음용염 전해정련에서 전류밀도변화에 따른 우리늄 금속의 석출특성

강영호† · 황성찬· 안병길· 김응호· 유탕형

한국원자력연구소
(2004년 1월 7일 접수, 2004년 6월 25일 채택)

The Characteristics of Uranium Metal Deposition with Current Density in the Molten Salt Electrorefining

Young-Ho Kang†, Sung-Chan Hwang, Byung-Gil Ahn, Eung-Ho Kim, and Jae-Hyung Yoo

Korea Atomic Energy Research Institute
(Received January 7, 2004; accepted June 25, 2004)

본 연구는 음용염을 전해질로 사용하는 우리늄의 전해정련실험에서 전류밀도의 변화(30~500 mA/cm²)에 따른 금속우
라늄의 전해특성을 고찰하였다. 실험결과 음용의 전위는 전류밀도가 증가함에 따라 온의 방향으로 진행되었으며, 양
극의 전위는 이와 반대로 전류밀도 증가에 따라 양의 방향으로 증가하였다. 양극에서 금속우라늄의 용해전도와 음극
에서 석출하는 속도는 실험 범위의 인가전류밀도 내에서 2.95 g/Ah로서 거의 동일한 속도를 나타내 반면, 단위연적용
석출속도는 약 120 mA/cm²의 전류 밀도에서 가장 높았다. 음용염 내 우리늄 농도에 따른 전류 효율은 우리늄 농도가
3과 6 wt%일 경우 거의 100%인 반면, 9 wt%에서는 약 95%를 나타내었다.

In this study, experiments of uranium electrorefining in the molten salt were carried out in order to examine the characteristics of uranium metal deposition with current density in the range of 30~500 mA/cm². With increased current density, the cathode voltages were decreased toward more negative potentials (reduction) and anode voltages increased toward more positive potentials (oxidation). The anodic dissolution (oxidation) rates of uranium metal and the deposition (reduction) were approximately 2.95 g/Ah, but the deposition rate per unit area peaked at 130 mA/cm² of current density. The current efficiency, according to uranium concentration in molten salt, was nearly 100% in cases of 3 and 6 wt% of U in the molten salt; however, 95% in case of 9 wt% of U in the molten salt.

Keywords: electorefining, electrodeposition, molten salt, current density

1. 서 론

전해전해과정은 전해질로 음용염을 사용하여 전기분해에 의한 사
용 후 금속현료로부터 우라늄과 핵분연 생성물인 희토요, 알칼리,
알칼리토목 등 금속물질을 분리하고자 하는 과정이다. 전해전
누를 사용하는 점은 전도성과 원료물질에 대한 용해도가 우수해야 하
고, 효과적인 전하를 위해 원료물질의 분해전압 및 용전열의 분해전
압 보다 낮아야 할 뿐 아니라 전해에 의해 석출된 금속산물이 전해질
과 반응하지 않아야 한다. 이 같은 조건을 만족시키는 전해전은 열화
물체 전하전이 주로 사용된다[1].

음용염 전해전에서 알아내는 일인의 반응은 다음과 같이 요약된다[2].

i) 반응이 일어나는 양극의 금속표면으로의 반응화학적 이동
ii) 금속표면에서의 산화(용해)반응
iii) 산화 반응생성물의 음용암 상으로의 이동
iv) 생성된 생창소를 다시 음용암 상으로의 이동
v) 음극에서 환원(석출)반응

계에 전기를 가하면 UCl₃은 음극에서 환원되어 금속으로 석출되고 염
소이온은 양극쪽으로 이동하며 양극의 금속우라늄을 산화시키고 UCl₃
를 생산시키는 과정이 반복된다. 전기를 가한 후 양극에서 염소이온
에 의해 금속우라늄의 산화를 전기적 용해계가 한다. 전기적 용해
계에서의 반응은 반응식 (1)으로 나타낼 수 있으며,

\[U^0 \rightarrow 3e^- \rightarrow U^{4+} \] (1)

양극에서 염소이온과 금속우라늄의 접촉이 불량한 경우에는 금속
표면에서 다음의 (2)의 반응이 일어난다.

\[U^{4+} + e^- \rightarrow U^{2+} \] (2)

4가의 우리늄은 다시 반응식 (3)과 같이 3가 우리늄으로 환원되는
데 이 과정이 전류효율을 저하시키는 원인이 되기도 한다[3].

\[U^{2+} + 2e^- \rightarrow U^0 \] (3)

음용염 전해전은 금속생물을 순차적으로 분리하는 정 전입방법
과[4] 낮은 전압을 인가하여 한 금속만을 순차하게 분리해 내는 정 전
류방법으로 구분할 수 있는데, 일반적으로 사용 후 금속현료는 정
전류방법에 의해 금속우라늄을 분리하고, 후 2차적으로 조 우리늄금속
을 처리한다.

본 연구에서는 정 전류방법에 의한 전해 및 전작 특성의 고찰로서,
2. 실험장치 및 방법

본 실험에 사용된 전해실험 장치는 Figure 1에 나타낸 바와 같이 금속 원반을 담는 basket형의 양극, 금속우물류를 석출시키는 음극, 참조전극 및 교반전극로 구성되어 있다. 장치의 외부는 스테인레스강 (S31603)으로 제작하였으며 음극은 석출된 우물류 금속의 탄마를 방지하기 위해서 15 mm 동에 5 cm 높이의 pitch을 내어 사용하였으며 전해질 용액의 상하 두께를 일정하게 도입하는 체결부 및 용액 시료의 체류구멍이 swagelok 제품을 사용하였다. 실험 중 전극의 처럼을 방지하기 위해 swagelok 체결부와 전극류 사이로 알루미나 튜브를 사용하였다.

장치는 공기 및 수분의 접촉을 피하기 위하여 공기 및 수분이 약 10 ppm으로 유지되는 glove-box 내에 넣어 조립하였다. 시약은 99.9% 이상의 순도를 가진 Aldrich사의 제품을 사용하였으며, 전해 실험용 보조물을 쓰기에는 Econosolv사의 모델 Autolab, 300이었다. 전해질은 KCl-LiCl (41.8~58.2 mol%) 600 mM을 전해질 용액으로 사용하였는데, 시약은 수분 및 공기 10 ppm으로 유지되는 glove-box 내에서 취급하였다.

음극을 우물류의 농도는 음극에 CdCℓ₂를 담당하면서 맞추어 넣어 주변 다음 석에 의하여 여행우물류가 생성되었다.

\[2U + 3CdCℓ₂ = 2UCℓ₃ + 3Cd \]

식 (4)에 의하여 발생되는 카르든은 용용금속 상태가 되어 도가니 하부에 가라앉기 때문에 첨가된 반응용 액체를 투입하지 않는다.
전해심은 용량이 충분히 응용한 후 양극과 음극을 응용한 뒤 고전압전선이 거의 평활한 완료를 마치고 전압을 1200~1500 V로 응용한 후 1~2 시간 전극을 제외하였으며, 전극을 제외한 모든 제품은 석출을 완료한 후 물에 넣어 염분을 녹여내어 순수한 우물류를 얻어서, 양극에서 응용한 우물류는 전극전선에 응용한 끝을 측정하였다.
전해심 진전의 전극온도는 500 °C가 유지되게 하였으며, 고전극은 16~19 ppm으로 확인하였다[5]. 전해심 진전에는 교반전극 보조용으로 용용은으며 60 rpm의 속도로 교반하였으며 반응기 내부의 탄마를 방출하기 위하여 고온의 아르곤가스가 연속적으로 흘러온 상태로 고온화하였다.

3. 결과 및 분석

3.1. 전류밀도 및 용용량 우물류 농도에 따른 전학속도
전학적이고 정 전류 전해실험과정에서 음극에의 전학변화 및 양극의 전학변화는 Figure 2와 같이, 음극의 전위는 Figure 2(a)에서 보 수 있도록 초기에는 급격히 상승하여 시간이 경과함에 따라 임의의 전위를 나타낸다. 시간 1200~1500 sec까지의 전면응용 전위전성 대응하는 dendrite 발생에 의한 음극변의 급격한 확장에서 기인임이 다. 그 이후 전위전성의 발전은 음극에의 초기의 전위상태로 보았던 dendrite가 길이의 점프보다는 점자 chặt어지면서 음극의 급격한 변화는 일어나지 않은 것으로 생겨난다. Figure 2(b)에 나타난 양극의 전위선은 대체적으로 음극음극과 셀 전위를 유지하면서 변화하였다. 음극에의 전류밀도 변화에 대한 각 농도의 음극음극 및 양극의 전위전성은 Figure 3에 나타나 있다.
음극의 전위는 전류밀도가 증가함수록 읍의 방향으로 증가하였으며, 양극은 반대로 전류밀도 증가에 따라 전위가 양의 방향으로 증가하였는데, 두 곡선이 만나는 점에서의 전위는 0.5 V가 되어 이것은 음극의 전위가 일정하며 석출이 시작된다는 것을 의미한다. 각각의 농도에서 양극의 읍속도 및 전위전성은 Figure 4, 5에 나타난다.
전해심 산업용 전류밀도 및 Figure 5의 전배도는 100~150 mA/cm²의 범위에서 최대값을 나타내고 이 이상의 전류밀도에서는 약간 감소하는 경향을 나타내었다. 그러나 거의 모든 전류밀도 범위에서 Faraday방에 의한 우물류는 1 A/sec, 2.95 g/L 읍속 및 석출이 일어난다. 전해심 2.95 g/L 이상으로 나타나 전쇄효율이 100% 이상으로 나타나는 것은 석출물의 밀도가 상승되거나 석출물에 담아 높이 있는 일이 없게 된 것으로 판단된다.
온도변화가 거의 없는 읍용 내에서 이상의 이온은 확산과 전기영동 (migration)에 의한다. 전기장에서 이온의 이동은 \[E = \frac{\Delta m}{\Delta t} \] \[\text{시간 측정기에서 주로 측정한 석출속도는 표시한다.} \]
Figure 3. Current-potential curve obtained through experiments.

Figure 4. Anodic dissolution rate with U concentration and Current density.

\[J_a = -D \frac{\partial C_a}{\partial x} - z_a C_a \frac{F}{RT} E \] \hspace{1cm} (5)

Anodic dissolution rate, g/Ah

Figure 5. Deposition rate with U concentration and Current density.

Figure 6. Flux calculation by equation (5).

\[i_L = \frac{nF\lambda C_a}{\delta_n} \] \hspace{1cm} (6)

Figure 7. Current-time curve with U concentration and Current density.

In Figure 7, the anodic dissolution rate was increased with the increase of U concentration. This is because the dissolution rate is directly proportional to the concentration of U. Therefore, the higher the concentration of U, the faster the dissolution rate.

3.2. Electrolysis

In electrolysis, the solution containing the electrolyte is passed between two electrodes, and an electric current is applied. The electric current causes the electrolyte to split into its constituent elements, which are then deposited on the electrodes. The electrolysis process is used in various industrial applications, such as the production of metals, chemicals, and fuels.
Figure 7. Deposition rate with U concentration and Current density.

Figure 8. Current efficiency according to U concentration and current density.

Figure 9. Salt content in deposit with U concentration and Current density.

Figure 10. Microstructure of dendrite and salt concentration.

The deposition rate is shown in Figure 7, which displays the relationship between the deposition rate (g/Ah, cm²) and the current density (mA/cm²) for different U concentrations (9wt%, 6wt%, and 3wt%).

Figure 8 illustrates the current efficiency (%) in relation to U concentration and current density.

The salt content in the deposit with U concentration and current density is shown in Figure 9.

Figure 10 presents the microstructure of dendrite and salt concentration. Images (a), (b), and (c) correspond to 3wt% (salt 64.3%) and 6wt% (salt 55.3%), respectively.

4. 결 론

The results from the experiments confirm that the deposition rate increases with increased U concentration and current density. The current efficiency also shows a clear trend with U concentration and current density. Salt content in the deposit varies according to U concentration and current density, as illustrated in Figure 9.

In summary, the deposition rate, current efficiency, and salt content in the deposit are significantly influenced by the U concentration and current density. Further studies are needed to optimize these parameters for practical applications.
참고 문헌

