Ammonia Removal of Activated Carbons Treated by Anodic Oxidation

Soo-Jin Park†, Jun-Sik Shin, and Junjiro Kawasaki§

Advanced Materials Division, Korea Research Institute of Chemical Technology, Yusong, Daejeon 305-600, Korea
§Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-8552, Japan

(Received November 25, 2002; accepted January 9, 2003)

Abstract: The activated carbons (ACs) were prepared by anodic oxidation to remove ammonia gas. The chemical solutions used in this experiment were sodium hydroxide and phosphoric acid. The acid–base values were determined by Boehm’s titration method. The surface properties of ACs were investigated by FT-IR and XPS analyses. N/7K adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET and t-plot methods, respectively. The ammonia removal efficiency was confirmed by a gas-detecting tube technique. As a result, it was revealed in the case of acidic treatment on ACs that the ammonia removal was more effective due to the increase of OH groups in ACs surfaces without any particular changes in adsorption isotherm characteristics. However, in the case of basic treatment, the ammonia removal was slightly improved due to the increase of oxygen functional groups in ACs surfaces in spite of decreasing the BET’s specific surface area. Therefore, it was found that acidic anodization of ACs was a suitable method for the removal of ammonia, which was attributed to the increase of oxygen functional groups containing phenol groups in ACs surfaces.

Keywords: activated carbons, anodic oxidation, ammonia, adsorption, oxygen functional groups

1. 서 론

21세기의 고도화된 사회의 기반이 되는 환경기술은 환경과 사회를 유지하기 위한 중요 요소라 할 수 있다. 산업이 고도화 되어 갈수록 산업공해의 위상이 대두 되면서, 생활공해의 증가 및 괴로운 환경에 대한 인식뿐만 아니라 환경적 대개 중에서 인식되어야 한다고 언급된 바 있다. 본 논문의 보도는 요약이다. 이에 따라 본 보도는 제목에 수록된 요약 아니라 제로, 환경적 조항에 대해서도 유의하여야 할 것이다. 본 보도는 요약에 포함된 요약이라도 할 수 있다[6-8]. 그러나 일반 환경성의 표본은 비 극소적인 불리측각이 때문에 환경오염이나 자본들이 낮고 극소실전에 대해서는 충분한 평가가 갖지 못한다[3,9]. 따라서 일반 환경성으로 제작하기 어려운 특성 유해물질 또는 극소 물질의 환경성능을 높이기 위하여 일반 환경성에 특수 환경약물성을 허용하 여 환경성 표준 및 기업 표준에 합치시키기후 그 환경성능을 높이기 위하여 제작성능을 높이는 것을 고려해 볼 필요가 있다[10]. 일반적으로, 양극선화 표준화는 단일성용적이 수수함을 완성할 수 있는 것에 의하여 환경성 표준화를 구성하기에 더 이상의 제도화를 위해 이론 교환법, 열교환법, 오수환법 등의 물리화학적 처리, 미생물을 이용한 분해 등의 처리법 등이 적용되고 있다[3-5].

† 주 저자 (e-mail: psjin@krcet.re.kr)

한편, 다공성 탄소제로로서 활성탄소(Activated carbons, ACs)는 납은 비료연가능을 가지고 있어 환경오염이 크며, 범역적 미세공중을 가지고 있기 때문에 오염공해의 제거능력이 높은 반면 아니라 경제적, 환경적인 측면에서도 유의하여야 하는 분야에 가까운 것으로 보아야 할 것이다[6-8]. 그러나 일반 환경성의 표본은 비 극소적인 불리측각이 때문에 환경오염이나 자본들이 낮고 극소실전에 대해서는 충분한 평가가 갖지 못한다[3,9]. 따라서 일반 환경성으로 제작하기 어려운 특성 유해물질 또는 극소 물질의 환경성능을 높이기 위하여 일반 환경성에 특수 환경약물성을 허용하 여 환경성 표준 및 기업 표준에 합치시키기후 그 환경성능을 높이기 위하여 제작성능을 높이는 것을 고려해 볼 필요가 있다[10].
2. 실험

2.1. 서류 및 영양성분 표면처리

본 실험에 사용된 활성탄소(Activated carbons)는 다공성의 활성탄소로 제조된 것, 및 전자파차이 없는 활성탄소는 건축주 및 건축자에 제조된 것으로 보였다. 전자파차이 없는 활성탄소는 건축주 및 건축자에 제조된 것으로 보였다.

활성탄소의 양은 표면처리는 2cm x 2cm x 2cm 크기의 활성탄소로 제조된 것, 및 전자파차이 없는 활성탄소는 건축주 및 건축자에 제조된 것으로 보였다. 전자파차이 없는 활성탄소는 건축주 및 건축자에 제조된 것으로 보였다.

2.2. pH 및 산-염기계 측정

ASTM D 3838에 따라 전단된 활성탄소 약 0.5g을 중성수소 20mL를 가하여 준비한 3개의 샘플을 12시간 경량한 후, 각 샘플을 여러개씩 샘플을 이용하여 양액의 pH를 측정하였다. 각각의 실험은 용액 및 백합이 시험된 선형과 차원의 일치를 위해 할당한 표면도와 혼합도로 Bohm의 시험식을 이용하여 활성탄소의 총정량을 측정하였다.

2.3. FT-IR 및 XPS 분석

양광산화 표면처리된 활성탄소의 표면 품질의 변화에 대한 연구를 위하여 FT-IR 분석기와 Bormen Model Bormen MB 102(70개의 샘플)를 주요한 특성(400~1000 cm⁻¹ 사이의 KBr로 측정하였고, 표면처리된 활성탄소표면의 화학적 조성은 XPS (ESCA LAB Mki): VG Scientific Co)을 이용하여 분석하였다. XPS 측정에 사용된 전기 정전은 MgKα, 45° 각도로 사용하였으며, chamber내의 압력 1×10⁻⁶ Torr로 조절하였다. C1s의 spectra의 심층분석은 FT-IR spectra에 대한 것으로 보임을 알 수 있다.

2.4. 양광산화 활성탄소의 기본구조

각 실험은 573K에서 펌바압력 10⁻¹ Torr 이하로 유기질 30% 이상의, 탄소 10-12 시간 평균시간 후, ASAP 2010 (Micromeritics)를 이용하여 77 K에서 상대압력(P1/P0)의 0.1%에서 0.7%의 활성탄소를 측정하였다. 펌바압력은 BET [15]을 이용하여 동량으로부터 계산하였고, t-plot으로부터 미세구조의 부피를 계산하였으며[16],

2.5. 음모니아 제거

음모니아 활성탄소의 특성 분석은 음모니아 검정기(range 1,000 ppm)를 이용하였고, NH₃ 가스의 유속은 MFC (Mass Flow Controller: GCM1000, MKS)로 사용하여 10 mL/min으로 유지하였다. 분석 전 각 샘플들은 반응기에서 150 도에서 1 시간 초고속으로 빛하여 흰색의 수분 및 기체를 제거하였다. 그 후 100, 200, 그리고 1000 ppm의 음모니아 표준가스를 이용하여 표준화면을 구하여 각 시점의 음모니아 제거능을 측정하였다.

3. 결과 및 고찰

3.1. 표면특성

Table 1은 양광산화 표면처리 후, 활성탄소 표면의 pH 산-염기계의 변화를 보여준다. Table 1에서 보는 바와 같이 처리하지 않은 활성탄소의 경우 pH는 염기성이 가까운 품질을 나타내었고, 처리한 활성탄소는 H₃PO₄로 처리한 활성탄소의 경우 산도가 높아져서 pH는 강산성으로 나타났다. 반면 NaOH로 표면처리한 활성탄소의 경우 산도가 증가하였고, 성분의 경우 산도가 적절하였고, pH가 강염기성을 나타내었다. 성분에 사용된 Bohm의 총정량은[14]에 따른 표면 산도는 능도가 다른 여러 가지 점검 응용의 선택적인 총정량을 이용하여 탄소 표면의 탄소 산소 합은 총정량의 총정량이 가능하다. 일반적으로 탄소 표면에 형성된 산성 폐쇄의 경우, carbonate, carboxyl, lactone 및 phenol 등은 두 번, 0.1 N NaOH용액으로 측정한 산도 값은 이 두 표면 총정량의 산도로 나타낼 수 있다.

Table 2는 활성탄소 표면의 산도 값을 각각의 산도별로 분리한 결과를 나타낸 것이다. 결과에 나타난 바와 같이 acetic AC의 산 산소는 basic AC보다는 정량으로, aminos과 같은 산물로 인하여 크게 증가하는 것을 확인할 수 있었다. 이는 양광산화 표면처리에 의해 활성탄소 표면에 산성 총정량이 등이 포함되었고, 따라서 가공식 접합의 변화가 생길 것으로 사료되며[12], 다양한 산성 총정량 등이 포함된 총정량의 영향을 띄어볼 수 있었다.

Figure 1은 양광산화 표면처리 후 활성탄소 표면의 총정량의 변화를 나타낸 FT-IR spectra이다. Figure 1에서 보는 바와 같이 acetic AC의 경우 3000~2000 cm⁻¹ 범위에서 O-H그룹의 증가를 확인할 수 있었으며, 1300~1000 cm⁻¹ 빔범위에서의 ether, hydroxyl,

| Table 1. pH and Acid-base Values of Activated Carbons before and after Anodic Treatments |
|---------------------------------|------------|-------------|
| Wetting liquids | pH | Acid value |
| | | (mg/g) | Base value (mg/g) |
| as-received | 8.5 ± 0.2 | 229 ± 4 | 119 ± 6 |
| Acetic AC | 3.1 ± 0.2 | 630 ± 0 | 379 ± 8 |
| Basic AC | 10.2 ± 0.2 | 438 ± 1 | 788 ± 2 |

| Table 2. Results of Boehm's Titration before and after Anodic Treatments |
|---------------------------------|------------|-------------|
| | Carbonyl | Lactonic | Phenolic |
| | (mg/g) | (mg/g) | (mg/g) |
| as-received | 9.3 | 81.3 | 138.1 | 229 ± 4 |
| Acetic AC | 69.2 | 223.6 | 337.2 | 630.0 |
| Basic AC | 74.9 | 205.0 | 151.9 | 451.8 |

fenolic 근의 강도는 basic_AC가 크게 증가한 반면, acidic_AC는 높은 변화를 나타내지 않았다. 이는 질세포를 달리하여 양극 성화 표면처리를 한 후에서 활성탄소 표면에 전극적 신화층이 형 성되었기 때문인 것으로 생각되며, 신성 전압의 영향을 사유할 경우에는 OH가가 크게 증가하며, 알기기 전압의 영향을 사용한 경우에는 C=O, C-O, C=O, C-O 등 촉모능가가 증가한 것을 확인할 수 있었다.

Figure 2는 양극성화 표면처리된 활성탄소 표면의 XPS spectra이다. 미처치한 as-received는 2847 eV 부근의 탄소 피크와 535 eV 부근의 탄소피크로 이루어져 있으며, O=C=O의 높은 0.11로 나타났다. 신성 용액으로 양극성화 표면처리한 acidic_AC의 경우 산소피크는 약간 감소하며, O=O의 비가 0.10으로 나타났으며, 이 는 앞서 살펴본 FT-IR의 결과와 일치하여 보아, acidic_AC의 경우는 C=O, C=O-C=O, CO2는 증가하는 반면, O-H의 증 가로 인해 산소관능기가 가라앉아 있는 것으로 관찰된다. 반면, basic_AC의 경우 O=C=O의 비는 0.1로 증가하였으며, 이 는 전류와 FT-IR의 결과에서 살펴본 바와 같이 O-H의 증가보다는 C=O, C=O, C=O-C=O, CO2는 증가로 인한 것이라 사료되어진다[18].

 좀 더 세밀한 활성탄소 표면의 작용을 분석하고 위해 XPS carbon C1s core level spectra를 Figure 3에 나타내었다. as-received는 C-C 결합에 의한 피크가 2847 eV에서 주로 나타났으며, 활성탄소 자체가 활성화하고 산소관능기는 C-O (286.8 eV), C-O-C (288.6 eV), C=O-C (290.2 eV)의 형태로 탄소에 포함되어 있음을 알 수 있었다. Acidic_AC의 경우 O-H (286.1 eV)의 피크와 함께 C-O (286.4 eV)피크는 크게 증가하였으나, C=O, C=O-C=O, CO2는의 산소관능가 피크는 약간 감소하는 것을 확인할 수 있었다. 반면, basic_AC의 경우는 C=O, C=O-C=O, CO2는의 산소관능가가 끝으로 증가한 것을 확인할 수 있었다[19].

3.2. 활성탄소심유의 기공조각

양극성화 표면처리된 활성탄소의 기공 구조가 알로니아 처리에 의한 영향을 미치는지 살펴보기 위하여 10~100 트짜리의 상태에 대해 N277 K 기저 온도로 산출하였다.

Figure 4는 양극성화 표면처리 후 활성탄소의 N2흡착도곡선을 나타낸 것이다. 처리시간과 처리 후의 시간 모두 낮은 상태에서 비가 신속히 신풍한 후, 이어져 산해밀도는 높이도 증가하는 것이 더 이상 증가하지 않고 흡착량에 입혀있는 것으로 BET 분석

Figure 5는 양극성화 표면처리된 활성탄소의 기공 구조 분포
Figure 4. Adsorption isotherms of N₂ at 77 K on the ACs studied.

Figure 5. Distribution of pore size derived from H-K model.

Table 3. Textural Characteristics of Activated Carbons before and after Anodic Oxidation.

<table>
<thead>
<tr>
<th></th>
<th>as-received</th>
<th>Acidic AC</th>
<th>Basic AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET specific area</td>
<td>1155</td>
<td>1156</td>
<td>640</td>
</tr>
<tr>
<td>(m²/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micropore volume</td>
<td>0.454</td>
<td>0.442</td>
<td>0.256</td>
</tr>
<tr>
<td>(cm³/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pore volume</td>
<td>0.484</td>
<td>0.481</td>
<td>0.258</td>
</tr>
<tr>
<td>(cm³/g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of micropore (%)</td>
<td>93.8</td>
<td>91.5</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average pore diameter (Å)</td>
<td>8.38</td>
<td>8.45</td>
<td>8.06</td>
</tr>
</tbody>
</table>

3.3. NH₃ 흡착 및 저거울

Figure 6은 질적으로 (range: 1 ~ 1000 ppm)을 이용하여 각 시기의 암모니아 가스제거능을 측정한 결과이다. As-received의 경우 암모니아 제거효과가 상향적으로 감소하여 약 300 min이 지난반 동안 흡착량은 거의 소멸되었고 basic-AC의 경우 as-received의 비슷한 경향으로 흡착량은 감소하였으나, 상향적으로 약간 향상된 암모니아 제거효과를 나타내었다. basic-AC의 경우 암모니아 가스 흡착/저거울 반응은 시작되면서 150 min이 경과하야 제거효과가 약간 향상되었으며 흡착량으로 감소하여 반응시작 후 350 min이 경과하며 제거효과가 소멸되었다. basic-AC의 경우 기능성합이 약간의 etching으로 인하여 부분적으로 제거효과가 약간 향상되었음에도 불구하고, 활성탄소 표면에 형성된 산소 함유 환원기(O=O, C=O, O=O, CO₂)의 영향으로 암모니아 저거능이 미약하게 증가한 것으로 보이며[21], acidic-AC의 경우 미세입력의 증가 및 반응이 활성탄소 표면에 O2의 형성을 암모니아 제거능에 크게 증가한 것으로 판단된다.

Figure 7은 Figure 6의 결과로부터 암모니아 가스의 중 흡착량을 as-received의 중 흡착량으로 나눈 값을 나타낸 것이다. 결과에 나타낸 바와 같이 basic-AC의 경우 암모니아 가스의 중 흡착량 비가 1.65배를 얻 수 있었으며, acidic-AC의 경우는 3.24배를 얻고 있었다. 따라서 암모니아 저거반응에 외부적 인자는 활성탄소의 표면적 및 기판구조와 같은 구조적 특성뿐만 아니라 산 소함유 환원기는 물론 활성탄소 표면의 OH기 그리고, 양극 산화 표면처리에 의하여 형성된 산소 함유 환원기 및 OH기는 암모니아가스의 저거능에 크게 영향을 미차가 있는 것으로 알려져있다.
Figure 6. Ammonia removal of activated carbons before and after anodic oxidation treatments.

Figure 7. Total ammonia adsorption amount ratio before and after anodic oxidation treatments.

산소 함유 판능기 및 OH기기를 도입하는 방법인 전기화학적 표면처리의 방법으로 활성탄소에 공정처리를 이용하여 알로나이가 기의 제거율을 향상시키기로 하였다. 염기성 전화질을 사용하여 양극성화 표면처리한 결과 활성탄소 표면이 etching상으로 인한 비폭발적 의 감소에도 불구하고, 활성탄소 표면의 산소 판능기가 증가하여 알로나이 제거성이 더욱 증가하였고, 산소 전화질을 사용하 여 양극성화 표면처리한 결과, 비폭발적 범위에 오른 OH의 도입으로 알로나이 제거성이 크게 향상되었음을 알 수 있었다.

감사의 글

본 연구는 화학기술부의 화학기술개발사업 (MI-0105-00-0050)의 지원에 의하여 수행되었으며, 이에 감사드립니다.

참고 문헌