Life Cycle Assessment on Hydrogen Production by Direct Thermal Cracking of Natural Gas

Hye-In Park, Ik Kim, Byung Kwon Lee*, Jung Rim Haw, and Tak Hur†

School of Chemical & Biological Engineering, Konkuk University
*CFC Alternatives Research Center, Korea Institute of Science and Technology

(Received April 14, 2003; accepted July 11, 2003)

Abstract: Hydrogen has emerged as a promising energy source because of its high efficiency and applicability in various industrial sectors. In addition, hydrogen has been considered as one of the most environmentally friendly energy sources since there is almost no air emission during its usage. However, it is expected that a considerable amount of air will be emitted from the hydrogen production process. Thus, the environmental impact of a product, including energy, has to be evaluated by considering its entire life cycle, throughout raw materials extraction, manufacturing, distribution, use and recycle and disposal. Life Cycle Assessment on hydrogen production by direct thermal cracking of natural gas was carried out in order to examine the net emission of greenhouse gases as well as other environmental impacts. The CO2 emission per 1 kg of hydrogen production via direct thermal cracking of natural gas was 1.570 kg CO2-equiv. It was shown that the amount of CO2 emission could be remarkably reduced by using the internally produced hydrogen instead of electricity for the hydrogen production process.

Keywords: LCA, hydrogen, CO2, thermal cracking of natural gas

1. 서 론

현재 수소는 주로 산업용 가스로서 석유화학 공정에서 자연적으로 사용되며, 액화된 수소는 열음절과 저감축 기계의 부품으로, 특히 환경해양에서 사용되며, 특히 산업용 가스로 사용될 때 환경오염을 가하는 것이 없다. 이러한 수소가 열을 저장한 화석연료의 대체 에너지로서 그 환경성과 유용성이 입증되고, 특히 사용 중에 환경오염이 거의 없는 장점이 있어 향후 구조적, 규제적 규제를 통해 대량생산에 따른 수소제조기술의 개발이 시작되었다.[1]

수소가 사용 중에 환경오염이 거의 없기 때문에 화석연료의 사용으로 인한 지구온난화의 가속화를 예방할 수 있는 대안으로 각광받고 있는 것이 사실이다. 그러나 수소의 열음절 기계를 적용 도입할 때, 이는 수소의 제조 과정에서 발생하는 환경오염을 전혀 고려하지 않은 것이라므로 수소가 환경오염이 거의 없는 상황에 놓여지게 되는 것은 부족함이 다. 수소의 환경측면을 충분히 평가하기 위해서는 수소 시스템의 전과정, 즉 생산, 저장, 유통, 사용 및 재가에 걸쳐 환경영향을 총체적으로 평가하여야 한다.

현재의 수소제조방법에 대한 환경측면을 개선하기 위해서 국 내외에서 연구, 개발되고 있는 천연가스 직접 열분해 방법은 있으나 수소의 산소 공급이 가능한 천연가스를 사용하고 있으며, 동시에 비교적 간편한 공정으로 대량생산이 가능한 장점을 가지고 있다. 이 방법은 화석연료 또는 기존의 수소제조방법과 비교하여 환경측면에서의 개선을 기대할 수 있는 수소제조방법으로 인식되고 있다. 따라서 이 열분해 방법이 기존의 수소제조 방법에 비해서 실제로 환경성과의 효과가 있는지, 앞으로 얼마나 있는지 알기 위해서는 전과정에 걸쳐 환경성과의 장점적인 평가가 필요하다.

본 연구에서는 환경평가(Life Cycle Assessment: 이하 LCA)를 이용하여 천연가스 직접 열분해에 의한 수소제조방법에 대한 환경성과 평가를 통해 천연가스를 활용하여 수소 생산에 대한 환경성과에 대해 평가하였다. 또한, 수소제조과정에서 발생하는 온실가스 배출량을 감소시키기 위하여 공정 효율성의 개선 대안을 제시함으로써 천연가스 직접 열분해 방법인 보다 환경친화적인 방법으로 수소를 생산할 수 있도록 하고자 하였으며, 이러한 기후변화협약의 청정개발
제도(Clean Development Mechanism: CDM)에서 추가적인 온실 가스 감축작용을 신장될 수 있는 예를 제시하였다.

2. 이론적 배경

2.1. 전과정평가(Life Cycle Assessment)

LCA는 대상 시스템의 전과정에서 집합된 투입물과 산출물의 정량화

하고, 이러한 투입물 및 산출물에 판계된 잠재적 환경영향을 총계

적으로 평가함으로써 대상 시스템의 중단점과 환경측면의 주요 이

슈를 규명할 수 있는 환경평가 도구이다[3,4].

LCA는 Figure 1에서 보는 바와 같이 4단계로 구성되며, 이들

은 선형적인 순서에 따라 진행되는 것이 아니라 보완과 수정이 반

반복되는 과정이다.

이론적 배경

목적 및 범위 정의(Goal and Scope Definition)

목적정의는 연구결과의 적용방안을 고려하여 연구의 목적을 결

정하는 단계로서, 정립된 목적에 따라 연구의 수행 범위가 결과

의 해석이 닦히기 때문에 필요로 적절한 수준에 입안화를 목적으로 위

하여 연구의 목적, 이용 분야 및 대상 정립 이후, 누구에게 연구결과

을 전달할 것인지에 대하여 명확하게 기술하는 단계이다.

변량화는 기능 및 기능단위, 초기 시스템 전량, 가격 및 재원 사용

등에 대하여 연구의 목적을 단기하기 위하여 타당한 변량을 실

현하는 단계이다[5].

전기과정목록분석(Life Cycle Inventory Analysis)

전기과정목록법은 데이터의 수집, 감정, 재산성과 동반한 대상

공정에 대한 투입/산출물과 기능단위로 정량화하여 단위공정

별 "gate to gate" 데이터베이스를 구축하고, 이를 기반으로 하여

구조화 공정에 대한 전과정목록(LCI) 데이터베이스를 연결하고 최종

적으로 "태양으로부터 무단까지(cradle to grave)"의 데이터베이스를 구

축하는 단계이다[6].

전과정영향평가(Life Cycle Impact Assessment)

전과정영향평가는 의무적 절차인 분류화(classification), 특성화

(characterization) 단계와 선정적 절차인 정규화(normalization), 그

등(weighing), 가중치 부여(weighting) 단계를 통해 정량적

목록분석의 결과와 미리 선정된 각각의 환경영향 범주에 비추어 잠

재적인 환경영향의 크기를 평가하는 단계이다. 영향변수 및 영향평

가 방법의 선택은 연구의 범위에 따라 이루어지며, 일반적인

환경영향 범주로는 화학적, 생물학적, 오염학교, 오염환경, 생생

환경, 공유상황, 홍해, 홍해를 종합, 생생성, 인간적 등이 포함될 수

있다[6].

전과정해석(Life Cycle Interpretation)

전과정해석은 연구의 목적 및 범위에 따라 수행된 전과

목록분석이나 전과정영향평가의 결과를 해석하여 주요 이슈를

규명하고 결과를 도출하며, 연구의 한계와 한계 사항들을 기술하는

단계이다[7].

![Figure 1. Basic structure of life cycle assessment.](image1)

![Figure 2. Process flow diagram of direct thermal cracking of natural gas.](image2)

2.2. 전과가스 작용 일관성

전과 실현시 구조에 기반 단계에 있는 전과가스의 직접 일관성

방법은 공정의 효율을 비교적 간단하게, 원료의 배합을 작용 일관

해머로써 채택되는 카본부류는 다음의 원료로 사용하고, 이에

발생된 수소는 정체공정을 거쳐서 에너지로 이용 가능한99.999%의

수도가 된다. Figure 2의 공정초점에서 보는 바와 같이 이

이 일관해 일관행은 그저 분량 내소 공정과 PSA(Pressure Swing Adsorption)계제 공정으로 나눌 수 있으며, 각 공정에 대한 설명은

다음과 같다[2].

![배합 본문 공정](image3)

유동 및 본료 및 반응기에서 CH₄ C와 H₂로 분화하며, 이

제 발생하는 C는 측면만 환경에 흡수된다. 이 과정을 통해 순도

60%의 H₂가 생성되며, C는 고순도의 가연물로서 다른 산업의

원료로 이용된다.

PSA(Pressure Swing Adsorption) 공정

흡수를 이용한 기계 분리방법으로, 높은 압력에서 흡수가 잘 일

이나는 것을 이용하여 높은 압력에서 흡수를 사용한 후, 낮은 압력에

서 딜턴법을 사용하여 흡수를 극대화할 수 있다. 폐합가스의 선택

적한 흡수를 통해 상대적으로 흡수가 잘 되는 끝에 끝에 흡수된으

로써, 99.999%의 H₂가 제공으로생산되며, 흡수된 가스(Feed gas: H₂+CH₄)는

탄실의 과정을 가저 저산화되기 때문에 이용된다.
3. LCA (Life Cycle Assessment)

3.1. 목적 및 범위 정의

3.1.1. 목적 정의
본 LCA의 목적은 새로운 수소세즈별방법의 하나인 천연가스의 직접 열매한방법에 대한 환경성향, 특히, 온실가스 배출량을 정량화하고, 자구연차와 같은 환경성향평가와 관련된 주요 여건들을 규제하는 것이다. 또한, 규제된 주요 여건과 관련된 환경성향을 최소화시킬 수 있는 대안을 제시함으로써 천연가스의 직접 열매한방법의 수소세즈별방법의 평가 관행규범으로서 잘 될 수 있도록 유용한 정보를 제공하는 것이다.

3.1.2. 범위 정의
기능 및 기능 단위
수소는 에너지원과 산업용 가스로서의 기능을 가지고 있다. 본 연구와 관련된 수소의 기능은 에너지원으로서의 기능이다. 따라서 Table 1과 같이 가능단위는 120 MJ의 에너지로 정의하였으며, 이를 연차될 수 있는 수소의 양, 즉 기관호흡은 수소 1 kg이다.

초기 시스템 경계
에너지원으로서의 수소는 사용단계에서 모두 보도되며, 사용 중에는 배기물로, 배기물로 인한 환경성향이 거의 없으므로 균경성향을 위한 초기 시스템 경계에서는 수소의 제조단계까지만 포함시키고 사용 및 재기 단계는 제외하였다. 따라서 Figure 3에서 보는 바와 같이 본 연구에서 수소의 원료가 되는 천연가스의 저위와 수소, 수소의
계조 단계가 연구의 범위에 포함되어 관련된 산출물 등 규제하고 정량화하였다.

데이터 품질 요건
본 연구의 목표는 데이터의 구조적, 지리적, 기술적 범위와 관련된 데이터의 품질 요건을 Table 2와 같이 규정하였다. 수소제조경정에 대해서는 2002년도 국내의 1차 데이터로, 환경데이터를 수집하고 수소의 경제성에서 제조공정, 이의 관련된 산출 및 배출요인에 대해서는 국내외의 데이터베이스 등을 2차 데이터를 수집하는 것으로 본 연구의 품질 요건을 설정하였다.

과정 및 제한사항
본 연구에서 적용된 주요 기능 및 제한사항은 다음과 같다.
- 수소 및 배출물공정에 대한 데이터베이스가 존재하지 않을 경우, 해당되는 데이터는 환경에서 직접 들이어가거나 올바른 것으로 직접 나가는 기술요건으로 가정하였다.
- 수소제조공정에 대한 사항은 원래의 장비의 제조, 설치 및 사용과 관련된 환경성향은 고려하지 않았다.
- 제조공정에서 사용되는 기술 장비는 제조, 설치 및 사용과 관련된 환경성향은 고려하지 않았다.
- 수소의 저장과 관련된 공정은 고려하지 않았다.

3.2. 전파장목록분석

3.2.1. 단위공정 설정
단위공정은 LCA에서 데이터 수집의 기본 단위이므로, 데이터의 수집을 용이하게 하기 위해서 데이터 관리주체와, 공정의.Rendering을 간편하게 설정하는데, 즉서 기술적 바와 같이 천연가스 저위 열매한방법을 이용한 수소 제조 공정은 기본적으로 배출물공정과 PSA 정제공정으로 구분할 수 있다. 따라서 Figure 4에서 보는 바와 같이 연구분석에서 클러스터는 공정 요인과 데이터 관리 수준을 고려하여 2개의 단위공정 즉, 배출물공정과 PSA 정제공정으로 나누어 설정하였다.

3.2.2. 데이터 수집
Gate to gate 데이터
각각의 단위공정에 대한 데이터를 수집하기 위하여 Table 2와 같이 품급/산출물과 관련된 정보를 기입할 수 있는 설문지를 활용하였다. 설문지는 단위공정과 관련된 품급/산출물에 대한 데이터 범위, 용도, 데이터 출처, 데이터 품질 등의 정보를 효율적으로 수집할 수 있도록 구성하였다.

생화호름 데이터
생화호름 데이터는 앞의 범위정의에서 설정한 데이터 품질요건
물질 수용은 다음과 같은 방정식에 따라 나타난다.

\[
\text{CH}_4 + 2\text{H}_2 \rightarrow \text{C} + 2\text{H}_2\text{O}
\]

이 방정식을 통해, 수용된 메탄은 수용수와 분리될 수 있다.

\[
P = \text{חור 동력 (kW), } w = \text{질량유량 (kg/sec), } b = \text{엔트로피 (kJ/kg)}
\]

Table 3. An Example of Questionnaire Format for Data Collection

<table>
<thead>
<tr>
<th>No.</th>
<th>구분</th>
<th>데이터베이스</th>
<th>용도</th>
<th>데이터 질량</th>
<th>Amount</th>
<th>Unit</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td>성분</td>
<td></td>
<td>LPM</td>
<td>H2 xx%</td>
</tr>
<tr>
<td>2</td>
<td>인공</td>
<td>H2 + CH4</td>
<td>Feed Gas</td>
<td>성축지</td>
<td>LPM</td>
<td>25°C, 1atm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>음력</td>
<td>H2</td>
<td>화학적</td>
<td>성축지</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>에너지</td>
<td>전력</td>
<td>compressor</td>
<td>성축지</td>
<td>kwh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>에너지</td>
<td>전력</td>
<td>화학계생성</td>
<td>성축지</td>
<td>kwh</td>
<td>12 h 재생</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>제품</td>
<td>H2</td>
<td>Product</td>
<td>성축지</td>
<td>LPM</td>
<td>H2 99.99%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>음력</td>
<td>CH4</td>
<td>Vent</td>
<td>성축지</td>
<td>LPM</td>
<td>H2 xx%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Sources of Upstream Databases Used

<table>
<thead>
<tr>
<th>공정명</th>
<th>출처</th>
<th>연도</th>
</tr>
</thead>
<tbody>
<tr>
<td>수리생산</td>
<td>국내 환경 데이터베이스 (산업자원)</td>
<td>1998</td>
</tr>
<tr>
<td>전연가스 제조</td>
<td>Simapro 데이터베이스 (D/I/O/W/PM/W/ME)</td>
<td>1997</td>
</tr>
<tr>
<td>국가수송</td>
<td>Simapro 데이터베이스 (chairmen)</td>
<td>1997</td>
</tr>
</tbody>
</table>

알림 (allocation)
전연가스 직접 일반화 방법의 점점 업계에 따라 다양한 제품의 원료 및 합성계로 사용되는 원료들에서 분산된 원료와 기름이 각각의 현장에 존재한다. 따라서 생산되는 수소와 카본다ioxide 사이에 대한 투입물과 이상수용을 분배하는 항목을 저장하기 위해서, 일반적으로 합당성이 높고 물리적 성질 또는 경제적 가치 등이 활용되고 있다. 본 연구에서는 Table 5에서 보는 바와 같이 합당한지로서 물리적 인자와 생산량 및 원가의 경제적 가치를 동시에 고려하여 현실적인 합당이 이루어지도록 하였으며, 그 결과 제조과정에 관련된 투입물과 이상수용의 27%만이 수소의 생산과 관련된 것으로 합당하였다.

배출물
본 연구에서 가장 큰 측면을 내포하고 있는 대기배출물은 전연가스 직접 일반화 방법의 원료 및 합성계로 사용되는 원료들이ogany 중인 CH4의 혼합가스가 점점 배출된다고 되었다. 또한 이에 따른 상위호흡물을 폐지하는 카본다ioxide의 비용, 수수료 및 원가의 인도방식 및 경제관련에 사용되는 장기의 생산과정과는 여러 종류의 배출가스를 배출한다. 따라서 이와 같은 간접적인 배출물에 대해서는 관련 데이터를 수집하였다. 또한, 수세배출물과 그 영향기술은 그 양이 미미하며, 본 연구의 목적이 지구온난화와 관련된 주요 이유를 규정하는 것이므로 포함시키지 않았다.

3.2.4. 전과정목록 작성
데이터 검증과 제한을 통해 단위경정 데이터 set을 구축하고 이를 일관화하여 전연가스의 일반화에 의한 수소제조방법의 제조단계에 대한 gate-to-gate 데이터베이스를 구축하였다. 구축된 gate-to-gate 데이터베이스를 바탕으로 수집된 원료의 제취 및 생산을

Figure 4. Unit process and process tree of hydrogen production.

3.2.3. 데이터 재산
데이터 검증
수집된 데이터의 신뢰성을 돌입수, 문제가 수치를 통하여 증명하였으며, 데이터의 누락 및 오차에 대해서 추간적인 데이터를 수집하여 보정하였다. 이를 통해, 메탄 분해 방식에 대한 물질 수치는 다음과 같이 1시간을 기준으로 한 설계단계를 기초로 하여 증명하였다.

\[
\text{CH}_4 \rightarrow \text{C} + 2\text{H}_2
\]

또한, PSA 공정에서 누락된 압축기의 전력 사용량은 열도의 결정에 영향을 미치는 중요한 요소로 볼 수 있는 것으로 보여진다.

\[
P = \text{동력 (kW), } w = \text{질량유량 (kg/sec), } b = \text{엔트로피 (kJ/kg)}
\]
Table 5. Allocation Factors and Ratios of Hydrogen and Carbon Black

<table>
<thead>
<tr>
<th>혈당량</th>
<th>생산량</th>
<th>경제적 가치</th>
<th>합당비</th>
</tr>
</thead>
<tbody>
<tr>
<td>수소</td>
<td>3.91 g</td>
<td>1158 원/kg</td>
<td>$\frac{3.91 \times 1.188 + 14.67 \times 0.38}{3.91 \times 1.188 + 14.67 \times 0.38} = 0.27$</td>
</tr>
<tr>
<td>카본 불타</td>
<td>14.47 g</td>
<td>850 원/kg</td>
<td>$\frac{14.47 \times 0.85}{3.91 \times 1.188 + 14.67 \times 0.38} = 0.73$</td>
</tr>
</tbody>
</table>

(2002년 기준)

Table 6. Life Cycle Inventory Table

<table>
<thead>
<tr>
<th>INPUT</th>
<th>Category</th>
<th>Substance</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource</td>
<td>bauxite</td>
<td>2.470E03</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>resource</td>
<td>clay</td>
<td>3.190E-07</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>resource</td>
<td>coal</td>
<td>3.190E-01</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>resource</td>
<td>limestone</td>
<td>7.250E-07</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>air emission</td>
<td>aldehydes</td>
<td>2.700E-07</td>
<td>kg</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>water emission</td>
<td>Al</td>
<td>1.870E-06</td>
<td>kg</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>waste</td>
<td>absorbent</td>
<td>5.450E-07</td>
<td>kg</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>waste</td>
<td>acid</td>
<td>6.250E-07</td>
<td>kg</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>water emission</td>
<td>DOD</td>
<td>2.350E-06</td>
<td>kg</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>waste</td>
<td>BaSO4</td>
<td>2.650E-06</td>
<td>kg</td>
</tr>
</tbody>
</table>
| 산, 사용된 전기에너지, 국의 수송 등과 같은 상표호름 데이터베이스 작성전형적으로 가장 흔히 사용된 전자장착품(LO)을 작성하였다.

Table 6에서 보는 바와 같이 전자장착품(LO)은 크게 전자장착 품목에 따라 다양한 채용, 수매 매출량, 제조물 및 관련원산출물로 구분되어 있으며, 각각의 물량에 따른 무게량과 산출량, 그리고 단위 톤으로 구성되어 있다.

3.3. 전자장착품평가

전자장착품의 품목/산출물에 대해 구축된 전자장착품을 활용하여 전자장착품의 평가하고 경영관리화 방식 전자장착품 평가를 수행하였다. 본 연구에서는 연구 결과의 적합성을 높이기 위해 ISO14040에서 언급한 원래의의 목표와 요소, 특화화 단계성, 섭유성, 영향성부분에 연구 대상의 환경측면의 주요 이슈인 지구온난화분을 고려하였다.

3.4. 전자장착품

전자장착품 및 전자장착품평가의 결과를 바탕으로 전자장착품의 품목/산출물에 대한 경영관리화를 수행하고 그 기간 방안을 모색하고자 하였다.

4. 결과 및 고찰

4.1. 온실가스의 지구온난화 잠재성

전자장착품의 직접 영향의 방법은 공정이 비교적 간단하고 대단 분배방향에서 발생하는 휴대가리가 현장 제조환경에서 제조 공정 내에서 직접 발생하는 온실가스는 거의 없다. 그러나 원료인 전자장착품의 재료와 생산, 제조공정에서 사용하는 전기에너지의 생산, 원료의 축수물 수송 등에서 온실가스가 배출된다. LC1 결과를 보여주는 Table 7을 분석한 결과, Figure 5에서 보는 바와 같이 수소 1 kg 재조 시에 제조단계에서 사용되는 전기에너지가 생산하는 온실가스 배출량 1.571 kg가 55.7%가 배출되며, 수소의 원료인 전자장착품의 생산과정에서는 40.7%가 배출되는 것으로 나타났다.

전자장착품폐기를 통해 얻은 온실가스들은 지구온난화에 미치는 영향을 평가하기 위해서 전자장착품가스를 수행하였다. 전자장착품의 지구온난화에 미치는 영향의 크기는 온실가스의 종류에 따라서 다르므로 대한화 배출량의 합으로는 환경변화의 크기를 분석할 수 없다. 따라서 전자장착품가스의 특성과 단계를 통하여 각각의 온실가스등의 잠재적으로 지구온난화에 미치는 영향의 크기를 CO2 기준으로 정량화한 GWB (Global Warming Potential)는 계산하였다. 예를 들어 CH4의 체적 0.1% 능력은 동일한 무게 CO2의 21배이고 1 kg의 CH4의 지구온난화 상용화물 21 kg의 CO2에 해당한다. 수소 1 kg을 제조하는데 발생하는 CH4의 GWB는 다음과 같이 계산할 수 있다.

$$GWBP(CH_4) = (CH_4\text{ 발생량}) \times (CH_4\text{의 지구온난화 상용화물})$$

$$= 6.240E(-4)(kg) \times 2.100E + 1.164CO_2-eq/1kg(CH_4) = 1.340(E-03)CO_2-eq$$

Table 7에 온실가스에 대한 목록과 및 영향평가결과를 보여 주고 있다. 전자장착품에 영향을 미치는 수소 1 kg을 재조하는데 전자장착품 배출량 1.571 kg 중에

Figure 5. Contribution of greenhouse gases emissions from each life cycle stage.

CO\textsubscript{2}가 1,570 kg으로, 99.9% 이상을 차지하고 그 외에 CH\textsubscript{4}, NO\textsubscript{y}, H\textsubscript{2}O가 미량 배출되는 것으로 분석되었다. 또한, 수소 1 kg당 생산
현황에서 1,584 kg CO\textsubscript{2}-eq의 GWP가 발생하며, 이 중 CO\textsubscript{2}가 약
1,570 kg CO\textsubscript{2}-eq으로 99.1%를 차지하였다. 이것은 CO\textsubscript{2}가 전체 온
실가스 배출량의 99.4% 이상을 차지하고 있어 필요성을 배출량
이 많기 때문이었다. 동일한 양의 CH\textsubscript{4}와 NO\textsubscript{y}가 CO\textsubscript{2}보다 지구온난화
에 미치는 영향이 현저 크지만 (CH\textsubscript{4} 상온상جل; 2,100배 CO\textsubscript{2}-eq,
NO\textsubscript{y} 상온상جل; 3,100배 CO\textsubscript{2}-eq), CO\textsubscript{2} 배출량이 유의적으
로 많기 때문에 GWP에 기여하는 주요 인자가 CO\textsubscript{2}임을 알 수
있다.

4.2. 화석연료와의 환경영향 비교

천연가스의 직접 열에너지 방식으로 생산되는 수소의 경우와 마찬
가지로 일반적인 화석연료의 전환과에서 배출되는 지구온난화에
가장 큰 기여를 하는 온실가스도 CO\textsubscript{2}이다. 따라서 에너지와 관련
된 배출 CO\textsubscript{2} 배출량은 그 에너지원의 환경성과 결정하는 매우 중
요한 요소이다.

본 연구에서는 대표적인 화석연료인 가스론과 천연가스 직접 열
에너지 방식으로 제조되는 수소의 전환과에서 결정 CO\textsubscript{2} 배출량을 비교
함으로써 천연가스 직접 열에너지 방식으로 제조되는 수소에 대하여
에너지원으로서의 상대적인 환경성과 특성을 고려하고자 하였으며 분석을
위한 가정사항은 다음과 같다(9).

- 정상 수행하는 동일한 자동차의 연료소비의 수소와 가스론에
 대하여 원료 채취, 제조, 사용 단계를 고려한다.
- 대량 자동차의 제조와 수소 사용을 위한 연료 공급의 천연가스
 채취에 대한 환경성과 고려하지 않는다.
- 가스론 자동차와 연료전지 자동차는 동일한 모델이며, 다만,
 취지를 자동차의 연료원과 연료전지 제조장의 가스론 제조
 장에서의 환경성과 고려하지 않는다.

Table 8에 보는 바와 같이 수소와 가스론의 전환과 단계별로 제조
가능한 국내외 데이터베이스를 연계하였으며, 제조 가정사항
및 연료 데이터베이스를 이용하여 천연가스 직접 열에너지 방식으로
생산된 수소와 현재 자동차에서 사용되는 가스론을 연료로 100

<table>
<thead>
<tr>
<th>Table 7. The Results of LCI and GWP for Greenhouse Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CO\textsubscript{2}</td>
</tr>
<tr>
<td>H\textsubscript{2}O (chloro)</td>
</tr>
<tr>
<td>H\textsubscript{2}O (halogenated)</td>
</tr>
<tr>
<td>Halon-1031</td>
</tr>
<tr>
<td>CH\textsubscript{4}</td>
</tr>
<tr>
<td>N\textsubscript{2}O</td>
</tr>
<tr>
<td>Total (%)</td>
</tr>
</tbody>
</table>

(단위: 상온상절; kg CO\textsubscript{2}-eq/kg GHG 배출량; kg H\textsubscript{2}O/kg H\textsubscript{2}, GWP; kg CO\textsubscript{2}-eq/kg H\textsubscript{2})

Table 8. Data Pare Sources for Hydrogen and Gasoline

<table>
<thead>
<tr>
<th></th>
<th>결과변경 채택</th>
<th>데이터 출처</th>
</tr>
</thead>
<tbody>
<tr>
<td>수소</td>
<td>천연가스 및 제조 단계</td>
<td>본 연구 결과의 LCI 데이터베이스</td>
</tr>
<tr>
<td></td>
<td>사용 단계</td>
<td>Transportation Table* (Canada, 1998)</td>
</tr>
<tr>
<td>가스론</td>
<td>천연가스 및 제조 단계</td>
<td>국내 화석 데이터베이스 (산업자원부, 2009)</td>
</tr>
<tr>
<td></td>
<td>사용 단계</td>
<td>Simapro 데이터베이스 (IDEMAT, 1997)</td>
</tr>
</tbody>
</table>

*1988년에 캐나다에서 제작한 화석연료 사용자 평균 연비[10]

km를 추정하였는데, 전환과에서 비례되는 CO\textsubscript{2}의 양을 각각 경량화
하였다.

전환과 및 제조 단계에 대하여 수집된 데이터 값을 기반으로
100 km 주행 시 소비하는 양의 수소와 가스론을 생산하는데 발생
하는 CO\textsubscript{2} 배출량을 계산하였다. 수소는 사용단계에서 배출되는
CO\textsubcript{2}는 없으며, 원료 채취 및 제조단계에서의 CO\textsubscript{2} 배출량은 다음과
같이 계산하였다.

\text{연비} = 100 \text{km}/7.3L (Transportation Table) \times 1L/0.348 \text{kg} (액
력수소도) = 100 \text{km}/2.54 \text{kg}

원료 채취 및 제조단계에서의 CO\textsubscript{2} 배출량 = 1.57 \text{kg}/\text{kg} = 2.54
\text{kg} = 3.98 \text{kg}

가스론의 경우에는 다음과 같이 원료의 채취 및 제조과정과 사
용 단계에서의 CO\textsubscript{2}배출량을 계산하였다.

\text{연비} = 1 \text{km}/0.026 \text{kg} (IDEMAT, 1997) = 100 \text{km}/6.25 \text{kg}

원료 채취 및 제조단계에서의 CO\textsubscript{2} 배출량 = 3.34E-1 \text{kg}/\text{kg} (산
업자원부, 2000) \times 6.25 \text{kg} = 2.09 \text{kg}

사용단계에서의 CO\textsubscript{2} 배출량 = 0.29 \text{kg}/\text{km} (IDEMAT, 1997) \times
100 \text{km} = 20.00 \text{kg}

이와 같이 수소와 가스론의 원료채취 및 제조단계에서 각각 약
공업화학, 제14권 제 6호, 2003
3.89 kg와 2.09 kg의 CO₂가 배출되어 수소가 가스로의 비율이 약 2배가 많은 CO가 배출되는 것으로 나타났다. 그러나 Fig. 6에 서 보이는 바와 같이 사용단계에서의 CO₂ 배출량이 33.4% 수소로 인해 사용하는 경우 비율 배출되지 않는 반면, 가솔린의 경우에는 가솔린의 연료소비량에서 20.00 kg의 CO₂가 배출되어 전력에서 결정된 전력 배출량에 있어서는 수소와 사용한 자동차의 경우가 약 18.07 kg가 적게 배출되는 것으로 나타났다[11].

따라서 화학연료의 대체에너지로서 천연가스 적절 발전법 발전으로 생산되는 수소는 기존 기술의 의한 환경영향을 크게 감소 시킬 수 있는 에너지원을 확보할 수 있었다.

4.3. 개선기회 규명

Table 6의 LCA 결과에서 나타난 바와 같이 천연가스 적절 유발

해 방법에 대한 환경측면의 주요 이슈는 제조단계에서 전력사용에 의한 CO₂ 배출이다. 따라서 천연가스 직접 유발방법에 의한 수

소의 제조와 관련된 환경성을 개선하기 위해서는 제조단계에서 사용되는 전력에너지에 의한 CO₂ 배출량을 감소시켜야 할 필요

을 갖고 있다.

현재는 천연가스 연료화에 의한 수소의 제조과정에서 주로 전기

에너지가 사용되고 있으며 CII의 일부분에 발생한 환경요인이 저감될 필요로 있으며, 이를 개선하기 위해서 Table 9

에서 보는 바와 같이 현재 사용되고 있는 전력에너지에 대해표시하면(대안1: CII 유발대

안에서 발생하는 환경요인의 일부를 에너지원으로 활용하고 나머지

환경요인은 원료로 재활용하는 방안(대안 2)을 고려하였다.

대안 1의 경우에 사용자 제품 유통자는 수소의 일부를 에너지로 이용하기 때문에 에너지로 사용되는 수소의 양에 따라 생산 효율이 감소하게 되며, 대안 2의 경우에는 환경요인의 일부를 에너지로 활용하게 되면 원료 사에 대가비용이 발생할 수 있는 단점을 예상할 수 있다. 각각의 대안에 대하여 LCA를 수행한 결과, Table 10에서 보는 바와 같이 대안 2의 경우 전기를 에너지로 사용하는 환경의 시스템과 비교하여 환경요인과 같은 CO₂ 배출

이 배려 적앤랙, 특히, 재료로 사용되는 수소를 에너지로 이용하는 대안(1: 1.1 kg의 수소정화 산 1.29 kg의 CO₂ 배출량) 감소, 즉 약 80%의 CO₂ 배출량이 감소하여 가장 큰 개선효과가 있

는 것으로 나타났다.

이와 같이 LCA를 이용하여 CO₂ 배출량을 경감하고 적절한 대안을 통해 환경측면의 개선과 CO₂ 배출량의 감축을 유도할 수 있기 때문에 LCA는 기후변화협약(UNFCCC)에 의한 의무적인 은

심가스 감축 이행에 대한 국가간 이행 수단의 하나인 CDM 사

업에서도 효과적으로 활용될 수 있다. CDM 사업은 성립된 검증

요소 중에 하나인 기초성과 보존성에 의하여 투자자의 인정받

을 수 있는 환경적 추가차가(emission additionality)에, 이것은 C0₂

을 포함한 온실가스 감축요인이 의미된다[12].

본 연구의 천연가스 적절 유발법에 환경측면 개선 대안에 대

하여 LCA 결과를 토대로 CDM 사업의 효과를 환경적 추가차가를

기준화하였다. 연구기간 동안 5000 ton의 수소를 생산하고 사업연대는 10년으

로 가정할 때, 제조 단계에서 사용되는 에너지원을 전기에너지부

(기존시스템) 자체적으로 생산되는 수소의 일부를 대체할 경우(대

안 1) 막 수 있는 수기간 CO₂ 감축량을 아래의 식을 통하여 계산하였다[13].

\[
(\text{CO}_2 \text{ emission reduction} = (1.560 - 1.230) \text{kgCO}_2 / \text{kgH}_2 - \frac{5.000 \times 0.000 \text{kgCO}_2}{10 \times 2} = 6.25 \text{E-3+7 kg}
\]

위의 계산 결과로부터 원리에 계산 가능한 것에 해당됨에 따라, 적절한 방법의 환

경적 추가차가 크고 증가할 수 있다.

이상과 같이 LCA 연구를 통하여 천연가스의 적절 발전에 의

해 생산된 수소는 화학연료와 관련된 환경영향을 크게 개선시킨 수 있는 원료에너지에 의하여 대안을 제시함으로써 더욱 환경친화적인 수소를 생산할 수 있음을 알게 되었다.

5. 결 론

미래의 청정한 대체 에너지로서 주목받고 있는 수소를 제조하는 데 천연가스 직접 유발법은 대량생산이 가능하고 경제적 가

치를 가진 무원상의 동시에 생산되기 때문에 경제적 측면에서 환

용 가능성을 가지고 있을 뿐만 아니라 배기한산물 공정으로 이로

이 거치기 때문에 기존의 화학연료와 비교하여 환경적 측면에서도

상당히 효과가 있을 것으로 기대하고 있다.

이러한 방법에 사용한 LCA 결과로부터 천연가스 적절 유발법

을 이용하여 CO₂ 배출량을 경감하고 적절한 대안을 통해 환경측

면의 개선과 CO₂ 배출량의 감축을 유도할 수 있기에 때문에 LCA는 기후변화협약(UNFCCC)에 의한 의무적인 은

갑 사

본 연구는 에너지관리공단의 대화에너지 개발사업의 일환으로 수행되었으며, 이에 감사드립니다.

참고 문헌

6. International standard ISO 14041, Environmental manage-

7. International standard ISO 14042, Environmental manage-
8. International standard ISO 14043, Environmental manage-
10. H. Park, J. Kim, B. K. Lee, and T. Hur, Life Cycle Assess-