비이온계면활성제 수용액의 담점의 특성을 이용한 폴리테트라フル로오메틸렌디스퍼전의 농축에 관한 연구

김철홍†, 김광주, 이정민, 고기영, 구기갑

한국화학연구원 화학공정연구센터, 서강대학교 화학공학과
(2002년 2월 27일 접수, 2002년 5월 14일 재배)

Concentration of Polytetrafluoroethylene Dispersion through the Cloud Point of Nonionic Surfactant Aqueous Solution

Chul-Ung Kim†, Kwang-Joo Kim, Jung-Min Lee, Gi-Young Go*, and Kee-Kabho Koo*

Chemical Process & Engineering Center, Korea Research Institute of Chemical Technology, Daejeon 305-343, Korea

Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea*

(Received February 27, 2002; accepted May 14, 2002)

요약: 비이온계면활성제 수용액의 담점 특성을 이용하여 25 wt%의 폴리테트라플루오로에틸렌 디스퍼전(PTFE dispersion)을 60 wt%의 농도로 농축시키기 위해, 담점에 관한 비이온계면활성제의 농도와 첨가제의 영향 및 농축시험을 실시하였다. 비이온계면활성제를 유효계면계의 첨가기의 첨가인
(C_2H_5OH)의 n값이 7, 8, 9.5, 15와 나노僕의=의의응용이용하여, 첨가재료는 불소화 유효계면활성제인 CF_3COONH_4와 무기염인(NH_4)_2SO_4와 NH_4F를 사용하였다. 실험결과, 비이온계면활성제의 농도에 따라 담점은 사용한 계면활성제의 종류에 있어 담점은 줄어들고, 세척성과 증가하는 경향을 나타내었으며, 사용한 계면활성제의 첨가기의 n값이 증가함에 따라 담점이 높아졌다. 또한 첨가재의 첨가에 따른 담점의 영향은 무기염의 첨가할 경우에는 담점은 약간 감소하는 경향을 나타내었으나, 불소화 유효계면활성제의 소량 첨가에 의해서는 급격히 증가하는 경향을 나타내었다. 이에 25 wt% PTFE 디스퍼전에 적용하여 농축시험을 실시한 결과, 사용한 계면활성제 종 유효계면계의 n값의 8(HS308)을 사용하여 농축온도 60℃에서 계면활성제의 사용량 2.55–3 wt%, 중성의 pH 조건에 있어서 담점은 가장 낮아졌으며, 고농도의 60 wt% PTFE 디스퍼전을 얻을 수 있었다.

Abstract: In concentrating 25 wt% to 60 wt% polytetrafluoroethylene (PTFE) dispersion by the cloud point (CP) of nonionic surfactant solution, the effect of surfactants and additives on the CP was investigated. The nonionic surfactants used were polyoxyethylene octylphenyl ethers (C_12H_25O(C_8H_17O)_n) and polyoxyethylene nonylphenyl ethers (n=8). The additives were fluorinated ionic surfactant (CF_3COONH_4) and electrolytes (NH_4)_2SO_4 and NH_4F. It was shown that the CP increased by increasing the content of any one nonionic surfactant. However, high value of CP was observed for a nonionic surfactant with high number of ether groups (n). Depending types of additives added to the surfactant solutions, the CP was significantly affected: the CP decreased by the addition of the electrolytes, whereas the CP increased significantly by addition of small amount of the fluorinated surfactant. In the fast concentration of PTFE dispersion, OPFAs was found to be the best among the surfactants used. The optimum condition in terms of temperature, surfactant addition, and pH for the concentration of PTFE dispersion were determined to be at 60℃, 2.55–3 wt%, and pH of 7, respectively.

Keywords: PTFE dispersion, concentration, nonionic surfactant, cloud point, additive

1. 서 론

불소화 대표적인 고분자와 한 종류의 PTFE 디스퍼전은 TFE (tetrafluoroethylene)의 유화증함에 의해 나노급의 플라이지가 PTFE가 수용액에 분산된 상태를 말하는데, 유효성유와의 함향에 의해 대형 체포관 및 경기장의 침착이나 프라이스 등의 불소 혼합 분야에 널리 사용되고 있다[1,2]. 이러한 상업적으로 적용하여 있는 PTFE 디스퍼전은 수용액 기준으로 약 60 wt%의 PTFE 고농도도를 갖는다. 주로 중합반응에 의해 저농도의 나노급을 갖는 PTFE 디스퍼전을 합성하고, 이에 따른 농축 단계를 거쳐 생성된 고농도의 수분량체를 얻고 있다. 즉, 수용액에서 가스상의 TFE를 사용한 유화중합에 의해 소수상이 매우 강한 불소화 폴리져의 나노급이 일차적으로 생겨나, 어느 이상의 농도에서는 수용 액상에서 전하적으로 안정치로 관찰된 분산상이 빠져나가 용질 현상이 급격히 일어난다. 중합 중합반응에 의해 이루어진 150–250 nm의 평균 입자크기를 갖고 수용액 기준으로 20–30 wt% 정도의 저농도의 PTFE 디스퍼전이 얻어지고 있다[1–4].

현재까지 알려진 PTFE 농축방법은 앰프, 종합, 전기투석에 의한 방법 및 비이온계면활성제의 담점(cloud point)을 이용한 농축으로 이 방법은 대표적인 방법으로 [1], 본 연구에서는 전 유화중합방법에 의해 제조된 저농도의 PTFE 디스퍼전을 사용하여[3,4], 의 방법과 앰프의 다른 방법에 따라 일반적 비이온계면활성제의 수용액에서 특성적인 성질의 암립을 이용하여 고농도로 농축하는 방법을 제작하였다. 이에 담점이 높은 비이온계면활성제의 수용액을 어느 정도의 단계로 상태시키

† 주 저자 (e-mail: cajindp@paeh.krcit.re.kr)
먼 녹아있는 개별활성체가 물에 대한 용해도가 저하되어 첨가되기
나 유입항성이 나타나며, 결국 두개의 상으로 분리되어지는 현상을
말한다.

이러한 탐정의 현상은 주로 분석학자에서 두 물질을 분리하여
분석하는데 이용되어 오고 있는데, 최근 들어 분리, 회수, 추출 및
농축과정 등 다양한 분야에서 적용되고 있다[4-10]. 본 연구에서 적
용하고자 하는 PFTE 농축방법은 TFE와 유화층층 방식을 일반
적으로 30~100 °C 범위에서 실시하고 있기 때문에 증발을 후
순바로 비비온개별활성체의 상이의 항암성을 약간으로 잘보이지
PFTE 디스파던지를 장기 안정하고 분산성 있게 보관하기 위
해 비비온개별활성체를 일부 첨가시키고 있어, 상태적으로 조연
간단하여 경제적인 공정으로 판단된다. 그러나 이에 관한 연구
는 일부 정재가 발표되어 있지만 상세한 내용은 거의 알려져 있지
않고 있다.

따라서 본 실험은 크게 두 단계로 나누어 실험한데, 먼저 농
축에 적합한 개별활성체 및 첨가제의 선택을 위해 비비온 개별
활성체 수용액에 탐정에 실시한 실험을 실시하였으며, 이어서 선정된
개별활성체를 사용하여 고도의 PFTE 디스파던지를 위한 농축 실험
을 실시하였는데, 주요 실험 변수로는 농축 온도, 사용한 개별활성
체의 종류 및 양, 수용액의 pH였다.

2. 실험

2.1. 재료 및 시약

사용한 PFTE 디스파던지는 기 발표한 문헌의 방법에 따라 제조하
였는데[34], 수용액에서 가수변모가지 TFE에서 사용하여 불
소체 유화제인 C4F9COONH4 (FC-143, ammonium metallo-
carboxoate)를 제외, 3 Na)의 존재 하에서 유화층층에 의하여 제조하였
다. 얻어진 PFTE 용액 농도는 수용액 기준으로 25 wt%였으며,
평균 입자크기는 250 nm, pH는 2.7이었다.

또한 비비온개별활성체는 에틸렌 유아이드계로 polyoxyethylene
nonyl phenyl ether (OPEo, CH3(CH2)4CHO)와, OHL, n=7~15) 형
태와 polyoxyethylene nonyl phenyl ether 형태였는데, 전자는 카니
기신(OH3CNH3)n의 n이 다른 Triton X14(n=8, 미국 Aldrich)
Triton X100(n=10, 미국 Aldrich), HS208(n=9, 일본 일본유
사) 및 HS215(n=15, 일본 일본유사사), 후자는 NP-8(n=8, 한국 한
농화성)이었으며, 모든 별도의 정제 없이 그대로 사용하였다. 침
가하여는 불소체 유화개별활성체인 FC-143, 무기형으로는 APS
(aminum persulfate)와 NH3SO3H, 미국 Sigma의 교양용으로는
시료 어떤ータ, 미국 Aldrich사의 사용하였다.

사용한 용은 1 주로수성히 아로엔화수(포말: Millipore-Q Labo,
미국 Millipore사)와 헥시에탄수(포말: Milli-Q plus PF, 미국
Millipore사)를 계속해서 투과시켜 투과도 완전히 98.2 M2cm2를 가
진 순수수로 사용하였다. 마지막으로 모든 차류는 유기성물의 풍부를 제거
하기 위해 41℃ 15 min을 건조한 500 ml에 녹인
크루스만 용액으로 세척한 후 사용하였다.

2.2. 담당의 측정 및 농축 실험

담당 및 PFTE 디스파던지의 농축에 사용한 실험장치는 기 발표한
개별활성체의 수용액에서 상부의 화합물을 이용한 실험에 동일하였고, 즉, 양쪽에 무두유과 가지고 있는 항암제로는 TECH
VB-10 및 HC-20 Handy cooler 포함, 한국 [E&K tech사]로 제조
하여 사용하였다. 측정은 농도별로 10 개의 점을 시료로 만드는 유
리시험실(경적 1 cm, 높이 20 cm)에 각각 농도에 일정한 항암제로 유
적하여 온도를 서서히 올리면서 상부를 관찰하였다. 또한 상부를
줄어서 담당에 관찰하기 위해 항암제 절면 유리부분을 연화질과
합계한 형광등을 설치하고 앞면의 항암제 유리 부분에 다시 관광
필름을 설치하여 밝은 상태로 촬영하였다.

사용한 비비온개별활성체 수용액의 담당은 항암제의 온도를 서
서히 올려서 상(Phase)이 변해 급격히 담당되는 현상을 쉽게 관
찰할 수 있으며, 이때의 온도를 담당으로 정하였다. 그러나 항암
제를 함께 옮겨 가는 경우, 항암제의 중간에 따라 여타 성분이 혼합
되었으며 이때의 담당은 온도를 올리는 동안 최초로 상이 변
하는 온도로 정하였다.

또한 농축실형은 위에 각 혼합액에 적절한 양의 PFTE 디스파던
지 추가하여 혼합한 후 동일한 장치에서 20~90 °C 10 °C 간격
으로 온도를 올려 일정시간(2 h)동안 유지시키면서 상부의 수용액
증용으로부터 시간에 따라 PFTE 디스파던지가 분리되어 농축되는
것을 측정하였으며, 농축이 일어나는 정도는 조건에 따라 차이가
있었으나 전체의 농축이 일어나는 경우, 일정시간 2 h 내에서
서의 변형상태에 도달하면 농축의 길이는 거의 일정하였는데, 이
농축정도(precipitation ratio)가 100%로 정하였다. 즉, 상부 수용액중
은 거의 무리하게 유함으로서는 PFTE 고형결정작용을 하는 작용을
할 수 있는 상태를 나타내었다고, 실제로 진동 상당한 PFTE 고형결
정을 측정한 결과 수용액 기준으로 60%의 농도로 측정하였다.

그러나 상대적으로 농축도 잘 일어나지 않은 경우, 농축시간 2 h
에서 농축층의 길이와 상부중의 농도를 함께 측정하여 이를 상대
적 농축정도의 값으로 나타내었다. 즉, 상부액에 PFTE 고
형결정이 존재하는 상태로 하부액과 분리가 이루어져 상부중의 농
도를 다음과 같이 3단계로 구하였다. (A)는 상부액에 PFTE 디
스파던지가 거의 없는 상태로 상하의 농도중의 농도를 측정한 결과, 수용액 기준으로 약 60 wt%에 해당하였음을 나타내며,
(B)는 상부액에 PFTE 디스파던지가 일부 존재하여 약간 작한 상태
(농축중의 PFTE 고형결정이 30~50 wt%)를, (C)는 상부액에 PFTE
디스파던지는 상당량 존재하여 매우 작한 상태(농축중의 고형결정이
30 wt%)로 구하였다.

3. 결과 및 고찰

3.1. 비비온개별활성체의 담당에 관한 농도의 영향

비비온개별활성체로는 옥시폐색제(OPEo, n=8, 9, 9.5, 15)와 노닐
페닐계(NPE, n=8)를 사용하였는데, 증발을 바탕으로 동일한 시간
으로 고도로 농축시키기 위해 이 온도에서 담당을 나타내었다.

PFTE 디스파던지를 장기간 보관하기 위해 사용하고 있는

공일과학, 제 31 권 제 4 ,호, 2002
3.2. PTFE 디스퍼전의 농축

Figure 4에서는 저 농도인 25 wt% PTFE 디스퍼전을 사용하여 60 wt%의 고농도로 농축하기 위한 절차를 도식화하였다. 즉, Figure 4의 (1)은 시료주입관에 PTFE 디스퍼전을 주입하여 나노 크기의 PTFE 물리적 입자들이 수용액상에서 잘 분산된 상태를 나타내었다. 또한 (2)는 여기에 빌리온격환성제를 일정량 넣고 잘 혼합한 혼합액을, (3)은 혼합액을 농축시키며 PTFE의 용한에 부착되어 PTFE 물리적 입자들이 되는。

수용액에서 비중을 증가시키며 섭취하는 수용액의 회색층과 하부의 PTFE 불리며 농축층으로 분리가 일어나는 현상을 나타내었다.

Figure 5-8에서는 불가능한 단계를 거쳐 농축시간에 따른 농축도(pestication ratio)의 영향을 나타내었다. 즉, Figure 5에는 빌리온격환성제의 종류의 영향, Figure 6에는 온도의 영향, Figure 7-8에는 pH 및 빌리온격환성제(HS308) 사용량의 영향을 각각 나타내었다. 먼저 Figure 5에는 PTFE 디스퍼전을 고농도까지 농축시키기 위해 적합한 농축사이지를 선택하기 위해 빌리온격환성제로 NPB, HS308, OP3, TX100 및 TX114를 사용하여 농축시간에 따른 농축도(pestication ratio)의 영향을 나타내었다. 동일한 조건에서 농축제의 종류의 영향을 비교하기 위해 일정한 온도(80 ℃)와 농도(수용액 기준으로 3 wt%) 및 pH(회색 암모니아수를 적절히 증가하여 유지)의 조건에서 동일한 용시에서 계명된 계명제의 빌리온격환성제를 사용하여 천수기의 n값이 다른 계명환성제의 종류에 따라 달라진다.
Figure 4. Schematic diagram for the concentration of PTFE dispersion.

Figure 5. The effect of surfactant type on the precipitation ratio (%) of PTFE dispersion with time.

Figure 6. The effect of temperature on the precipitation ratio (%) of PTFE dispersion with time.

물 비중하하여 이 개시제가 중합반응에서 분해되어 산성영역에서 TFE의 모노미와의 Koltshof반응에 의해 생성된 HF가 포함되어 있으며, 따라서 중합반응 후 pH는 거의 산성 영역인 2.7 정도를 나타낸다[8]. 이 HF는 결국 중추요로 pH를 중성영역으로 유지하기 위해 참가한 암모니아수소와 반응하여 NHF(AF)를 형성하여 이 PTFE 디스파린에 포함되어 있을 것으로 추정되며, 실제 Figure 2의 AF의 찬상때의 영역에서 알 수 있듯이 무기염의 형태로 담겨있는
온도에서 영역을 미치고 있다.

또한 중합반응시 유화용으로 사용한 불소계 계면활성제인 PC-143은 PTFE 디스파린의 나노입자 표면에 형성되거나 수용액에 분산되어 존재함으로써 Figure 3의 결과에서 알 수 있듯이 양단의 존재도 담겨있는 상상에 크게 영향을 미치는 것을 알 수 있다. 따라서 무기염 물질에 함께 PTFE 디스파린에 포함되어 있어 실제

중합이 잘 일어나는 온도는 비이온계계면활성제 수용액만의 담겨있는

20 ℃ 정도의 더 높은 온도에서 건조가 잘 일어나는 것으로

생각된다.

동일한 수용성의 사물질을 거치며 소수기 다른 비이온계계면활성제
의 중합의 영역을 비교해 보자(Figure 5, oxylphosphene 제3, HS-
208)은 nonylphenyl 계제 NP-8를 사용하는 경우보다 PTFE 디스파린의 중합이 잘 일어났는데, 이는 계면활성제의 종류에 따라 소
수성인 PTFE의 화학적 특성 차이에 기인하는 것으로 판단된다.

Figure 7과 8은 해당 온도를 60 ℃로 일정하게 유지한 상태에서,

PTFE 디스파린의 중합에 관한 pH 및 비이온계계면활성제의 중도
영역을 나타내었다. 즉, Figure 7은 pH를 중합반응만의 상태인

pH = 2.7로 유지하고 여기에 비이온계계면활성제를 수용해 기준으로 1.75 - 3.25 wt%의 중도로 각 주입하여 잘 혼합한 경우이고,

Figure 8은 화학적 암모니아수소를 사용하여 pH를 중성영역인 pH = 7

조절한 경우이다. 이 두 결과를 비교하여 살펴보면, 동일한 계면활

성계의 중도 범위에서 pH를 중심으로 유지한 경우가 찬상 정도

(precipitation ratio)의 값이 상대적으로 큰 값을 나타내고 동일시

간에 중합이 얼마나 일어나는 것을 알 수 있었다. 이는 중성영역의

pH에서 계면활성제가 PTFE 입자 표면에 희석되어 담겨있던

場合이 중합반응시 무기염의 형태로 분산되어 실제로 PTFE

나노입자의 비중을 증가시켜 수용액으로부터 분리, 건조

을 충진하기 때문으로 사료된다. pH를 7로 유지한 경우, 비이온계

계면활성제의 수용액 기준으로 2.5 - 3 wt% 중도에서 화학적

수용액에 PTFE가 거의 존재하지 않은 상태에 해당하여, 중합이

공업화학, 제 13 권 제 4 호, 2002
비이온계면활성체 수용액의 담정의 특성과 이용한 토리테트라플루오르에틸디스페어의 농축에 관한 연구

Figure 7. The effect of nonionic surfactant concentration on the precipitation ratio of PTFE dispersion with time at pH=7 and 60°C.

Figure 8. The effect of nonionic surfactant concentration on the precipitation ratio of PTFE dispersion with time at pH=2.7 and 60°C.

4. 결 론

본 연구는 비이온계면활성체 수용액의 담정 특성을 이용한 토리테트라플루오르에틸디스페어의 농축에 관한 연구이다. 비이온계면활성체 수용액의 담정을 위한 농도의 조정을 위하여, 고농도의 액체를 사용하여, PTFE의 농축을 조정하였다. 또한, 25wt%의 PTFE 디스페어에 사용하여, 농도의 변화에 따라 담정의 특성과 이용한 토리테트라플루오르에틸디스페어의 농축에 관한 연구가 진행되었다.

1) 사용한 비이온계면활성체 수용액의 담정은 농도에 따라 담정 연결을 가지고, 서서히 증가하는 경향을 나타내었다. 또한, 동일한 속도 페놀의 비이온계면활성체를 사용한 경우, 전환기의 n값이 증가함수록 동일 농도에서 담정은 높은 온도에서 극대화되었다.

2) 담정에 관한 관찰의 영향은 깃털로 (NH₄)₂SO₄나 NH₄F
을 첨가한 경우, 담정은 상향으로 약간 감소하는 경향을 나타내었으며, 동일농도에서 담정은 NH₄F=(NH₄)₂SO₄의 경향을 나타내었다. 또한, 그 후에 음이온계면활성체인 FC-143를 첨가한 경우, 깃털의 첨가량의 나머지 담정은 급격히 증가하는 경향을 나타내었다.

3) 25wt%의 PTFE 디스페어를 사용하여, 농도의 변화에 따른 결과, 사용한 계면활성체 중 것처럼 깃털이 n=8(HS208)을 사용한 경우, 고농도의 PTFE함량을 가지며, 농도가 상대적으로 높이 있어, 농축은 60°C, 계면활성제 사용량 2.5%~3wt%, pH는 6으로 유지한 조건에서 최적 농도조건을 나타내었다.

참고 문헌