).
monomers can be polymerized for hard segments in triblock copolymers and produced in 450 tons per year[72]. These butylrolactone-based vinyl monomers introduced in the following.

4.1. Poly(α-methylene-γ-butyrolactone)-poly(α-methylene-γ-butyrolactone) (PMBL-PBA-PMBL)

As a biobased acrylate, Tulipalin A (MBL), found in tulips, is the simplest member of butyrolactones, and is found and isolated from various plants[77]. Such natural products are renewable, environmentally friendly, biocompatible, and biodegradable. Furthermore, they may possess unique physical and biomedical properties. Because of its nearly planar five-membered ring and its exomethylene double bond, MBL is more reactive than MMA. PMBL is a rigid thermoplastic, with good durability, a relatively high refractive index (1.540), and a glass transition temperature (T_g) of 195°C[78]. A series of well-defined homopolymers as well as diblock and triblock copolymers containing middle soft PBA block and outer hard blocks of PMBL with low polydispersities and different molecular weights and compositions were synthesized by atom transfer radical polymerization (ATRP) using the aid of halogen exchange (Figure 5a (i))[79,80]. Phase separated morphologies of cylindrical (10.6 wt % of PMBL content) or spherical (6.1 wt % of PMBL content) hard block domains arranged in the soft PBA matrix were observed by AFM (Figure 5a (ii)) and SAXS.

The thermo-mechanical properties of these new materials were thoroughly characterized using a variety of techniques. DMA studies confirmed the phase separated morphology of the copolymers, revealing a very broad elastic plateau in a storage shear modulus that extends over 250°C between the glass transition temperatures of the two blocks (Figure 5a (iv)). The linear PMBL-PBA-PMBL triblock copolymers showed a relatively low elongation at break (ca. 150%) (Figure 5a (iii)) that was increased by replacing the PMBL hard blocks with less brittle PMBL-random-PMBL blocks. Due to the very high glass transition temperature and high thermal stability of PMBL, these materials could be suitable for high temperature applications. This illustrates the possibility of expanding the range of block copolymers accessible by ATRP[81,82].

4.2. Poly(α-methylene-γ-butyrolactone)-poly(menthide)-poly(α-methylene-γ-butyrolactone) (PMBL-PM-PMBL)

As previously mentioned, MBL (tulipalin A) as a bio-based acrylate is a natural substance found in the common tulip *Tulipa gesneriana* L.[83]. (-)-Menthol can be extracted from the plant *Mentha arvensis*, converted to (-)-menthone, and subsequently changed into (-)-menthide as a renewable seven-membered lactone by a simple Baeyer–Villiger oxidation[84]. Renewable ABA triblock copolymers were prepared by sequential polymerization of the plant-based monomers menthide and

![Figure 5. (a) Molecular structure of PMBL-PBA-PMBL (i), AFM phase images of PMBL-PBA-PMBL triblock copolymers (12.6 wt % PMBL to left, 19.3 wt % to middle, and 36.3 wt % to right) (ii), tensile mechanical properties of triblock copolymers with PMBL (iii), and comparison of the thermo-mechanical properties of triblock copolymers with PMBL (iv). (b) Molecular structure of PMBL-PM-PMBL (i), AFM images for PMBL-PM-PML (3-100-3) (upper and left), PMBL-PM-PMBL (5-100-5) (upper and right), PMBL-PM-PMBL (9-100-9) (lower and left), and PMBL-PM-PMBL (13-100-13) (lower and left) as spun (ii), tensile recovery properties of PMBL-PM-PMBL (5-100-5) from 0 to 50% strain at 5 mm min$^{-1}$ for 20 cycles (iii), and representative stress-strain curve of PMBL-PM-PMBL (5-100-5) at elevated temperatures (iv).](image-url)
Figure 6. (a) Molecular structure of PS-P(LAc-co-SAc)-PS (i), simple elastic test of PS-P(LAc-co-SAc)-PS (ii), and a representative stress-strain curve of the triblock copolymer (SAS1-100-23) (iii). (b) Synthesis of PIC-PICI-PIC (i) and dynamic tensile storage (E'') and loss (E') moduli and tan $δ$ as a function of temperature (left) and a AFM phase image for morphologies (right) (ii). (c) Molecular structure of PLLA-PRic-PLLA (i), TGA curves of HO-PRic-OH, PLLA and the triblock copolymers (ii), and stress-strain curves of PLLA and PLLA-PRic-PLLA block copolymers (iii).

MBL[85]. RETEP of menthlide using diethylene glycol as an initiator gave $ε$, $ω$-dihydroxy poly(menthlide) (HO-PM-OH) with high molar mass, low polydispersity ($D = 1.07$), and a low glass transition temperature (T_g) of -22 °C, and this was converted to $ε$, $ω$-dibromo end-functionalized PM (Br-PM-Br) by esterification with excess 2-bromoisobutryl bromide. The resulting 100 kg mol$^{-1}$ Br-PM-Br macroinitiator[86] was used for the ATRP of MBL. Four PMBL-PM-PMBL triblock copolymers (Figure 5b (i)) containing 6-20 wt% PMBL were prepared, as determined by NMR spectroscopy. Previous studies have shown that PLA is immiscible with PMBL[87] and PM[88], and PM and PMBL were expected to be incompatible given the polar nature of PMBL and the relatively nonpolar nature of PM (Figure 5b (ii)). Elongations in excess of 1300% without failure were observed between 25-100 °C to evaluate the performance as the temperature was raised (Figure 5b (iv)). At 1,300% strain, the stress at 50 °C was comparable to that at 25 °C at all strains. However, at 75 and 100 °C, the stress values at 1300% decreased to about 75 and 47% of the 25 °C values, respectively. Nonetheless, even at 100 °C, the mechanical behavior was respectable (stress at 1300% elongation ≈ 1.0 MPa). The tensile properties at both ambient and elevated temperature show that these materials are useful candidates for high-performance (Figure 5b (iii)) and renewable thermoplastic elastomer materials.

4.3. Poly(styrene)-poly(lauryl acrylate-co-stearyl acrylate)-poly(styrene) (PS-PLA-co-PSA-PS)

Vegetable oils are an attractive source for polymers due to their low cost, abundance, annual renewability, and ease of functionalization. Stearyl and lauryl acrylate, derived from vegetable oils such as soybean, coconut, and palm kernel oil, have been polymerized through reversible addition–fragmentation chain transfer polymerization (RAFT), and were well-controlled with a linear increase of molecular weight (39-82 kg mol$^{-1}$) as a function of monomer conversion (> 85%) and relatively low values of the PDI (around 1.3) resulting in PS-P(LAc-co-SAc)-PS triblock copolymers (Figure 6a (i)) that act as TPEs (Figure 6a (ii))[89]. A copolymer of LAc and SAc has been chosen as the midblock of the triblock copolymers as these monomers offer a number of advantages, including low glass transition temperatures[90,91] and long alkyl side chains that are highly hydrophobic and provide greater resistance to degradation[92]. Varying the length of the side chain on the polycrylate midblock (C18 and C12 in stearyl and lauryl acrylate repeat units, respectively) is a convenient tool for tuning the physical properties of the triblock copolymers. PS-P(LAc-co-SAc)-PS triblock copolymers exhibit properties that are appropriate for TPE applications. SAXS and transmission electron microscopy (TEM) experiments have elucidated the microphase-separated morphology of the triblock copolymers, consistent with a spherical morphology lacking long-range order. The physical properties of the polymers can be readily tuned by varying the acrylate midblock composition, including the melting temperature, viscosity, and triblock copolymer tensile properties. Tensile testing reveals elastomeric behavior with high elongation at break (~ 200%) (Figure 6a (iii)). In all cases, the rheology data are consistent with an unentangled polymer. Therefore, it can be concluded that the PS-P(LAc-co-SAc)-PS triblock copolymers will contain P(LAc-co-SAc) midblocks that are not entangled. The unentangled matrices in the triblock copolymers result in lower tensile strengths as compared to styrenic block copolymer (SBC) TPEs. Although it may be a disadvantage for some TPE applications, many recent articles in the literature have focused on the use of polycrylates for TPEs due to their hydrophobicity and soft matrix[93]. Surprisingly, the order-disorder transition temperature of the triblock copolymer is not dependent on the acrylate composition in the midblock. This indicates that the acrylate composition can be used as a tool to manipulate the physical properties of the triblock copolymers without affecting the order-disorder transition temperature or the processing temperature of the TPEs.

4.4. Poly(itaconate)-poly(itaconimide)-poly(itaconate) (PIC-PICI-PIC)

Controlled polymerizations of various abundant renewable vinyl monomers obtained from plants to generate novel bio-based polymers have been investigated[94]. A novel thermoplastic elastomer was developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are among the most abundant renewable

acrylic monomers obtained via the fermentation of starch[95]. Reversible addition-fragmentation chain-transfer (RAFT) polymerization of itaconic acid imide, such as N-phenylitaconimide and N- (p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, were examined using a series of RAFT agents to afford well-defined polymers (Figure 6b (i)). Among the various controlled/living radical polymerization systems, RAFT is one of the most facile and versatile systems in terms of its reaction procedure, applicable monomers, and controllability. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on successful controlled/living polymerization, sequential block copolymerization was subsequently investigated using mono and di-functional RAFT agents to produce block copolymers with soft PIC and hard PICI segments. In DSC analysis, all of the block copolymers exhibited typical features of micro-phase-separated morphologies. Two transition peaks, corresponding to the T_g values of the rubbery PIC segment below ambient temperature and the hard PICI blocks above 200 $^\circ$C, were observed; however, the T_g values were slightly shifted in the low-molecular-weight block copolymer. The properties of the obtained triblock copolymer were evaluated as bio-based acrylic thermoplastic elastomers. The DMA analysis of the triblock copolymers revealed the dynamic tensile storage (E'_δ) and loss ($E''\delta$) moduli, as well as the tan δ ($= E''/E$), relative to the temperature for a typical sample of a PhII-DBI-PhII triblock copolymer (Figure 6b (ii)). The properties of the obtained tri-block copolymer were evaluated as bio-based acrylic thermoplastic elastomers.

4.5. Poly(t-lactide)-poly(ricinoleic acid)-poly(t-lactide) (PLLA-PRic-PLLA)

A set of ABA triblock PLLA-PRic-PLLA aliphatic copolyesters (Figure 6c (i)) were prepared by a two-step procedure: self polymerization of methyl ricinoleate[96], produced from castor oil, in the presence of a small amount of 1,3-propanediol leading to a α, ω-dihydroxy-telechelic poly(ricinoleic acid) (HO – PRic – OH) with a molar mass of 11 kg mol$^{-1}$, followed by ring-opening polymerization of t-lactide from the hydroxyl functions, leading to triblock copolymers with a composition ranging from 35 to 83 wt % of PLLA[97]. The block structure was confirmed by several techniques. The copolymers displayed a multi-step thermal degradation with a temperature corresponding to 5 wt % loss in a range of 175 ~ 225 ℃ (Figure 6c (ii)). DSC analyses showed that the PRic block had a moderate effect on the PLLA melting behavior. The block structure of the copolymer enabled conservation of relatively high PLLA crystallinity and melting point after annealing. However, the PLLA crystallization kinetics was rather slow for high content of soft block in the copolymer indicating a significant effect of PRic on the nucleation step. The solid-state morphology of the so-formed copolymers was highly dependent on their chemical composition, as determined from SAXS and WAXD analyses. The high degree of separation of hard and soft phases was also confirmed by a dynamic mechanical analysis, as seen from the distinct α relaxations. Finally, the tensile properties of these block copolymers ranged from thermoplastic to elastomeric depending on their composition (Figure 6c (iii)). This study verifies the feasibility of economical and environmentally friendly solutions for PLLA toughening by using castor oil derived polyesters. A forthcoming paper will address the effects of these block copolymers as compatibilizers in blends with PLA.

5. Conclusions and Perspectives

Renewable raw materials from various plants as well as carbohydrates have been used in polymer science for a long period of time. These renewable resources have proved to be useful for the synthesis of various monomers, such as lactide, lactone, and acrylate, which can be converted into block copolymers incorporating blocks of different types (i.e., polylefins, polyesters, polyethers, polyurethane, and others). In this review we discussed their use for the synthesis of ABA block architectures. The chemical and physical properties as well as molecular characteristics of the obtained polymers were discussed and compared, showing that the application possibilities of these block copolymers are manifold. Moreover, gaps in knowledge were identified and possible further developments discussed. In our opinion, the study of well-defined block polymers derived from natural sources and obtained by controlled polymerization techniques, both to address sustainability objectives and to generate superior physical and chemical properties, will achieve goals involving both large commodity and specialty materials. Finally, consideration of sustainability reveals advantages for renewable raw materials considering gross energy requirements as well as life-cycle assessments. In summary, the recent developments highlighted in this contribution clearly show that there is still a large potential for developing interesting new monomers and block polymeric materials for thermoplastic elastomers and toughened plastics.

Acknowledgements

This study was supported by the Division of Convergence Chemistry through a grant from Korea Research Institute of Chemical Technology (KK1404-A0).

References

6. J. Xu, A. Zhang, T. Zhou, X. Cao, and Z. Xie, A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer
37. S. Iki, M. Miyamoto, and Y. Kimura, Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer, Polymer., 41, 7369 (2000).

75. H. F. Wong and G. D. Brown, β-Methoxy-γ-methylene-a,β-unsaturated-γ-butyrolactones from Artabotryshexapetalus, *Phytoc-

