Surface Characteristics and NO Removal of Activated Carbon Fibers Treated by Cu Electroplating

Soo-Jin Park†, Jun-Sik Shim, and Yu-Sin Jiang

Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305–606, Korea

(Received May 8, 2002; accepted October 21, 2002)

Abstract: In this study, in effort to remove nitric oxide (NO) copper metal was deposited onto activated carbon fibers (ACFs) by electroplating technique. The surface properties of ACFs were determined by pH and FT-IR: N/77 K adsorption isotherm characteristics including the specific surface area and micropore volume were investigated by BET and t-pplot methods, respectively. NO removal efficiency was confirmed by gas chromatographic technique. From the experimental results, the copper metal supported on ACFs appeared to increase the NO removal and decrease the NO adsorption efficiency drastically. In spite of decreased BET’s specific surface area, micropore volume, and microporosity of the ACFs. Consequently, the Cu content in ACFs played an important role in improving the NO removal, which was probably due to the catalytic reactions of Cu–NO.

Keywords: activated carbon fibers, Cu electroplating, adsorption, NO removal, catalyst

1. 서 론

최근 산업사이에서 크게 문제가 되는 대기오염의 주 원인은 석탄제와 같은 임차성 방출, SOx와 NOx 등의 화학물, 오존, 이산화수소, 탄산화수소, 캡신, 그리고 질소산화물 (NOx) 등이다. 이 중 질소산화물은 산성비과 대기오염에도 상당히 큰 영향이 있기 때문에 일관된 제어가 필요하다고 알려져 있다[1]. 일반적으로 질소산화물에는 NOx, NOy, NO3, NO2, NO2, N2O3 등이 있으나, 특히 대기오염에서 NOx가 가장 주로 비정기적으로 발생하며, 상온에서 NOx와 NO2 사이의 폭발은 NO에 선호되기에 때문에 연기가 제거된 NOx는 상기되어 차 후 NO2로 전환되어 된다. 결국 NO와 NO2를 방출하기 위해서 NO2가 대기로 방출되기 전에 NO로 제거하는 것이 필요하다(6-8).

NO가 감소시키기에는 반응정화를 개선하는 방법, 연소후 처리방법 등이 있으나 이들은 필요성이 비효율적이나 유역 가스의 누출 및 연소의 부식 등의 문제가 있다. 이러한 문제를 해결하고 보다 효과적으로 NO를 줄여야 하는데 있어 활성탄이나 활성탄산소유의 화학 특성을 이용하는 방법이 많으며 연구자들에 의해 연구되어지고 있으며, 또한 탄소를 담배로 하여 여러 금속의 물 녹에 짜작 및 화학적 반응을 통해 방출물의 화학물질에 작용하여 적절하게 제어해야 한다[9]. 특히, 활성탄산소유가 활성품질과 크리달을 담배로 하고 있는 안정성, 재생성, 가공성 등이 우수하여 오.폐의 정체 처리시설 및 유해가스 등의 화학 및 제거 장치에 널리 사용되고 있다.

그러나 아직까지도 이산화탄소나 활성탄산소유에 효과적으로 단기에 금속의 물을 제거하는 방법은 풍력, 활성탄산소유에 금속의 물을 제거하는 방법은 아직도 연구되어야 할 것으로 보아 원료의 화학물질에 관한 체계적인 연구는 이루어지지 못한 실정이다.

따라서 본 연구에서는 NO를 감소시키는 데 꼭 효과적인 금속으로 알려진 Cu 활성탄산소유류에 효과적으로 도입 시각적에 따른 활성탄산소유의 표면 특성 및 기공 특성 변화를 관찰하였으며, GC를 이용하여 NO 제거효과에 대하여 고찰하였다.

2. 실험

2.1. 시료 및 연구 동도금

본 실험에 사용한 활성탄산소유는 탄탄커버리의 중량 45 g/m², 두께 0.3 mm, 그리고 비표면적이 2000 m²/g인 AW3001을 사용
2.2. pH 및 FT-IR 분석
활성탄소유에 표면의 pH측정은 ASTM D 3689에 따라 측정하였다. 활성탄소유 0.5 g을 2 mL 콤프수 20 mL에 첨가한 후 12 h 이상 상온에서 진공하여 그 용액을 membrane filter (0.45 μm, nylon)로 여과시키고 각 용액의 pH를 측정하였으며 전체 홍도권 활성탄소유의 표면 관찰하기 위해 FT-IR 분광기 (Hartmann & Bross Model Bomen MB 102)를 주시범위 400 4000 cm⁻1에서 측정하였다.

2.3. 활성탄소유의 기공구조
각 시료들은 573 K에서 전류 압력 10⁻³ torr 이하로 유지한 상태로 약 10 12 h 동안 방기시킨 후, ASAP 2010 (Micrometrics Co.)을 이용하여 77 K에서 상대압력 (P/P0)에 따른 N2 기체의 흡착량을 측정하였다. BET 표면적을 BrunnauerEmmettTeller식을 이용하여 동반 홍도권에서 계산하였다. 그리고 tplot으로부터 미세구조의 부피를 계산하였다.15, pore size distribution은 HorvathKawazoe모델을 이용하여 결정하였다.16

2.4. NO 전환율
본 실험이 사용한 가스크로마토그래프(GC)는 도시스트로이트의 DS 6200을 사용하였고, 검출기는 필로화학적(TCD)을 사용하였다. 방사관은 0.5 μM, 60m×0.32mm, κapocolon으로, NO 가스의 유속은 MFC. (Mass Flow Controller, GMC1000, MKS)를 사용하여 10 mL/min으로 유지하였다. 분석 전 각 시료들은 반응기 내에서 150 200℃을 초과한 조건으로서 흡착형태의 수분을 제거하였으며, 300, 600, 그리고 1000 ppm의 NO 표준가스를 이용하여 표준화를 수행하여 각 시료의 NO 제거효율을 측정하였다.

2.5. 결론 및 고찰
2.5.1. AA 정량분석
Figure 1은 동도금 처리시기에 따른 동도금양을 나타낸 것이다. 전체효과로는 활성탄소유에 도입된 Cu의 양은 원소정량분석기를 이용하여 측정하였으며, 반응량 g당 Cu의 양은 mg으로 나타났다. 동도금 처리작업 직후에는 동도금량이 급격히 증가하였으나 도금시간이 증가함에 따라 동도금량도 감소하였다. 이는 도금 촉매 표면에서 주로 일어나기 때문에 도금시간 증가함에 따라 도금량 감소한다. 각 표면의 활성탄소유에서 18.2 그리고 20.2의 도금량을 나타내었다. 

2.5.2. N2 균형압
Figure 3은 활성탄소유의 N2 홍도동등온산을 나타낸 것이다. 홍도직도에 대한 활성탄소유의 원소농도는 모두 낮은 상태에서 매우 급격하게 상승한 후, 이어서 상기 양상의 반응이 도금촉매가 더 이상 증가하지 않고 홍도직도에 도달함으로서 BET 분류에 미세구조의 발생을 볼 수 있는 Langmuir 동등온산의 Type I임을 확인할 수 있다. 

Fig. 1. Cu quantification of the electrolytic Cu-plated activated carbon fibers measured by AAS.

Figure 1은 동도금 처리시기에 따른 동도금량을 나타낸 것이다. 전체효과로는 활성탄소유에 도입된 Cu의 양은 원소정량분석기를 이용하여 측정하였으며, 반응량 g당 Cu의 양은 mg으로 나타났다. 동도금 처리작업 직후에는 동도금량이 급격히 증가하였으나 도금시간이 증가함에 따라 동도금량도 감소하였다. 이는 도금 촉매 표면에서 주로 일어나기 때문에 도금시간 증가함에 따라 도금량 감소한다. 각 표면의 활성탄소유에서 18.2 그리고 20.2의 도금량을 나타내었다. 

Fig. 3은 활성탄소유의 N2 홍도동등온산을 나타낸 것이다. 홍도직도에 대한 활성탄소유의 원소농도는 모두 낮은 상태에서 매우 급격하게 상승한 후, 이어서 상기 양상의 반응이 도금촉매가 더 이상 증가하지 않고 홍도직도에 도달함으로서 BET 분류에 미세구조의 발생을 볼 수 있는 Langmuir 동등온산의 Type I임을 확인할 수 있다.
<table>
<thead>
<tr>
<th>Table 2. pH of the Electrolytic Cu-plated Activated Carbon Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
</tr>
<tr>
<td>As-received</td>
</tr>
<tr>
<td>Cu-2</td>
</tr>
<tr>
<td>Cu-5</td>
</tr>
<tr>
<td>Cu-10</td>
</tr>
<tr>
<td>Cu-20</td>
</tr>
</tbody>
</table>

Figure 2. FT-IR spectra of the electrolytic Cu-plated activated carbon fibers.

Figure 3. Adsorption isotherms of N₂ at 77 K on the electrolytic Cu-plated activated carbon fibers.

Figure 4. Pore size distributions of the electrolytic Cu-plated activated carbon fibers.

Figure 5. t-plot of the electrolytic Cu-plated activated carbon fibers.

Figure 5는 Horvath-Kawazoe[16]의 slit pore모델을 이용하여
기공 크기분포도를 구한 것이다. 대부분의 기공은 10 Å 이하의 반지름을 가지는 미세기공으로 구성되어 있는 것을 알 수 있었으며 전
해 동도급에 의한 영향으로 표면 처리된 활성탄소섬유의 미세기공
이 전체보다 축소하지 않은 시료에 비하여 기공부피가 감소하는을 확인할 수 있었다. 또한 반지름 약 10 Å 미만의 미세기공에
서는 모든 활성탄소섬유에서 반지름의 증가에 따른 축소량의 변화가
구준히 감소하는 것을 관찰할 수 있다. 이는 동도급 처리에
의하여 활성탄소섬유의 미세기공고도 기공의 막힘 현상이 일부 일
이거나 기공이 커짐수록 그 현상이 활발하게 일어나기 때문이라고
생각되며, 본 실험에서의 결과는 그 현상이 일어나기 때문이라고
생각되었다.

Table 2는 Figure 3의 N₂ 동물 흡착로부터 BET법을 이용한
활성탄소섬유의 표면적, 미세기공 부피, 전체기공 부피, 그리고
기공의 대칭 등을 나타낸 것이다. 전체 기공에 대한 미세기공의 비
을로부터 각 시료 모두가 대부분 미세기공으로 구성되어 있는 것
를 확인할 수 있었으며, 동도급 처리되지 않은 미세기공의 경우 가장
높은 미세기공도를 나타내었다. 이는 동도급 처리에 의하여
도금시간이 증가함에 따라 활성탄소섬유 표면의 미세기공이 퍼져
되어 미세기공의 부피가 감소한 결과로 사료되어진다. 또한, 미세
기공의 부피감소로 인하여 BET 표면적 역시 도금시간에 따라 감
소하는 경향을 나타내었다.

3.4. NO 전환

Figure 6은 전체 동도금관 활성탄소섬유를 이용하여 500 ℃에서
Table 3. Textural Properties of the Electrolytic Cu-plated Activated Carbon Fibers

<table>
<thead>
<tr>
<th></th>
<th>As-received</th>
<th>Cu-2</th>
<th>Cu-5</th>
<th>Cu-10</th>
<th>Cu-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area</td>
<td>2121</td>
<td>1790</td>
<td>1630</td>
<td>1534</td>
<td>1060</td>
</tr>
<tr>
<td>(m²/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro pore volume</td>
<td>1.145</td>
<td>0.906</td>
<td>0.831</td>
<td>0.809</td>
<td>0.526</td>
</tr>
<tr>
<td>(cm³/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total pore volume</td>
<td>1.216</td>
<td>0.997</td>
<td>0.912</td>
<td>0.869</td>
<td>0.572</td>
</tr>
<tr>
<td>(cm³/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of micro pore (%)</td>
<td>94</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>Average pore radius (Å)</td>
<td>12.7</td>
<td>12.9</td>
<td>12.7</td>
<td>12.9</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Figure 6. NO conversion of the electrolytic Cu-plated activated carbon fibers.

NO 채추 실험된 결과를 나타내 것이다. 반응시간이 길어질수록 미처리 시험에 의한 NO 채무량은 전형적으로 감소하여 180 min이 지나면 약 14%의 전환율을 유지하였다. 이는 NO 가스와 탄소가 반응하여 질소와 이산화탄소로 전환되다가 정착적으론 그 성능이 감소하면서 탄소가 더 이상 신화되지 못하여 폐기하는 것으로 사료되었다. 반면, Cu-2와 Cu-5의 전환율은 서서히 감소하다가 각각 일정한 전환율을 유지하였으며[11], Cu-10과 Cu-20의 전환율은 변동없이 100%를 유지하며 매우 우수한 NO 전환율을 나타내었다. 이는 NO 가스가 탄소에 액화된 후 N₂를 방출하면서 탄소가 이산화물 형성석이 되어 NO와 반응하여 이산화탄소, 질소 및 이산화질소를 방출하는 것으로 생각되어야 한다. 특히 이렇게 생성된 이산화탄소와 NO와의 반응에 환원체로 작용하여 NO를 이산화탄소와 질소로 환원시키며 이 과정에서 구린의 총산화된 환원체로 반응에 관여하는 배가 있다고 사료되었다. 반면, Figure 6에서 나타낸 바와 같이 미처리 시험은 약 180 min이 경과하면 14% 정도의 전환율을 유지하였고 Cu-2와 Cu-5 그리고 Cu-10은 각각 120 min, 60 min, 그리고 0 min에서 각각의 NO 전환율 54%, 85%, 100%를 유지하였다. 그러므로 안정화된 NO 전환율을 보이기까지의 반응 시간인 as-received는 반응시간 후 180 min, Cu-2는 120 min, Cu-5는 60 min, Cu-10과 Cu-20의 0 min에서의 결과는 이산화물로 나타낼 수 있으며, 그 후 NO전환율이 일정한 부분은 안정화된 NO 제거율로 나타낼 수 있다.

Figure 7(a)와 (b)는 Cu 함량에 따른 NO 홍합성능감소, 안정화된 NO 제거율의 관계를 나타내는 결과이다. 기술기를 구하기 위하여

4. 결론

본 연구에서는 산성비의 원인이며 폐화스로크의 주요원인으로 여겨지는 NO의 제거를 위해서 황소나산 Level에 효과적으로 금속미경량을 첨하하는 방법 즉, 전체 동정방법으로 황소나산수정을 표면처리 함으로써 NO 전환율을 항상시켰다. 전체 동정량 처리과정과 황소나산 표면의 pH 및 광반응의 변화는 미리하였으나, 도입된 Cu 금속에 의하여 황소나산수정의 비표면적 및 미세기관의 부피는 감소하였는데, 황소나산수정의 비표면적 1100 cm²/g 정도까지의 비표면적의 감소도 불구하고 전체동정 처리시간에 따라 NO의 전환율은 증가하였다. 또한 황소나산 수정에 도입된 Cu 함량은 일정범위 내에서 NO 제거율과 비례하였다. 이는 황소나산수정의 전체 동정제에 있어서 Cu 함량이 NO 전환율을 크게 영향을 미치는 인자를 중 하나인 것으로 생각되며, 전체 동정방법으로 표면처리 황소나산수정은 NO를 제거하는 좋은 측면인 것으로 사료되어진다.

김의 글


참고 문헌