A Study on Comparison of Removal Efficiency in LAS and ABS with Oenanthe Javanica

Kim Jong Shik

Department of Chemical Engineering, Keimyung University, Daegu 704-701, Korea

(Rceived March 4, 2002; accepted April 1, 2002)

Abstract: This study was conducted to examine the removal efficiency of LAS (linear alkylbenzene sulfonate) and ABS (alkylbenzene sulfonate) by Oenanthe javanica, which is one of the aquatic plants in Korea. The concentrations of surfactants were measured in 3 different media: (i) in pure water; (ii) in water containing Oenanthe javanica; and (iii) in water containing Oenanthe javanica and commercial nutrients. The results showed that LAS was removed more effectively by Oenanthe javanica, probably because this has more linear carbon chains than ABS, which has branched carbon structure. In the experiment of photodegradable and biodegradable, 5-day cultivating test with initial concentration of 10 mg/L, showed that ABS and LAS removals were 4%, 6% respectively. Thus, when Oenanthe javanica was added to the sample solution containing ABS and LAS, the removal efficiency increased. With the synthetic nutrients, ABS and LAS were more effectively removed than the one with only Oenanthe javanica in distilled water. In the case of high concentrations of surfactants, more than 5 mg/L, it was found that any additional amount of the synthetic nutrients added showed no further increase in the removal of ABS and LAS. In fact, at such high concentrations of surfactants, the surfactants inhibited the growth of Oenanthe javanica.

Keywords: oenanthe javanica, linear alkylbenzene sulfonate (LAS), alkylbenzene sulfonate (ABS)

1. 서 론

오늘날 급속히 산업의 발달과 함께 화합체성 보호수를 사용하는 낭로 증가는 추세인 것으로, 이에 필수처리시설의 화합체성 보호수의 유입으로 필수처리에 어려움을 겪고 있는 실정이다.

우리나라 대부분 사업장에서의 필수처리를 위하여 화합체성 보호수의 유입이 많이 해체되고 있으며, 이러한 공법은 화합체성 보호수의 제거에 효과적이지 못한 것으로 나타나고 있다[1]. 따라서 일부 사업장에서는 자연처리법(natural treatment method)에 대한 연구가 활발 하시고 있으며, 그 중 수용물질(emergent plants)을 이용한 인공 습지법을 적용한 수용물질이 높은 것으로 가히는 방법에 보고되고 있다[12]. 이러한 처리법은 자연습지 처리방법을 이용하여 필수처리를 처리하는 것으로서 미나리를 포함한 습지식물은 필수처리의 안정성, 영향류제거, 수확물 수호와 휴식기 등과 같이 화합체성 보호수의 작용을 감소하는 것으로 인식되고 있다[2].

외국에서는 부패의 방, 개구리와 같은 등에 의한 수용물질시스템과 자연습지 및 인공습지 이용의 영향류제거가 실험되어 있으며[3,4], 우리나라에서도 낭로 강화되어 가는 배출수 수질기준을 만족시키기 위해서는 수용물질을 이용한 수용물질법의 활용은 점차 확대될 것으로 판단된다. 또한 습지법을 이용한 처리는 경제적이고 그 효과도 높은 것으로 평가받고 있으며, 습지법이 이용 한 처리법은 소도시 지역의 수용물질설치 화합체성 보호수에 적합할 뿐만 아니라 하수 및 필수처리장의 수용물질 수질개선에 큰 역할을 할 것으로 확신된다.

본 연구에서는 우리나라에서 잘 성장하는 수용물질 중 식용으로 받아들여, 동남아시아에서 잘 식식하는 미나리를 이용하여 수질화합체성 보호수에 대해서 조사하여 그 유용성을 높이 사용되고 있는 ABS와 가정용 화합체성 보호수의 강화를 목표로 하는 연구를 실시하였다. 이러한 실험결과는 수용물질이 수질화합체성 보호수의 친화성이 높은 것을 알 수 있다.

2. 실험

2.1. 실험재료

본 연구에 사용된 미나리는 경상북도 군위군 사직리에서 채취하였으며, 채취한 미나리는 수동으로 여러번 수세한 후 일 부분을 잠

† 주 자자(e-mail: jongskim@kmu.ac.kr)
라 루리와 충전을 다시 제제하였다. 제제조는 아크릴용으로 제작하였으며, 이때 한 개의 수지는 20 cm × 20 cm × 20 cm로 10조를 제작하여 실험을 수행하였고, 수지는 10 cm가 되게 하여 응력량을 4 kg가 되게 하여 실험을 수행하였다. 그리고 미나리에 의한 LAS 및 ABS의 제제효과를 조사하기 위하여 3회에 걸쳐 반복 실험한 결과를 사용하여 그래프를 그렸으며, 수경계래에 사용한 인공배양액양은 Table 1과 같이 조제하였고, 이는 고정식물의 수경계래에 널리 활용되는 것으로 알려져 있다[1].

2.2. 실험방법
본 연구는 2001년 10월부터 2002년 1월에 걸쳐 실험을 수행하였으며, 실험장소는 일일 일조시간을 동일하게 유지하기 위하여 실험 실내 빛이 약에 설치하였다. 그리고 각 수조의 수온차이는 4 h간격으로 측정하여 각 수조의 수온차를 20 °C ± 2 °C으로 되게 나newInstance하였다. 이는 7로 동일하게 하였으며, 5일간 같은 시간에 시료를 체취하여 수질을 분석하였다. 또한 LAS 및 ABS의 광분해 및 생분해에 의한 제거 정도를 측정하기 위하여 대조군 (control)을 설치하였으며, 대조군을 제외한 수조의 미니아 개체밀도는 300 g/4 L로 일정하게 하여 실험을 수행하였다. 실험에 사용된 ABS 및 LAS의 농도는 1.0 mg/L, 3.0 mg/L, 5.0 mg/L, 10.0 mg/L로 실험을 실시하였으며, 1군(대조군)은 증류수에 각 농도별 ABS와 LAS를 첨가한 후 미나리를 수경계래 하였으며, 2군은 증류수에 인공배양액을 일정량 (NO3-N 40 mg/L, PO4-P 5 mg/L) 첨가하고 여기에 ABS 및 LAS를 각 농도별로 조제한 후 미나리를 수경계래 하였다. 또한 ABS 및 LAS의 전류 농도는 methylene blue active substances (MBAS) 방향으로 측정하여 정량하였다[5].

3. 결과 및 고찰
3.1. 광분해 및 생분해
본 실험은 ABS 및 LAS가 광분해, 그리고 생분해되는 정도를 조사하기 위하여 증류수에 ABS와 LAS를 각각 1.0 mg/L, 3.0 mg/L, 5.0 mg/L, 10.0 mg/L로 수지에 5일간 실험을 실시하였다. 이때 pH는 7로 유지하였으며, 제제조는 일일 일조시간을 동일하게 유지하였으며, 제제조는 일일 일조시간을 동일하게 유지하였다. 각 수조에서 실험 후 3일에 시료를 분석하여 농도별 전류 ABS와 LAS농도를 측정한 결과 Figure 1과 Figure 2에 같은 결과를 얻었다.

Figure 1과 Figure 2에서 보는 바와 같이 10.0 mg/L, 5.0 mg/L, 3.0 mg/L, 1.0 mg/L의 시간에 서 미나리 수경에 대한 점지효과는 LAS의 경우 4.5%가 제거되었으며, LAS의 경우 6%가 제거된 것으로 나타났다. 이러한

3.2. 미나리에 의한 LAS 및 ABS처리
미나리에 의한 ABS 및 LAS의 제거 정도를 조사하기 위하여 증류수에 ABS 및 LAS를 각각 1.0 mg/L, 3.0 mg/L, 5.0 mg/L, 10.0 mg/L로 조절하고, 미니아를 300 g/4 L로 일정하게 하여 5일간 수경계래를 실험한 결과를 Figure 3과 Figure 4에 나타내었다.

Figure 3에서 보는 바와 같이 ABS의 경우 농도가 높을수록 제거효율은 현저히 떨어졌으며, 제제조 5일을 기준으로 1 mg/L에서는 42%가 제거된 반면, 10 mg/L에서는 27%가 제거된 것으로 나타났다. 또한 ABS 농도가 5 mg/L 이상인 수조에서는 재채 3일에서 미니아 없이 자갈으로 변화한 뒤 서서히 자갈로 시작한 것으로 관찰되었다. 이러한 결과는 ABS가 미나리 생식체의 모양으로 성장하는 것으로 판단되었다[7]. 그리고 증류수에 LAS를 각 농도별로 수지에 주입 후 미나리를 재배한 경우 1 mg/L에서는 80%가 제거되었고, 10 mg/L에서는 53%가 제거되어 ABS보다 높은 제거효율을 보인 수 있었다. 이는 미니아의 LAS 보다 저체형인 LAS가 미나리에 의하여 더 잘 제거되는 다른 연구자들의 결과와 잘 부합되는 것으로 확인하였다[12]. 그리고 LAS 및 ABS는 미니아에 의하여 재배를 시작한 1일째 가장 많은 양이 제거되었으며, 3일째부터 제거효율이 크게 둔화되는 것으로 조사되었다. 이러한 결과는 LAS 및 ABS의 제거를 위한 인공배양 조건이 중요한 자료로 활용될 수 있을 것으로 판단되었다.

Table 1. Composition of Synthetic Nutrient Solution

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO3</td>
<td>41.48</td>
</tr>
<tr>
<td>NaNO3</td>
<td>25.80</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>56.53</td>
</tr>
<tr>
<td>Na2HPO4</td>
<td>2.59</td>
</tr>
<tr>
<td>MgSO4·7H2O</td>
<td>1.33</td>
</tr>
<tr>
<td>CaCl2·2H2O</td>
<td>1.60</td>
</tr>
<tr>
<td>HOOC(CH2OH)COOH</td>
<td>1.20</td>
</tr>
<tr>
<td>FeCl3·6H2O</td>
<td>0.24</td>
</tr>
<tr>
<td>H2BO3</td>
<td>0.21</td>
</tr>
<tr>
<td>Na2MoO4·2H2O</td>
<td>0.19</td>
</tr>
</tbody>
</table>

3.3. 인공배양액이 LAS 및 ABS제거에 미치는 영향

인공배양액의 주입에 따른 ABS 및 LAS의 제거효율을 분석하기 위하여 배양액을 일정량(NOx-N: 40 mg/L, PO4-P: 5 mg/L)을 첨가하여 미나리 풀을 수경배치 한 결과 Figure 5, 6과 같은 결과를 얻었다. Figure 5에서 보는 바와 같이 미나리 제배기간 5일을 기준으로 ABS의 경우 인공배양액의 첨가로 1 mg/L에서 52%가 제거되어서 10mg/L에서 10% 이상 제거효율의 상승이 관찰되었다. Figure 6에서 보는 바와 같이 LAS의 경우 인공배양액의 첨가로 3 mg/L에서 10%가 제거되어서 10mg/L에서 5% 이상 제거효율의 상승이 관찰되었다. 이러한 결과 배양액의 첨가로 3 mg/L이하의 ABS농도에서는 현저한 제거효율의 상승을 기대할 수 있으나, 10 mg/L 정도의 고농도 ABS 제거에는 인공배양액의 큰 효과를 기대할 수 없는 것으로 조사되었다. 그리고 미나리 제배에 인공배양액을 주입한 LAS제거 실험의 경우, 제배기간 5일을 기준으로 LAS를 1 mg/L 함유한 경우 96%가 제거되어 거의 완전한 제거가 이루어졌으나, 10 mg/L에는 60% 정도가 제거되어 저농도에 비해 제거효율이 감소한 것으로 조사되었다. 이러한 결과는 10 mg/L 정도의 고농도 LAS 역시 미나리 생육에 독성물질로 작용하는 것으로 판단되었다[8]. 그리고 인공배양액의 사용으로 ABS 및 LAS의 제거효율 상승을 확인할 수 있었으나, 5 mg/L 이상의 농도에서는 제거효율의 큰 상승은 기대할 수 없는 것으로 조사되었다.

3.4. 미나리 생체 중량 변화

미나리를 이용한 ABS 및 LAS의 제거실험에서 미나리의 생체중량 변화를 제배기간 동안 관찰한 결과 Figure 7, 8과 같은 결과를 얻었다. 증류수에 ABS만 일정 농도로 주입 후 미나리를 5일간 제배한 결과 1 mg/L의 수조에서는 미나리의 생체중량이 6.7%가 증가하였으며, 3 mg/L에서 3.3%가 증가한 반면, 5 mg/L의 수조에서 는 -10.0%, 그리고 10 mg/L 수조에서는 -13.3%가 증가하였다. 이렇게 ABS농도가 증가할수록 생체중량은 감소한 것은 ABS가 미나리 생육에 독성물질로 작용된 것으로 판단되었다. 또한 ABS농도가 5 mg/L 이상인 수조에서는 제배기간 3일째부터 일부 미나리의 갈색으로 변하면서 마르게 되는 경향이 관찰되었다. 그리고 LAS수조에서는 Figure 8과 같이 LAS 1 mg/L의 경우
미나리를 이용한 LAS와 ABS의 제거효율 비교에 관한 연구

제거기간 5일을 기준으로 ABS 보다 높은 15%의 생체중량증가가 관측되었으며, 10.0 mg/L 수용액에서는 -10.0%가 증가된 것으로 조사되었다. 이로 미루어 볼 때 미나리 생육이 ABS 보다 더 득성이 있는 것으로 판단되었다.

인공배양액의 첨가에 따른 미나리 생체중량의 변화를 관측한 결과 Figure 9, 10과 같은 결과를 얻었다. ABS의 경우 제거기간 5일을 기준으로 1 mg/L에서는 13.3%의 증가를 보였으나, 10 mg/L에서는 -3.3%로 조사되어 인공배양액의 사용으로 생체중량이 증가한 것으로 조사되었다. 그리고 인공배양액을 첨가한 LAS제거실험에서 제거기간 5일을 기준으로 1 mg/L에서는 23.3%의 높은 생체중량의 증가가 관측되었으며, 10 mg/L에서는 -18.6%로 관측되어 인공배양액이 생체중량 증가에 중요한 인자임을 확인할 수 있었다[19].

4. 결론

미나리를 이용한 LAS 및 ABS 제거실험을 실시한 결과 ABS 및 LAS제거에 있어 10.0 mg/L을 기준으로 5일간 광반해 및 생물해 실험에서 ABS는 4%, 그리고 LAS는 6%가 제거되어 적절한 처리 없이 하천 유입되었을 때 산소전달의 차단 등 수중생태계에 악영향을 미칠 것으로 판단되었다. 그리고 중류수에 미나리를 300 g/L로 제거한 결과, 수경제해 5일을 기준으로 ABS는 42%가 제거된 반면, LAS는 80%가 제거되었다. 이러한 결과는 미나리의 사용으로 ABS 보다 적절히 LAS가 미나리에 의하여 더 잘 제거된다는 다른 연구자들의 결과와 잘 부합하는 것으로 확인되었다. 또한 인공배양액의 사용으로 ABS 및 LAS제거의 제거효율이 향상된 것을 볼 수 있었으나, 5 mg/L 이상의 ABS 및 LAS농도에서는 인공배양액의 사용에도 불구하고 큰 제거효율은 기대할 수 없었으며, 오하리 미나리 생체중량이 감소가 관측되었다. 이는 5 mg/L 이상의 ABS 및 LAS가 미나리 생육에 독성이 있는 것으로 치료한 결과로 판단되었다.

감사의 글

"본 연구는 2001년 계명대학교 비사연구기금으로 이루어졌음"이 어간 감사를 드립니다.

참고 문헌