Adsorption and Separation Characteristics of Maltooligosaccharides

Jung-Wook Yoo, Gyo-Yeol Choo, Seon-Gyun Rho*, Tae-Young Kim, Sung-Yong Cho, and Seung-Jai Kim†

Department of Environmental Engineering and
*Engineering Research Institute Chonnam National University, Gwangju 500-757, Korea

(Rceived April 7, 2003; accepted June 27, 2003)

Abstract: The adsorption and desorption characteristics of maltooligosaccharides onto two commercially available activated carbons were studied experimentally in a fixed bed to obtain basic data for the separation of a sugar from oligosaccharides solution. The breakthrough curves of smaller molecules such as (G1) glucose, (G2) maltose and (G3) maltotriose for coconut shell based activated carbon, SLS100, were achieved later than those of larger molecules. On the other hand, the adsorption breakthrough curves of larger molecules such as (G3) maltotriose and (G7) maltotetraose for pitch coal based activated carbon, F400, were attained later than those of smaller molecules. Adsorption breakthrough time of maltooligosaccharides using F400 and SLS100 increased with increasing pH. The adsorption of maltooligosaccharides using SLS100 showed no adsorption at pH 2.3, but the breakthrough curves of smaller molecules came faster than those of larger molecules at pH 3.1. The breakthrough curves of larger molecules came faster than those of smaller molecules at pH 4.0 and the breakthrough time increased with increasing pH. The desorption of maltooligosaccharides using ethanol (5, 10, 25, 50%) in a fixed bed was in the order of small to large molecule sizes, and more sugar was separated as ethanol concentration increased.

Keywords: adsorption, desorption, maltooligosaccharides, fixed-bed, bed-volume

1. 서 론

최근 생활수중이 향상되며 따라 건강에 대한 관심이 높아졌으며, 이러한 건강 지향적인 시대 경향에 따라 건강과 미용에 기여하는 제품이 요구되고 있다. 특히, 오리온은 단단한 2~10개가 연결되어 있는 여러 가지 단위의 화합물로 불리며, 300~2000 정도이며, 여러 가지 유용한 특성 때문에 최근 주목을 받고 있다. 이러한 오리온은 산균액에서 쉽게 분해되며, 대개 친화적이고 소화 효소에 의해 소화되지 않고 대개 체내에 유용성인 설탕으로 변해져 설탕의 음이미지를 억제하는 효과가 있으며, maltotriose와 maltotetraose는 친미료뿐만 아니라 혈당이나플레스테로이드의 상승을 억제하는 효과가 있어 식품분야에서도 중요한 연구가 되고 있다. 이러한 연구들은 단단한 2~10개가 연결되어 있는 오리온에 대해 주의를 기울여야 할 것으로 보인다. 본 연구에서는 면도물리고당의 분리, 정제를 위한 기초연구로서 고정벤트착착에서는 억제율을 향상시키기 위해 면도물리고당의 접착 및 탈착 특성을 연구하였다.

† 주 저자 (e-mail: sjkim@chonnam.ac.kr)
2. 실험

2.1. 화학적 및 화학물질
본 연구에서는 화학적는 연구를 위하여 제조한 화합
단 SLS103 (주)삼천리, 한국에 취득한 단 F400 (Calgon Co., U.S.A)을 채 분리하여 0.42~0.59 mm 크
기의 입자를 하약 후, 실수를 수행하기 위하여 화학적 표면의 농도
을 제거하기 위하여 줄여주고, 백색 만들 후 수 세 식적
하였다.

화합산의 표면이온분포는 BET (Autosorb-1, Quantachrome
Co.)를 사용하여 측정하였다. 본 연구에서는 화합산의 폐
리적 특성을 Table 1에 나타내었다. 비표면적은 대상재료(P/F, L)에
0.1~0.3인 범위에서 화합산의 비표면적을 구한 결과가. 고농장에서
수용된 유제의 화합산 입자의 농도 및 유도 특성값을 Table 2에
거나내었다. 화합산 입자의 농도는 물을 중분히 화합산이
상태에서 측정하였다.

물질분포는 원자 시각하고 있는 물리표고 (주)대성)를 2.7%
(w/w)로 화학적 섭취하였다. 물리표고 화학적의 경우 탄도라우
농도는 Table 3에 나타내었다. G1 (glucose)은 글루코스 글, G2
(talactose)는 0.8, G7 (maltose)는 2.4 굿글리코드 절합으로 글루
코스가 각각 2~7개 결합되어 있는 매티올로항도를 나타낸다.

2.2. 유리고장 분석

유리고장의 조성을 TLC (Thin Layer Chromatography, Silica
gel 60, Merck, Germany)를 사용하여 측정하였다[6]. 각 단단의
표면 농도는 TLC 분석 후 Scanaball program (Nonlinear Dynamic
Co., Britain)을 이용하여 각 spot의 만족에 상호작용하는
density를 구하였다. TLC로 측정한 표면 농도와 Scanaball progr
을 이용하여 얻어진 각 spot의 density를 plot하면 최소자
속력으로 구한 적색과 그 오차가 ±3%로 거의 일치하는 것을 알
수 있었다. 따라서 각 결합의 표면 농도로 각 spot의 density와
의 상관관계로부터 TLC상의 각 spot의 농도를 구하였다[8].

분석에서는 electronic pipettor (7182ET, Biohit)를 사용하
여 농도를 얻고 있는 탄도라우고장 표면 (1% (w/v))과 탄도로
각각 0.5 ul에 취하여 TLC plate에 loading한 후, 15 min 간 105
℃로 유속, 발생시키는 각 결합의 특성 및 농도 판정하였다.

TLC의 이동성 용제는 N-propanol : nitromethane : water = 5 : 2 : 1.5로 하였고, 탄도리프는 N-naphthyl-ethylene-
diamine-dihydrochloride 0.03 g, methanol 95 mL, 절반 5 mL 물
음속게 사용하였다.

2.3. 실험법

2.3.1. 실험장치
본 연구에 사용된 고정장을 화합산은 Figure 1에 도시한 것과 같
이 내경 2 cm, 높이 55 cm이다. 반응기를 제작은 아크릴 수지이
며, 반응기 하단부에는 수용액의 유속분포를 흐리하게 하기 위해서
직경 4 mm의 유리구를 10 cm 높이로 유압부를 설치하였다. 유압
부의 산·하단부에는 반응기에서 화합산이 유압하는 것과 유리구
의 유출 및 방향을 방지하기 위하여 천령(100 mesh, stainless
steel)을 부착하였다.

2.3.2. 초전도

최소유동속도 (Umf)는 화합산 30 g을 흡착란에 충전시킨 후, 22±1
℃의 농축수로 사용하여 유속을 변화시키면서 유동상의 현을
수행하여 유속과 억제강도 데이터로부터 측정하였다.

Table 1. Physical Properties of Activated Carbons Used

<table>
<thead>
<tr>
<th>Unit</th>
<th>SLS103</th>
<th>F400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle diameter (mm)</td>
<td>0.42~0.59</td>
<td>0.42~0.59</td>
</tr>
<tr>
<td>Particle density (kg/m³)</td>
<td>682</td>
<td>880</td>
</tr>
<tr>
<td>Multi point BET (m²/g)</td>
<td>1040</td>
<td>946</td>
</tr>
<tr>
<td>Average pore radius (μm)</td>
<td>11.98</td>
<td>14.30</td>
</tr>
</tbody>
</table>

Table 2. Fluid and Particle Properties of the Fixed Bed Experiment (D = 2 cm, adsorbent weight = 20 g)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>dp (μm)</th>
<th>ρf (kg/m³)</th>
<th>Ud (m/s)</th>
<th>εnf</th>
<th>Pf (kg/m²·s)</th>
<th>µ (kg/m·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS103</td>
<td>0.51</td>
<td>1408.5</td>
<td>0.30</td>
<td>0.3877</td>
<td>988.2</td>
<td>1002 × 10⁻²</td>
</tr>
<tr>
<td>F400</td>
<td>0.51</td>
<td>1458.9</td>
<td>0.51</td>
<td>0.6199</td>
<td>988.2</td>
<td>1002 × 10⁻²</td>
</tr>
</tbody>
</table>

Table 3. Concentration of Maltodisaccharide in 2.7% (w/v) Oligosaccharide Solution

<table>
<thead>
<tr>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g/L)</td>
<td>6.21</td>
<td>5.57</td>
<td>5.56</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Figure 1. Schematic diagram of the adsorption column (cylindrical).

품질성 실험은 흡착란에 화합산 20 g을 충전시켜 충진층의 농이
를 11.9 cm으로 유지하고 유속을 0.02 Umf로 일정하게 유지한 후, 흡
착란에서 유출되는 용액 농도를 측정시킨 간격으로
수행하여 외파적선을 구하였다[9].

2.3.3. pH 조절

고정장 흡착탄에서 용액의 pH에 따른 반다중고장의 흡착특성
은 고정하기 위하여 초기 pH가 5.6인 반다중고장 수용액의 pH
를 2.3, 3.1, 7.1로 조절한 후, 유속을 0.02 Umf로 일정하게 유지하면
서 흡착란에서 유출되는 용액 농도를 일정간 시간 간격으로
수행하여 외파적선을 구하였다[9].

2.3.4. 탐정 실험

화합산의 조화 흡착탄 반다중고장의 탐정현상을 고찰하기 위
3. 결과 및 고찰

3.1. 파괴실험

유동화 실험으로 구한 최소유동속도(UDr)는 SLS103은 0.39 mm/s, F400은 0.51 mm/s이며, 고정층에서 유속에 따른 압력저하는 직선으로 증가하였다.

Figure 2는 BET 측정법을 이용하여 두 흡착체의 세공분포를 나타낸 그림으로, SLS103의 세공은 32-47 A 범위가 특이하게 발견되어 있으며, F400은 32 A 범위의 세공뿐만 아니라 100 A 이상의 세공도 잘 분포하여 확인할 수 있었다.

Figure 3은 혼합된 20 g을 중성기로 충전층의 높이가 11.9 cm인 고정층에서 밀도를리고당의 파괴실태를 나타낸 그림이다. SLS103에서의 분자량을 작은 G1(-glucose), G2 (malto), G3 (maltriose)가 분자량이 큰 G5 (maltpentaose), G7 (malheptaoose)보다 파괴곡선이 높게 형성되었으며, 분자량이 작은 당이의 유출속도는 BV (Bed Volume) = 19 정도에서 급격히 증가하여 BV = 85 정도에서 출력이 증가함을 확인할 수 있었다. 분자량이 큰 당은 BV = 1 정도에서 유출속도가 급격히 증가하여 BV = 7.5 정도에 평형에 도달하였으며, 여기서 BV는 충전층을 통한 밀도를리고당의 유출량을 시간으로 환산하여 중심점(bed 40 cm)으로 나눈 값으로 부자원이다. F400에서는 분자량이 큰 G5 (maltpentaose), G7 (malheptaoose)가 분자량이 작은 G1 (glucose), G2 (malto), G3 (maltriose)보다 초기 유출속도가 높았고, 분자량이 큰 당은 BV = 3 정도에서 유출속도가 급격히 증가하여 BV = 103 정도에 평형에 도달하였고, 분자량이 작은 당들은 BV = 2 정도에서 유출속도가 급격히 증가하여 BV = 9.4 정도에 평형에 도달하였으며, 고정층에서 각 당의 흡착은 F400에 비해 SLS103에서 보다 step한 파괴곡선을 얻을 수 있었다. 이런 결과들은 Figure 2에서 보는 바와 같이 평균 pore 전장은 SLS103과 F400이 각각 11 A와 14 A으로 큰 차이가 없으나, SLS103은 37.6 A 부근의 pore size가 특이하게 빠르게 잡히고 그 이상의 크기는 상대적으로 적은 반면, F400은 37.6 A 부근으로 방출되어 있지만, 42.2~550 A의 pore도 가르히 발견되어 있다. 이러한 현상은 표면의 pore 분포특성에서 알 수 있다. SLS103에서는 가장크기를 예를 분자크기가 비교적 작은 당들의 흡착이 잘 이루어지며, 세포가 500 A까지 크게 발달된 F400에서는 흡착 현도에 의해 분자 크기가 큰 당들의 흡착이 잘 이루어지는 것으로 생각된다. 또한, 선행연구 결과에 따르면 [12], SLS103의 액상에서 밀도리고당의 흡착성형량은 분자량이 큰 당보다 분자량이 작은 당들의 흡착성형량이 크게 비슷한 고정층에서 G1 (glucose)의 파괴곡선이 높게 형성되었으며, F400에서는 분자량이 큰 당보다 분자량이 작은 당들의 흡착성형량이 적기 때문에 고정층에서 G1 (glucose)의 파괴곡선이 약간 도출되었다.

3.2. pH의 영향

pH에 따른 밀도를리고당 수용액의 파괴특성을 고찰하기 위해 초산을 사용하여 초기 pH가 6.2인 밀도를리고당 수용액을 pH 2.3, 3.1, 7.1로 조정한 후 고정층 실험을 수행하였다. Figure 4는 SLS103을 사용하여 밀도를리고당 흡착과정을 수행한 결과로, pH 2.3일 때는 밀도를리고당의 흡착이 거의 이루어지지 않았고, 파괴곡선을 얻을 수 없었는데 상대적으로 분자량이 작은 당들은 흡착이 거의
Figure 4. Breakthrough curves of maltoligosaccharides for various pH in a fixed bed. (A) pH 2.3, (B) pH 3.1, (C) pH 7.1 (U = 0.02 m/s, adsorbent weight = 20 g).

Figure 5. Breakthrough curves of maltoligosaccharides for various pH in a fixed bed. (A) pH 2.3, (B) pH 3.1, (C) pH 7.1 (U = 0.02 m/s, adsorbent weight = 20 g).

The figures above show the breakthrough curves of maltoligosaccharides for various pH values in a fixed bed. The pH levels are 2.3, 3.1, and 7.1, and the flow velocity is 0.02 m/s, with the adsorbent weight being 20 g.

In all cases, the maltoligosaccharides G1, G2, G3, G5, and G7 show different breakthrough patterns. Maltose (G2) and maltotriose (G3) are more susceptible to pH changes than glucose (G1) and maltopentaose (G5). The trends are consistent with the theoretical expectations, where the adsorption capacity decreases with increasing pH.

The figures illustrate the influence of pH on the adsorption efficiency of the maltoligosaccharides. The higher the pH, the lower the adsorption capacity for maltose and maltotriose, indicating the importance of pH control in the adsorption process.
Figure 6. Desorption curves of maltooligosaccharides by 50% ethanol solution in a fixed bed. (A) SLS103, (B) F400 (U = 0.82 \(\text{U}_{\text{ad}} \), adsorbent weight = 20 g).

Figure 7. Desorption curves of maltooligosaccharides by 5.10, 25, 50% ethanol solution in a fixed bed. (A) SLS103, (B) F400 (U = 0.82 \(\text{U}_{\text{ad}} \), adsorbent weight = 20 g).

3.3. 탈착실험

Figure 6은 포화 흡착된 환경안에서 50% ethanol 수용액으로 탈착실험을 수행한 것으로, SLS103에서는 분자량 작은 G1 (glucose), G2 (maltose), G3 (maltotriose)가 분자량 큰 G5 (malto-

pentose), G7 (maltotetraose)보다 탈착액 중의 농도가 더 높았는데, BV = 12에서는 분자량 큰 완전히 탈착된 반면, 분자량 작은 완전히 탈착되지 않았다. F400에서는 G2 (maltose), G3 (maltotriose), G5 (maltpentaose), G7 (maltotetraose)의 G1 (glucose)보다 탈착액 중의 농도가 더 높았는데, BV = 12에서는 G1 (glucose) 없는 완전히 탈착된 반면, 나머지 완전히 탈착되지 않았다.

Figure 7은 포화 흡착된 환경안에서 50% ethanol 수용액으로 탈착실험을 수행한 결과, 수용액 중의 ethanol의 농도를 변화시켰을 때 탈착이 완전히 높았는데, 5, 10, 25, 50% ethanol 수용액을 사용하여 연속적으로 탈착실험을 수행한 결과, 사용된 ethanol 수용액의 농도가 높아짐에 따라 분자량 작은 단당이 큰 단당의 순서로 탈착이 진행되면서 각 단당들이 부분적으로 분리되었다.

4. 결론

수용액 중의 포화 충전흡착단을 각 단당별로 분리하기 위해 물리적 특성이 다른 두 종류의 환경안을 이용하여 고정중 충전실험에서 탈착실험을 수행하였다.
도울마징단의 흡착 및 막착 특성에 대한 연구를 수행하여 다음과 같은 결론을 얻었다.

SLS103에서는 분자량 작은 G1 (glucose), G2 (maltose), G3 (maltotriose)가 분자량 큰 G5 (maltpentaose), G7 (maltoheptaose)보다 유출율이 높아 높았다. F400에서는 분자량 큰 G5 (maltpentaose), G7 (maltoheptaose)가 분자량 작은 G1 (glucose), G2 (maltose), G3 (maltpriose)보다 높아 높았다. 이는 두 흡착체의 흡착 특성 각각 및 유출물과 흡착체 사이의 흡착 성격도에 따라 다르게 나타나는다.

pH 변화에 따른 브로울마징단의 흡착은 SLS103과 F400 모두 pH가 증가할수록에 시가 증가하였는데 pH 증가에 따른 함유량의 약한 변화와 각 당물의 표면적에 의한 절편장적 상호작용이 증가하기 때문에 생각된다.

5, 10, 25, 50% ethanol 수용액을 사용하여 고정층 향전에서 빠르게 당분산물을 수용한 결과, 사용한 ethanol 수용액의 농도가 높아질수록 분자량 작은 당물 측 당물의 순서로 탈착이 진행되면서 각 당물이 부분적으로 분리되었다.

감사의 글

본 연구는 마침께단내의 연구비거절(KRF-200-316)에 의해 이루어졌으며 이에 감사드립니다.

Nomenclature

\[D_t = \text{Bed diameter} \quad [\text{cm}] \]
\[d_p = \text{Particles diameter} \quad [\text{mm}] \]
\[H = \text{Packed height} \quad [\text{cm}] \]
\[u_{mf} = \text{Minimum fluidized velocity} \quad [\text{mm/s}] \]

Greek Letters

\[\varepsilon = \text{Voidage} \quad [-] \]
\[\rho_s = \text{Density of adsorbent particles} \quad [\text{kg/m}^3] \]
\[\rho_f = \text{Density of fluid} \quad [\text{kg/m}^3] \]
\[\mu = \text{Viscosity} \quad [\text{kg/m\cdots}] \]

참고 문헌