A Study of Desulfurization Ability for CuO-Fe₂O₃ Sorbents with Various Calcination Temperatures

Hyo-Song Lee, Jeong-Soo Kim, Jin-Yong Kim, Young-Woo Rhee†, and Tae-Jin Lee*
Department of Chemical Engineering, Chungnam National University, Daejeon 305-764, Korea
*School of Chemical Engineering and Technology, Yeungnam University, Gyeongsan 712-749, Korea
(Rceived January 8, 2004; accepted June 7, 2004)

In this study we investigated desulfurization abilities using a TGA for CuO-Fe₂O₃ sorbents calcined at three different temperatures of 700 °C, 900 °C, and 1100 °C. CuO was used as the main active material; Fe₂O₃ was used as an additive material; and 25 wt% SiO₂ was used as a support material. The desulfurization reaction temperature was 500 °C and the regeneration reaction temperature was 700 °C. From the TGA experiments, the desulfurization ability of sorbent was calculated in terms of sulfur loading defined as g of sulfur absorbed per 100 g of sorbent. The sulfur loading of the sorbents calcined at 900 °C were higher than those of the sorbents calcined at 1100 °C formed the CuFe₂O₄ compound. Due to the formation of CuFe₂O₄ the CFS sorbent calcined at 1100 °C showed more than 10 g of sulfur loading per 100 g of sorbent despite of the lowered reduction potential than the other sorbent.

Keywords: desulfurization, CuO-Fe₂O₃ sorbent, calcination effect

1. 서 론

가중의 발전방식에 비해 보다 높은 효과와 환경 친화적인 장점을 갖는 석탄가스화 복합발전은 중요한 분야를 지닌 생산가스로부터 장치 보호하기 위한 탄화공장은 필수적이다. 탄화공장에 사용되는 환수제는 특히 가속전자계의 조합에 의하여 제조된 재생가능한 환수제로써 그에 대한 연구가 많이 이루어지고 있다[1-6].

Westmoreland과 Harrison은 체계적으로 28가지의 원소를 이용해 탄 환수화를 실시하였고 유연한 10가지의 원소들이 400 °C-1200 °C의 온도범위에서 환수제에 적합하다는 사실을 발전하였다[7]. Ayala 등은 350 °C-550 °C의 온도범위에서 여러 가지 금속환수화를 이용하여 모가스(L-gas, Texaco-gas) 내의 업학적 H₂S 폐화능도에 관하여 조사하였으며, 그 결과 CuO에 대한 H₂S의 폐화능도가 가장 높은 것으로 나타났다. 그러나 CuO가 금속구로 환수화되는 문제점을 나타내었으며, 환수/재생이 반복되는 장기사이클에서 탄화공장의 절착적 인 저하를 가져오는 요인이 될 수 있겠다[8]. Koyutani 등은 순수 CuO (시약용)와 CuO와 SiO₂의 물리적인 혼합물, SiO₂에 지리된 CuO, SiO₂에 묻혀진 CuO와 zealite에 지리된 환수제를 제조하여 비교하였다. 그 결과, 단순한 물리적인 혼합으로 재조한 환수제와 복잡한 방법으로 제조한 환수제의 탄화공장에 키다란 차이가 있었다[9]. Patrick 등은 CuO와 Al₂O₃로 이루어진 환수제에 대한 환수화물의 폐화능도를 알아보기 위하여 재생시험을 실시하였다. 그 결과 650 °C 이상에서 환수화물의 폐화능도가 높았으며, 700 °C에서는 구리상분의 약 8% 가량이 환수화물로 분리되거나 무 분해되며, 800 °C 이상에서 환수화물의 폐화능도가 높아져나갔다[10]. Yi 등은 SiO₂, α-alumina, zeolite를 구리계 환수제의 지리체로 사용하여 환수제를 재조한 후 환수제의 탄화공장을 조사하였으며, SiO₂를 지리체로 사용한 경우에 가장 높은 탄 환수화능이 나타났다[11]. Song 등은 구리계 환수제에 대하여 지리체 SiO₂의 최적 혼합량을 조사하였으며, SiO₂의 혼합량이 25 wt% 이상일 경우에 장기 사이클에서 구조적인 안정성을 유지할 수 있었다[12]. 최근에는 zinc ferrite와 zinc titinate 같은 수 ppm까지 H₂S의 농도를 낮출 수 있으며, 선화 분석기에서 쉽게 재조하는 환수제에 대하여 많은 연구가 이루어지고 있으나, 이들 환수제들은 장기사이클을 설정하여 연속적인 환수 및 재순공정으로 인한 환수제 반응성의 급격한 감소와 흡
소성온도에 따른 CuO-FeO\textsubscript{2} 홍수체의 반응특성 연구

<table>
<thead>
<tr>
<th>Table 1. Composition of Sorbents (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbents</td>
</tr>
<tr>
<td>CF51</td>
</tr>
<tr>
<td>CF52</td>
</tr>
<tr>
<td>CF53</td>
</tr>
</tbody>
</table>

착능의 저하를 보였다[13]. 또한 산화철 박기름을 이용한 보다 긴 홍수체의 제조에 대한 연구도 이루어지고 있다[14].

본 연구에서는 지저시 SiO\textsubscript{2}의 함량을 25 wt%로 고정하고 참가체로 사용한 FeO\textsubscript{2}의 함량을 변화시켜 홍수체 제조하였다. 그리고 제조 시에 홍수체의 소성온도 700 °C, 900 °C 그리고 1100 °C로 달리하여 소성온도의 변화에 따른 홍수체의 탈황능의 변화를 조사하고자 하였다. 이를 위해 TGA 실험을 실시하였으며, XRD 분석을 통하여 소성온도에 따른 홍수체의 특성변화를 조사하였다.

2. 실험

2.1. 탄화물의 제조

홍수체의 조성은 지저시 SiO\textsubscript{2}의 함량을 장기시기로 구성한 암장을 유지할수 있도록 25 wt%로 고정하고 [12]. 참가체 FeO\textsubscript{2}의 함량을 7.5 wt%, 15 wt% 그리고 22.5 wt%로 변화시켰으며, 제조된 홍수체들은 CFS1, CFS2 그리고 CFS3로 명명되었다. Table 1에 제조된 홍수체의 조성을 나타내었다. 홍수체는 제조방법에 의한 탈황능에 큰 차이가 나지 않는다는 점을 고려하여[9], 제조에 주요한 물리적

<table>
<thead>
<tr>
<th>Table 2. Composition of Simulated Coal Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desulfurization</td>
</tr>
<tr>
<td>H\textsubscript{2}</td>
</tr>
<tr>
<td>CO</td>
</tr>
<tr>
<td>O\textsubscript{2}</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
</tr>
<tr>
<td>N\textsubscript{2}</td>
</tr>
<tr>
<td>H\textsubscript{2}S</td>
</tr>
<tr>
<td>N\textsubscript{2}O</td>
</tr>
<tr>
<td>Balance</td>
</tr>
</tbody>
</table>

Figure 1. Schematic diagram of experimental apparatus.

2.2. 실험 절차

홍수체의 탈황능을 조사하기 위하여 TGA2050 (TA Instruments)을 이용하여 실험을 실시하였다. Figure 1은 본 실험에 사용된 실様

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

TGA 실험에 사용된 가스의 조성을 Table 2에 나타내었다. TGA를 이용한 성능시험을 위해서는 약 10 mg의 홍수체를 사용하였다. 황화

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

 화와 재생반응을 반복적으로 실시하였으며, 황화온도는 500 °C 그리고 재생온도는 700 °C로 고정하였다.

홍수체의 특성을 조사하기 위하여 XRD 분석을 하였다. XRD 분석을 통하여 홍수체 제조 시의 소성온도 변화에 따른 홍수체의 특성변화

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

을 조사하였다. 소성온도에 따른 홍수체의 탈황능을 조사하였다.

3. 결과 및 고찰

CFS 홍수체에 대하여 황화온도 500 °C, 재생온도를 700 °C 하여 TGA 실험을 실시한 후 탈황능을 조사하였다. CuO계 홍수체의 경우 황화체는 Cu\textsubscript{2}와 CuS 등이 생성되며, CuS 형태의 황화체의 대부분을 차지한다[5]. FeO\textsubscript{2}계 홍수체의 경우 Fe\textsubscript{2}O\textsubscript{3}와 FeS\textsubscript{2} 등의 황화체가 보이되지 않으며, 본 연구실에서는 FeS 형태의 황화체를 확인하였다[15-17]. 홍수체의 TGA 실험은 황화반응 이후에 재생 반응을 실시하였으며, 다시 황화반응을 실시하여 제대로 칠시 탈황능을 조사하였다. 특히 황화반응은 환원가스와 황화가

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

스 상태에서 진행되며 환원반응이 황화반응에 의해 매우 빠르게 일어난다[18]. TGA 실험에서 환원반응은 무게의 감소로, 황화반응은 무게의 증가로 나타난다. 따라서 본 연구에서는 TGA 곡선의 최저위기점과 최상위점의 무게차이로부터 홍수체의 탈황능성을 계산하였다. Figure 2, 3 그리고 Figure 4에는 CFS 홍수체의 소성온도에 따른 TGA 실험결과를 나타내었다. 홍수체 100 g당 제거한 황의 농도 Table 3에 나타내었다는데, 이는 임명 sulfur loading으로 정의되며 탈황능력을 표시하는 지수이다. 그리고 홍수체의 환원반응은 홍수체 100 g당 환원된 \(\text{SO}_2 \) 수로 정의하여 Table 4에 정리하였다.

Figure 2에 보인 바와 같이 CFS1 홍수체의 환화 및 황화촉이 온도를 나타내는 목선의 기울기는 소성온도별로 첫 번째 사이클과 두 번

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

째 사이클에 따라 시발시켜 무실수율을 알 수 있었다. 또한 소성온도에 따라 환화촉이 온도는 감소하고 있고 수 있다. 또한 Table 3에 나타난 바와 같이, 700 °C와 900 °C에서 소성된 홍수체의 탈황능을 비교한 결과 900 °C에서 소성된 홍수체가 첫 번째 및 두 번째 사이클에서 보다 높은 탈황능성을 나타

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

내었다. 특히 1100 °C에서 소성된 CFS1 홍수체의 경우 첫 번째 및 두 번째 사이클에서의 탈황능성이 서로 같은 700 °C 및 900 °C에서 소성

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

군 CFS1 홍수체와는 달리, 두 번째 황화촉이 온도보다 보다 높은 탈황능성을 나타내었다. 탈황능성은 약 14.5로서 CFS1 홍수체 중에서 가장 높은 탈황능력을 나타냈다.

Figure 3에 보인 바와 같이 CFS2 홍수체의 환환반응 총수를 나타내는 구성의 기울기는 소성온도별로 첫 번째 사이클과 두 번째 사이클이 매우 유사하게, 황화촉이 온도를 나타내는 구성의 기울기는 첫 번

1. \(\text{N}_2 \)	2. \(\text{H}_2\text{S} \)	3. \(\text{SO}_2 \)
4. Mixing gas	5. Air	6. \(\text{N}_2 \)
10. TGA	11. PC	12. Vent

째 사이클에서 늘어나는 경향을 보이다가 두 번째 사이클에서는 안정
Figure 2. TGA test result for CFS1 sorbents with various calcination temperatures.

Figure 3. TGA test result for CFS2 sorbents with various calcination temperatures.

The graph shows the weight change of the sorbents over time for different calcination temperatures. The x-axis represents time in minutes, and the y-axis represents weight percentage. The graph is divided into two cycles, with the first cycle showing a weight decrease and the second cycle showing a weight increase.

The legend indicates the different calcination temperatures: 700°C, 900°C, and 1100°C. The graph is a graphical representation of the TGA test results for CFS1 sorbents with various calcination temperatures.
Figure 4. TGA test result for CFS3 sorbents with various calcination temperatures.

Table 3. Sulfur Loading of CFS Sorbents in TGA Cycle Tests (g sulfur/100 g sorbent)

<table>
<thead>
<tr>
<th>Calcination Temperature</th>
<th>CFS1 1st cycle</th>
<th>CFS2 1st cycle</th>
<th>CFS3 1st cycle</th>
<th>CFS1 2nd cycle</th>
<th>CFS2 2nd cycle</th>
<th>CFS3 2nd cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 °C</td>
<td>12.0</td>
<td>12.2</td>
<td>11.5</td>
<td>11.6</td>
<td>10.5</td>
<td>10.8</td>
</tr>
<tr>
<td>900 °C</td>
<td>13.5</td>
<td>13.6</td>
<td>13.1</td>
<td>12.9</td>
<td>13.0</td>
<td>12.7</td>
</tr>
<tr>
<td>1100 °C</td>
<td>12.5</td>
<td>14.5</td>
<td>11.8</td>
<td>10.7</td>
<td>12.6</td>
<td>12.2</td>
</tr>
</tbody>
</table>

Table 4. The Amount of Reduction of CFS Sorbents in TGA Cycle Tests (g reduction/100 g sorbent)

<table>
<thead>
<tr>
<th>Calcination Temperature</th>
<th>CFS1 1st cycle</th>
<th>CFS2 1st cycle</th>
<th>CFS3 1st cycle</th>
<th>CFS1 2nd cycle</th>
<th>CFS2 2nd cycle</th>
<th>CFS3 2nd cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 °C</td>
<td>12.2</td>
<td>12.7</td>
<td>12.0</td>
<td>11.7</td>
<td>10.3</td>
<td>10.6</td>
</tr>
<tr>
<td>900 °C</td>
<td>13.2</td>
<td>13.3</td>
<td>11.0</td>
<td>10.7</td>
<td>10.5</td>
<td>10.0</td>
</tr>
<tr>
<td>1100 °C</td>
<td>7.3</td>
<td>13.7</td>
<td>7.5</td>
<td>10.7</td>
<td>8.1</td>
<td>11.0</td>
</tr>
</tbody>
</table>

반복 탈황반응에서 탈황성능은 약 13.0로써 CFS3 흡수제 중에서 가장 높은 탈황능력을 나타냈다.

Figure 2, Figure 3, Figure 4 그리고 Table 3에 나타난 결과로부터 CFS 흡수제의 소성온도에 따른 반응성능을 비교한 결과 다음과 같은 결과를 얻을 수 있었다. 탈황성능은 소성온도에 상관없이 1번 반복 사이클과 2번 반복 사이클에서 유사하게 나타났으며, 700 °C와 900 °C에서 소성된 흡수제의 탈황성능을 비교할 경우 900 °C에서 소성된 흡수제의 탈황성능이 높았다. 또한 1100 °C에서 소성된 CFS1, CFS2, CFS3의 경우 CFS 흡수제 중에서 가장 높은 탈황성능을 보였으며, 탈황성능은 약 14.5로 나타났다.

CFS 흡수제의 TGA 실험결과를 소성온도별로 비교하였을 경우, 가장 높은 차이를 보이는 것은 첫 번째 탈황반응에서의 CFS3 흡수제의 탈황성능을 나타내는 결과이다. Figure 2, Figure 3, Figure 4 그리고 Table 4에 나타난 바와 같이, 1100 °C에서 소성된 CFS1, CFS2, CFS3의 경우 첫 번째 탈황반응에서 서로 같은 700 °C와 900 °C에서 소성한 CFS3 흡수제의 탈황성능은 높았다. CFS1 흡수제 중에서 가장 낮은 탈황성능을 나타냈다. 또한 1100 °C에서 소성된 CFS2, CFS3 흡수제 중에서 서로 같은 700 °C와 900 °C에서 소성된 CFS2, CFS3 흡수제는 탈황성능의 차이가 미미하였다. CFS의 탈황성능은 약 7.3과 8.1로 달리 높은 탈황성능을 나타내었다. 그렇지만 Table 3에 나타난 바와 같이 1100 °C에서 소성된 CFS 흡수제의 탈황성능은 700 °C와 900 °C에서 소성된 CFS 흡수제는 달리 첫 번째 탈황반응에서 탈황성능이 차이가 큰 차이를 나타냈다. 탈황성능은 700 °C에서 소성된 CFS 흡수제의 탈황성능은 12.0에서 11.6로 약간 높았다. 이는 탈황성능의 차이가 100 °C에서 소성온도의 변화로 인하여 다른 형태의 탈황물질이 생성되었으며, 그 결과 TGA 실험에서도 다른 형태의 탈황물을 나타내는 것으로 보인다.

CFS는 탈황성능과 탈황성태소의 차이가 큰 차이를 나타났다. 위와 같이 동일한 함량비로 제조된 CFS 흡수제를 소성온도별로 비교하였으며, 1100 °C에서 소성된 CFS 흡수제는 700 °C와 900 °C에서 소성된 CFS 흡수제와 탈황성능이 차이가 큰 차이를 나타내었다. 이는 탈황성능의 차이가 1100 °C에서 소성온도의 변화로 인하여 다른 형태의 탈황물질이 생성되었으며, 그 결과 TGA 실험에서도 다른 형태의 탈황물을 나타내는 것으로 보인다.

CFS는 탈황성능과 탈황성태소의 차이가 큰 차이를 나타냈다. 위와 같이 동일한 함량비로 제조된 CFS 흡수제를 소성온도별로 비교하였으며, 1100 °C에서 소성된 CFS 흡수제는 700 °C와 900 °C에서 소성된 CFS 흡수제와 탈황성능이 차이가 큰 차이를 나타내었다. 이는 탈황성능의 차이가 1100 °C에서 소성온도의 변화로 인하여 다른 형태의 탈황물질이 생성되었으며, 그 결과 TGA 실험에서도 다른 형태의 탈황물을 나타내는 것으로 보인다.

CFS는 탈황성능과 탈황성태소의 차이가 큰 차이를 나타내었다. 위와 같이 동일한 함량비로 제조된 CFS 흡수제를 소성온도별로 비교하였으며, 1100 °C에서 소성된 CFS 흡수제는 700 °C와 900 °C에서 소성된 CFS 흡수제와 탈황성능이 차이가 큰 차이를 나타내었다. 이는 탈황성능의 차이가 1100 °C에서 소성온도의 변화로 인하여 다른 형태의 탈황물질이 생성되었으며, 그 결과 TGA 실험에서도 다른 형태의 탈황물을 나타내는 것으로 보인다.

CuFeO₂는 실제 자료에서의 존재하는 황동석(CuFe₅S₄ : chalcopyrite)의 산화물 형태로써 CuFe₅S₄의 형태의 황화물을 생성한다. CuFeO₂는 CuFe₅S₄ 형태의 황화물을 생성하기 위하여 두 개의 산소 원자가 환원반응 시에 제거되며, 두 개의 황 원자가 환원반응 시에 환원된다. 또한 흡수제의 첫 번째 환원반응 시 CuO와 FeO는 CuS 및 FeS 형태의 황화물을 생성하기 위하여 세 개의 산소 원자가 환원반응 시에 제거되며, 두 개의 황 원자가 환원반응 시에 환원된다. 따라서 결과가 동일
한 흡수제에 CuFeO$_2$ 형태의 화합물이 포함되어 있다면, 환원반응 시에 흡수제가 보다 낮은 환원력을 나타내게 된다. 또한 흡수제가 보다 낮은 환원력에서도 불구하고 높은 탄화수소를 담당할 수 있게 된다.

실험결과 CFS 흡수제의 1100 ºC 소성을 통하여 다른 형태의 화합물 (CuFeO$_2$)를 형성할 수 있었다. 특히 CFS 흡수제의 낮은 환원력에도 불구하고 높은 탄화수소를 나타내었으며, 두 번째 탄화수소에서 탄화수소는 약 14.5로 CFS 흡수제 중에서 가장 높은 탄화수소를 나타냈다. 1100 ºC에서 생성된 CFS 흡수제의 탄화수소는 주 반응 물질인 CuO 함량과 참가액으로 사용된 FeO의 함량 그리고 그 함량에 따른 CuFeO$_2$의 생성량이 간접적으로 작용하여 나타나게 되므로 보다 많은 연구가 필요하며, 가장 높은 탄화수소를 나타낸 CFS 흡수제는 장기사이클에 서의 탄화수소에 대한 연구가 수행되어야 할 것으로 사료된다.

4. 결 론

FeO를 참가액으로 사용한 CFS 흡수제들은 TGA 실험에서 10 이상의 높은 탄화수소를 나타내었다. 또한 700 ºC에서 소성된 CFS 흡수제를 비교한 결과, 900 ºC에서 소성된 CFS 흡수제들이 보다 높은 탄화수소를 나타내었다. 특히 1100 ºC에서 소성된 CFS 흡수제의 경우에는 것 반례 환원반응 시 700 ºC과 900 ºC에서 소성된 흡수제들은 달리 낮은 환원력을 보여주었다. 이는 흡수제의 XRD 분석 결과에 나타난 반비와 같이, CuFeO$_2$ 형태의 화합물을 생성하는 CuFeO$_2$ 가 존재하였기 때문이다. 즉 CFS 흡수제의 경우, 1100 ºC에서의 소성을 통하여 CuFeO$_2$ 형태의 화합물을 형성할 수 있으며, CFS 흡수제는 약 14.5의 높은 탄화수소를 보여주었다.

감 사

본 연구는 한국과학재단의 목적기초 연구사업(특정기초 연구사업: R01-2003-000-10224-0)의 일환으로 수행되었습니다.

참 고 문 헌