Thermal and Electrical Behaviors of Polyethylene Oxide/Polyaniline Fibers Prepared by Electrospinning Method

Seok Kim, Mi-Hwa Cho, and Soo-Jin Park

Advanced Materials Division, Korea Research Institute of Chemical Technology, P. O. Box 107, Yusong, Daejeon 305-600, Korea
(Received February 22, 2005; accepted December 30, 2005)

In this study, PEO blend fibers mixed with polyaniline (PANI)/10-camphor sulfonic acid (CSA) and PANI/dodecylbenzene sulfonic acid (DBSA) were electro spun to investigate the influence of PANI content. CSA and DBSA were used as a functionalized doping acid having a bulky volume. PANI/PEO blend solution was prepared by dissolving PEO and PANI doped with CSA or DBSA. The thermal properties were measured by thermogravimetric analyzer (TGA). As a result, with increasing of the PANI content in PANI/CSA and PANI/DBSA, although initial decomposition temperature (T_d) was decreased, thermal stability was increased due to the increase of thermal decomposition temperature (T_d). The electrical conductivities measured by the 4-probe method. The electric conductivity was increased with increasing of PANI content in PANI/CSA and PANI/DBSA. However, electrical conductivity did not change significantly beyond 30% content of PANI. From CV results, PANI/CSA showed the better defined peak shape and higher peak current density compared to PANI/DBSA. This was probably related to the slightly higher electrical conductivity or better morphology for easy charge transfer in the case of PANI/CSA.

Keywords: conducting polymer, electrospinning, thermal properties, electrical behaviors

1. 서 론

전기를 전도할 수 있는 성질을 가질 수 있는 것으로 알려져 있었으나 1977년에 요도가 도달된 폴리아미드산의 전도도가 10 G cm²로 급속히 뛰어난 성질을 보였다. [1]. 폴리아닐린(PANI), 폴리에틸렌(PPY), 폴리디오폰(PPT) 등의 다양한 분자체적 전도성 고분자가 존재한다고 알려져 있다[2-5].

전도성 고분자는 고분자이면서도 급속의 특성을 가진 물질로 화학, 물리 및 전자 재료로 많은 관심의 대상이 되고 있다. 특히 전자산업의 발전으로 인해 분자내의 소자개발과 결합성을 갖는 전자부품들 등의 요구가 증대되면서 다양한 분야로 응용성이 확대되고 있으며, 점의 성형된 반도체에 접촉해서부터 전극, 동력전지성분, 센서, 대전화재현장에 이르기까지 다양하게 이용되고 있다[6-10].

다음은 전도성 고분자를 병용 고분자와 비교하여 전기적 성질과 그 특성을 살펴보았다. 전극, 상관성은 우선하고 서술을 따라 비교해본 결과, 전기적 성질은 전극 사이의 van der Waals force의 영향 상호작용으로 인해 상호반응에 유발되지 않고.
용용되지 않아 고분자의 특성 분석 및 정량적 가감이 어렵다는 큰 단점이 지니고 있다. 이러한 단점을 해결하기 위해 높은 전기전도성과 안정성을 갖는 전도성 고분자와 기계적 성능이 우수한 일련 고분자와의 복합체에 관한 많은 연구가 진행 중이 있으며, 가공성은 향상시킬 수 있는 여러 가지 방법이 고려되어 왔다[11-15].

전도성 고분자 중 PANI는 전기적, 화학적 합성으로 쉽게 및 복합성에 관한 많은 연구가 진행되고 있다[16-19]. Dodycylbenzenesulfonic acid (DBSA)와 camphor sulfonic acid (CSA) 같은 금 압축을 갖는 분자형은 큰 유기적으로 도전적인 PANI-CSA/DBSA 합성의 용해도는 도판트의 용해도에 의한 전기정도와 용해도가 관계가 있다고 판단된다. 다른 경우로는 베타구조와 같은 고분자의 특성의 차이로 인하여 용해도가 차이가 날라버리며 여러 치료체로도 논의가 되어져 PANI의 기능성이 증가한다고 생각된다. PANI-CSA/DBSA 합성의 입상은 작은 온도 변화와 같은 분자화의 용해도에 의한 전기정도와 용해도의 관계에 의해 일정한 특성은 보이며 기능성은 대폭으로 전도성 복합체의 제조상성이 향상시키며 전기전도도가 증가하는 결과를 제공한다[20-23].

1994년 Macdiarmid 등은 도전적인 PANI의 전기전도도가 용해도에 의해 증가되는 현상을 용해도에 도판트의 셀의 적용에 따른 것을 기술하고, 관리적인 연구를 통해서 용해도의 변화에 따라 고분자 사슬의 형태가 결정된다. 이에 따라 용해도, 분자구조, 전도작용도와 영향을 받는다는 2차 도전의 개념으로 설명하였다. 이러한 결과는 전도성 고분자에서 용해도가 고분자의 사슬 구조에 변화 따라 도전도와 용해도간의 상호작용에 따라 영향을 받음을 의미한다[24-27].

본 실험은 전도성 고분자 PANI를 제조하여 DBSA, CSA와 같은 큰 분자량의 유전성으로 도전시켜 폴리에틸렌산화니트로(PEDOT)와 함께 PANI의 농도를 다르게 하여 전기장 운영을 제조한 후, PANI의 농도에 따른 PANI 혼합 용액을 전기장에서 섭유를 만든 후 DBSA와 CSA로 도전제 PANI의 함량 변화에 따른 전기 및 전기적 성질을 비교, 분석하였다.

2. 실험

2.1. 사료 및 시약
본 실험에 사용된 아미닐, dodycylbenzenesulfonic acid, PE0 그리고 camphor sulfonic acid 등은 Du Pont에서 구입하였으며, PANI는 아미닐의 산화성인 ammonium persulfate (APS)를 사용하여 제조하였다. PANI-섭유를 제조하기 위한 전기장 장치는 Figure 1에 나타내었다.

2.2. 유가산으로 도전된 폴리에틸닐란 제조
PANI는 0.06 M 아미닐 5 mL을 1 M HCl 300 mL에 녹인 후 초온 조용한 용해도 5℃로 용해시켜 0.06 M APS 100 mL을 천천히 도전하였다. 24h 동안 쿨링하면서 도전한 PANI 용액은 DBSA와 CSA로 도전한 후, 여과하여 건조하였다.

2.3. 전기장에서 제조된 PANI-섭유 제조
혈액으로 10 mL에 PE0 0.5g을 녹이고 CSA와 DBSA로 도전한

Figure 1. Electrospinning device.

PANI의 함량은 0, 9, 17, 30 그리고 100%로 하여 천천히 후 30 min 동안 고르게 분산시킨 다음, 인가전압은 5 mV로 조절하고, 노즐과 Al target mat 간의 거리는 25 cm으로 유지하면서 Figure 1과 같은 전기장 장치를 이용하여 PANI-섭유를 얻었다.

2.4. 염분석 실험
PANI의 함량은 0, 9, 17, 30, 100%의 CSA와 DBSA로 도전된 PANI-섭유와 PE0의 염분정성에 대해 알아보기 위해 염분석 분석기를(TGA: Du Pont, TGA-2950)을 사용하여 염분석도(initial decomposition temperature; IDT), 적분 염분석도(integral procedural decomposition temperature; IPDT), 그리고 염분정성 가속도(\(A^*\), \(K^*\) 등)에 대해 실험에 서 800℃까지 10 °C/min의 속도로 N2 분위기 하에서 분석하였다 [28,29].

2.5. 전기 전도도와 순환전류밀도 곡선(Cyclic Voltammetry; CV)

CV 측정
CSA와 DBSA로 도전된 PANI의 혼합물과 PANI-섭유의 제조도는 일반적인 4-함께법을 사용하여 마이크로 전기אני에 의해 전기장을 측정하여 Ohm's Law를 통해 전기전도도를 계산하고, 이를 통해 전기 전도도를 계산하였다.
PEO/PANI blend의 순환전류밀도 곡선(CV)를 측정하기 위해 전기 전도도와 측정 장치로 Autolab with PGSTAT 30 (Eco Chemie B.V.; Netherland)를 사용하였다. 작업전극은 금석에서 제작한 판으로 케이스를 이용하여 변환된 섭유의 인장량을 측정하서 사용하였다. 기준전극은 Ag/AgCl을 사용하였고, 상대전극은 Pt mesh를 사용하였다. 측정 전해질은 0.5 M H2SO4 수용액을 사용하였다.

3. 결과 및 고찰

3.1. PANI-섭유의 표면 및 구조적 특성
Figure 2는 CSA와 DBSA로 도전된 PANI-섭유의 SEM 사진을 200배, 2700배로 나타낸 것이다. 전기장에서의 PANI/PEO 용액은 평균지름이 1.5 μm의 섭유가 혼합 형성의 산소로 결정이 형성된 것을 관찰할 수 있다.

Figure 3은 전화PANI/CSA와 DBSA로 도전된 PANI-섭유와 PE0의 표면 미세구조를 나타낸 FT-IR 분석 결과이다. PANI-CSA와 PANI-
DBSA 9, 17, 30%는 1100 cm⁻¹ 전후에서 완만한 도핑 밴드가 관찰되었으며, 이는 광학이 증가함에 따라 피크의 강도가 증가하였다. 또한, PANI/CSA-0%와 PANI/DBSA-0%를 비교하였을 때 도핑된 후 도핑 레벨이 향상된 것을 관찰적으로 확인할 수 있었다. 뿐만 아니라 PANI의 함량이 100%인 경우에는 1497 cm⁻¹과 1578 cm⁻¹ 부근에서 PANI의 전형적인 피크를 관찰할 수 있었다.

Figure 4는 CSA와 DBSA로 도핑된 PANI-설유의 XRD 패턴을 나타낸 것으로서 전형적인 PANI의 피크를 확인할 수 있었으며, 결정성이 측정 결과 PANI의 함량이 증가함에 따라 10.7, 10.9, 16.3%로 증가하는 경향을 관찰할 수 있었다. 이와 같은 결정성의 측정은 PANI의 주사습의 순간 폐열량에 영향을 주어 PANI의 전기전도도 증가에 영향을 미치는 것으로 판단된다.

Figure 3. FT-IR spectra of PANI-CSA/PEO and PANI-DBSA/PE with PANI-CSA and PANI-DBSA weight percent of (a) 0%, (b) 9%, (c) 17%, (d) 30%, and (e) 100%.

Figure 4. XRD patterns of PANI-CSA/PEO with PANI-CSA weight percent of (a) 0%, (b) 9%, (c) 17%, (d) 30%, and (e) 100%.

3.2. PANI-설유의 전기 특성

Figure 5에 PANI를 CSA와 DBSA로 도핑한 PANI-설유와 PEO를 TGA에 의한 열분해 곡선을 나타내었으며, (a)와 (b) 모두 9, 17, 30%는 I, II, III 단계 분해 반응이 이루어졌다. 1 구간에서는 PANI에 도핑된 CSA, DBSA가 PANI로부터 분해 또는 증발되는 반응이 일어났으며,
전기방열로써 의해 제조된 불리에틸렌옥시사이드/폴리아닐는 섬유의 열전 및 전기적 경도

Figure 5. TGA curves of (a) PANI-CSA/PEO and (b) PANI-DBSA PEO as a function of PANI-CSA and PANI-DBSA contents.

Table 1. Thermal Stabilities of PANI/CSA Blend System from TGA

<table>
<thead>
<tr>
<th>Compositions</th>
<th>IDT (°C)</th>
<th>$A^* \cdot K^*$</th>
<th>$IPDT$ (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANI-CSA-0%</td>
<td>155</td>
<td>0.3281</td>
<td>279.28</td>
</tr>
<tr>
<td>PANI-CSA-9%</td>
<td>253</td>
<td>0.4841</td>
<td>400.17</td>
</tr>
<tr>
<td>PANI-CSA-17%</td>
<td>248</td>
<td>0.4993</td>
<td>411.90</td>
</tr>
<tr>
<td>PANI-CSA-30%</td>
<td>235</td>
<td>0.5286</td>
<td>424.99</td>
</tr>
<tr>
<td>PANI-CSA-100%</td>
<td>37.8</td>
<td>0.4655</td>
<td>385.78</td>
</tr>
</tbody>
</table>

PANI 100%는 PEO 없이 클로로포름만 함유하고 있으므로 반응이 시작되기 시작하면서부터 바로 분해가 일어나기 시작하였고, CSA, DBSA가 가장 많이 함유되어 있는 30% < 19% < 9%의 순서대로 증발. 분해 반응이 일어난 것으로 판단된다. 각 용기가 긴 10 구간에서 중 주로 PEO가 분해되었다고 할 수 있고, 10 구간에서는 I, II 단계에서 분해되지 않은 남은 PANI가 주로 분해되었다고 할 수 있다. 일반화

Figure 6. Conductivity of PANI-CSA/PEO and PANI-DBSA/PE as a function of PANI content.

실험 결과 전연령은 PANI의 함량이 많은 순서대로 전연령이 나타났다. 또한, 도판체가 CSA인 경우와 DBSA로 도판하였을 때 보다 분해온도가 전연적으로 높아진 것을 확인할 수 있다. 즉, CSA로 도판된 PANI와 PEO 용해가 열전 안정성이 우수하다고 판단된다.

Table 1, 2는 Figure 5으로부터 열연령계수(IDT), 열연령계수 지수 ($A^* \cdot K^*$) 그리고 적분 열연령계수($IPDT$)를 구하여 나타내었다. 여기, $IPDT$는 Doye[30]에 의해 처음 제안한 방법으로 Figure 5에 근거하여 다음 식 (1)에 의해서 구하였다.

$$IPDT(°C) = A \cdot K \cdot (T_f - T_i) + T_i$$ \hspace{1cm} (1)

여기서, A는 전연령과 온도를 고려한 평균화된 폭성 반도, K는 열연령계수 지수, T_i는 최초 실험 온도(800 °C)이며 T_f는 조기 실험 온도(25 °C)이다.

종 다른 시험에 실험하여, K는 열연령계수의 큰 영향을 주는 요인인 열연령계수를 고려한 지수로서 증가함으로써 나타나는 변하는 S_1으로 증가값 감소 전연령 예측 부분의 변하는 S_1 + S_2의 나타내는 값을 나타낸다.

Table 1, 2에서 보는 바와 같이 PANI의 함량이 증가함에 따라 $A^* \cdot K^*$, IDT 그리고 $IPDT$ 등의 모든 열연령계수 지수도 PANI의 함량이 증가함에 따라 증가함을 볼 수 있다. 그리고 PANI보다 CSA와 DBSA의 같은 매분자량의 유기실로 도판된 PANI 체계가 열전으로 더 안정함을 알 수 있다.

Figure 5에서 알 수 있듯이 PANI를 참가한 섬유에서 높은 분해로는 실험에 비해 보다 높은 온도에서 열연령계수 계산되었으며, PANI

3.3. PANI-섬유의 전기적 특성

Figure 6은 CSA와 DBSA로 도포된 PANI-섬유의 전기적 특성을 나타내었다. PANI 함량이 17%로 증가할 때 액기 전도도는 0.1 S/cm으로 증가하나, PANI의 함량이 30% 이상에서는 전기적 특성이 거의 유환상의 부가될 수 있다. PANI의 함량이 30%일 때 PEO/PANI-CSA의 경우 2.4×10⁻⁴ S/cm이고, PEO/PANI-DBSA의 경우는 1.2×10⁻² S/cm이다. 따라서, CSA를 도포함으로 인한 경우가 DBSA를 사용한 경우에는 보다 전기적 특성이 다소 높음을 알 수 있다. PANI의 함량이 17%~30%일 때 PANI의 방향구조를 잘 형성하기 위해 본작의 개선이 이루어진 전도도를 나타낸 것이다. 사용한 패턴이 다른 것으로 보이는데, PANI의 전도도가 증가함에 따라 전도도는 30% 이상에서 높아진다. 그러므로 PANI의 전도도는 PANI의 함량이 30% 이상에서 증가하게 된다.

4. 결 론

본 연구에서는 전도성 고분자 PANI에 긴 암알 사슬을 갖는 DBSA 또는 같은 분자량의 CSA와 같은 유산소족으로 도포한 PANI 섬유를 PEO 용액에 용해한 후 PEO/PANI 전기방사 방울을 제조한 후 이용한 PANI-섬유의 전기적 특성에 대하여 고찰하였다.

PANI의 함량이 30% 이상에서 PEO/PANI-섬유는 XRD 패턴에서 볼 수 있었으며, PANI 함량 증가에 따라 결정구조가 정상화하였으나 차례대로 PANI/PANI-PEO/PANI-CSA/PANI-DBSA의 전도도는 1.2×10⁻² S/cm이다. PANI의 전도도는 긴 암알 사슬이 갖는 DBSA로 인해 PANI의 전도성과 결정구조를 보다 정상화하였다.

PANI와 DBSA의 도포된 PANI 전도도는 PANI의 전도도가 PANI의 전도도에 따라 결정구조가 정상화하였으나 차례대로 PANI/PANI-PEO/PANI-CSA/PANI-DBSA의 전도도는 1.2×10⁻² S/cm이다. PANI의 전도도는 긴 암알 사슬이 갖는 DBSA로 인해 PANI의 전도성과 결정구조를 보다 정상화하였다.

PANI와 DBSA의 도포된 PANI 전도도는 PANI의 전도도가 PANI의 전도도에 따라 결정구조가 정상화하였으나차례대로 PANI/PANI-PEO/PANI-CSA/PANI-DBSA의 전도도는 1.2×10⁻² S/cm이다. PANI의 전도도는 긴 암알 사슬이 갖는 DBSA로 인해 PANI의 전도성과 결정구조를 보다 정상화하였다.

PANI와 DBSA의 도포된 PANI 전도도는 PANI의 전도도가 PANI의 전도도에 따라 결정구조가 정상화하였으나차례대로 PANI/PANI-PEO/PANI-CSA/PANI-DBSA의 전도도는 1.2×10⁻² S/cm이다. PANI의 전도도는 긴 암알 사슬이 갖는 DBSA로 인해 PANI의 전도성과 결정구조를 보다 정상화하였다.

PANI와 DBSA의 도포된 PANI 전도도는 PANI의 전도도가 PANI의 전도도에 따라 결정구조가 정상화하였으나차례대로 PANI/PANI-PEO/PANI-CSA/PANI-DBSA의 전도도는 1.2×10⁻² S/cm이다. PANI의 전도도는 긴 암알 사슬이 갖는 DBSA로 인해 PANI의 전도성과 결정구조를 보다 정상화하였다.

참고 문헌