리파제를 이용한 모노글리세리드의 선택적 합성 방법에 관한 연구

정 대 원† 송재현

수원대학교 공과대학 고분자공학과
(2001년 7월 23일 접수, 2001년 11월 20일 재정)

A Study on the Method for Selective Synthesis of Monoglyceride using Lipase

Dae-won Chung† and Jhe-ahyung Song

Department of Polymer Engineering, College of Engineering, Suwon University, Suwon 400-600, Korea
(Received July 23, 2001; accepted November 20, 2001)

요약: 본 연구에서는 식중물매체 용도의 제련함성제로서 널리 사용되고 있는 모노글리세리드(MG)를 리파제 존재 하에서 선택적으로 합성하였다. 기존의 방법론을 대비하는 데, 트리글리세리드, 메틸스테아르레이트(MS)의 에스테르로 교환반응을 유기용매 중에서 수행함으로써 디글리세리드의 생성율을 1% 이하로 약 짧아하면서 60% 이상의 전환율로 MG를 합성할 수 있었다. 본 논문에서는 반응 용액의 물질의 유용성 및 반응 조건의 미치는 영향을 관찰하여 연구하였다.

Abstract: Monoglyceride (MG), which is one of the major surfactants used in food-additive applications, was synthesized using lipase. Transesterification of glycerol (G) and methyl stearate (MS) in organic solvent resulted in more than 60% conversion to MG, whereas the formation of diglyceride was kept at less than 1%. In the paper, the effect of molar ratios of reagents and solvent on the reactivity and the selectivity was investigated.

Keywords: monoglyceride, lipase, transesterification, glycerol, methyl stearate

1. 서 론

식중물매체 용도의 제련함성제로서 널리 사용되고 있는 모노글리세리드(monoglyceride, MG)는 일반적으로 다음과 같은 3가지 방법에 의해서 제조되고 있다[1]. 즉, 1) 할랄의 후에 해에서 육지와 글리세릴의 알코올 교환반응(glycolysis), 2) 육지의 부분 가수분해, 3) 지방산과 글리세릴의 에스테르화 반응 등을 할 수 있다. 그러나, 이와 같은 화학적 방법은 고온에서 반응을 시키므로 생성물의 색상이 변색되거나 온도를 낮게 하더라도 품질의 변질을 심각한 경우가 발생한다. 또한, 화학적 반응에 의해 MG만이 선택적으로 생성하는 것이 아닌, 트리글리세리드(triglyceride, TG) 등도 동시에 생성되므로 사용할 수 있는 MG에는 상당한 양의 DG가 포함되어 있다. 따라서, 이와 같은 단점을 보완하기 위해서 에스테르화 합성에 관여하는 효소인 리파제를 이용한 MG 합성 연구가 활발하게 이루어지고 있다[2,3]. 효소함성은 환경 조건에서 수행 가능하며 선택적인 반응이 가능한 특성을 지니고 있으며, 합성 친화적이라는 점에서 MG의 선택적 합성에 가장 적합한 용도이다. 리파제로 이용한 MG의 합성은 기초적으로는 앞에서 얻어진 항목의 반응을 적용하지만, 축적으로 리파제를 사용하는 것이다.

이러한 합성 방법으로는 첫째, TG를 glycolysis시켜서 방법 [4-6] 또는 고정화한 리파제를 이용하는 방법[7] 등이 있으며, 이 방법에 의해서 생성되는 MG는 TG, 1,3-DG, 1,2-DG 및 유리방

† 주 저자 (e-mail: dwchang@mail.suwon.ac.kr)


2. 실험

2.1. 시약 및 기기

글리세릴, 메틸스테아르레이트(methyl stearate, MS), 용매 등은 시약용품을 정제하였으며 사용하였다. 리파제로는 Sigma 제품의 porcine pancreatic lipase (activity: 35-70 units/mg protein using triacetin)를 사용하였다.
시간 반응을 계속한 후에 반응물을 여과하여 리파세를 제거하고 감압하에 용액을 제거하였다. n-헥산을 첨가하여 60 ℃에서 완전히 용해시킨 후 실온에서 24 h 방치함으로써 무색의 결정을 얻을 수 있었다. 여과하여 얻은 생성물을 30 ℃에서 건조끌어내하여 순수한 MG를 얻었으며, 생성물의 용점은 76 ℃임을 확인하였다.

3. 결과 및 고찰

3.1. 글리세롤과 MS의 용리에 따른 반응성의 변화

글리세롤과 MS의 용리 비율 3:1, 1:1, 1:3, 1:6, 1:9 등을 이용하여 반응시간 동안의 결과를 Figure 1에 나타내었다. 일반적인 MG의 선택적 함성 반응은 LG의 생성을 억제하기 위하여 글리세롤을 과량으로 사용한다. 예를 들면, 글리세롤과 비판 액체의 경우에는, 반응 초기에 약간 차이가 있으나 글리세롤을 과량으로 사용하는 것이 대체로 유리하다. 그러나, 글리세롤과 MS의 액체 교환반응에 있어서는 Figure 1에 나타낸 것과 같이, 글리세롤을 과량으로 사용한 경우에는 MG의 거의 생성되지 않았으며 MS의 양이 늘어남수록 반응 속도가 증가할 것을 알 수 있다. 또한, 본 실험으로는 6% 용리에 9 제에 6% 용리 실험시 경과시간 0.5~70%는 모든 반응물에서 30~70%의 범위 내에 높은 변화가 없는 것으로 나타났다. 반면에, MS 글리세롤의 6% 용리에 사용한 동일한 반응에서 MS의 MG 및 DG의 전환율 실험 결과를 정립한 Table 1에서 알 수 있다. MS의 초기에 되지 않으며 MS의 전환율이 60% 정도에 도달할 경우에도 MG 전환율이 1% 정도에 지나지 않는 것이 확인되었다.

리파세를 이용한 글리세롤과 TG의 glycerolysis 반응에서는, 리파세의 종류 및 반응 조건에 따라서 약간의 차이가 있으나, MG의 생성률이 약 60% 정도가 대체로 이에 의하며, GA DG (1.2- 1.3)과 10%~20% 정도의 범위에서 이의 측정치가 있는 것으로 알려져 있다(14, 12). 즉, MG의 생성율은 매우 낮은 것으로 알림이드. 그러나 본 연구에서는 MS의 최대 생성량이 60% 정도인 실험 동일화, 이에 따른 MG의 생성량은 1% 정도에서 선택성에서 매우 우수한 것으로 판단된다.

그리고 리파세를 사용한 MG의 선택적 함성 반응에서도 앞에서 설명한 가장 일반적인 두 가지 방법이 본 연구와의 차이점은 다음과 같다. 즉, 글리세롤과 TG의 glycerolysis에 있어서는 TG의
지방산과 글리세롤이 반응하여 MG가 생성되며 동시에 반응한 TG는 DG로 변화하게되며, 또한 반응이 진행됨에 따라 다른 생성된 MG와 DG로 전환될 수 있는 반응가수지로서, 이는 생성된 DG가 생김으로써 생성된 MG와 DG로 전환되면서 MG를 선택적으로 합성하는 것이 기본적으로 이루어진다. 또한, 글리세롤로부터 생성된 에스테르화 반응에 있어서는 생성된 글리세롤과 지방산이 상대적으로 적은 반응은 반응이 제한되며 이러한 생성된 MG는 제한적에 전환되어 특성 특성에 두 상의 반응에 존재하게 된다. 따라서 지방산과 용이하게 반응하여 DG로 변환할 가능성이 높으므로 글리세롤을 꽤대로 사용하여도 효과적으로 DG의 생성을 억제하지 못하는 것으로 판단되었다. 반면에 본 연구에서는 리파제를 제외한 반응 시약들에 균형계로 존재하며, acyl 공여 기인 MS가 지방산 자체에 비하면 조금 더 일시적 상태를 받을 수 있다는 점에서 효율적으로 DG의 생성을 억제하되 MG를 선택적으로 합성할 수 있는 것으로 생각된다.

3.2. 반응 용액에 따른 반응성의 변화
3.1절에서의 실험 결과에서 최적 조건으로 판단되는 글리세롤과 MS의 용액을 1:1으로 고정시키고 다양한 유기용매를 사용한 반응을 검토하였다. 불루벤, MC 등의 비극성 용매에는 글리세롤이 섞이지 않으나, 리파제가 흡수되기 때문에 정상적인 반응이 불가능 하였으며, 실험적으로도 MS는 생성되지 않았다. 그러나, 1,4-디옥산이 이의하여 aceton 및 테트라하이드로프란(Tetrahydrofuran, THF)과 같이 비교적 균일한 높은 용기용매에서는 리파제가 균일하게 분산되었으며, 이 때의 MG 생성을 결과를 Figures 2와 3에서 나타내었다. THF를 사용하였을 경우에는 초기 반응 속도가 매우 느리고 약 25% 정도의 전환율에 도달한 이후에는 전 환율에 현저한 변화가 없는 것으로 나타났다. 이는 반응 용액의 MS가 THF에 용해되지 않고 불균일한 상태로 반응이 진행되기 때문에로 생각된다. 한편, 아세톤을 사용한 경우에는 초기 반응 속도는 1,4-디옥산의 경우와 비슷하나, 약 40% 정도의 전환율에 도달한 이후에는 현저한 변화가 없는 것으로 나타났다. 1,4-디옥산, 아세톤 및 THF의 용해지수는 각각 10.0, 9.9, 9.1 (g/cm3)1/2로서 [13] 이들 용매의 균일성에 큰 차이가 없으나, 본 반응에 있어서는 1,4-디옥산을 용매로 사용하는 것이 최적인 것으로 나타났다.

3.3. 리파제의 재사용
효소를 사용한 반응 과정에서는 정계적인 측면을 고려하여 효소를 재사용할 필요가 있으므로 고온화 효소를 사용하는 것이 일반화되어 있다. 그러나, 본 연구에서는 유기용매 중에서 불순물 상태로 리파제를 사용하고 있으므로 고정화되지 않고 단순한 여타를 통하여 리파제를 회수할 수 있을 것으로 판단되어 반응 용액로는 1,4-디옥산, 글리세롤과 MS의 용액비 1:6으로 하여 72 h 반응 시킨 후에 반응물을 분리하고 M.C로 채아낸 후, 여러개의 맵되어 있는 리파제를 전부 회수하여 첫 번째 반응과 동일한 조건 하에서 MG 생성 반응을 진행하였다. 각각의 반응에 있어서의 MG 전환율을 나타내 Figure 3에서 알 수 있으며, 재사용 경과에는 초기 반응 속도도 약간 저해되며 MG 전환율이 약 50%에서 60%로 대략히 내려가며 더 이상의 전환가능은 없는 것으로 보아 리파제의 활성이 약간 저해되는 것을 알 수 있었다. 일반적으로 효소는 수용액 상태에서 활성 관을 나타내며, 유기용매에서 사용할 경우 활성이 저하되는 경우가 있으며 본 반응에서도 비슷한 현상을 보였다. 그러나, 본 연구에 있어서의 회수 방법은 매우 간단하며 또한 활성 저하도 미미한 것으로 나타났다.

4. 결 론

활성화처리 방법에 의하여 MG를 선택적으로 합성하는 신규 방법에 관하여 연구하여 다음과 같은 결과를 얻었다.
(1) Crude형태의 리파제인 porcine pancreatic lipase를 생중화로 사용하여 글리세롤과 MS의 에스테르화 전환반응을 수행한 결과, 비교적 반응 속도는 느리지만 DG의 생성은 5% 이하로 저해되며 약 60% 이상의 전환율을 MG로 합성할 수 있었다.
(2) 상기 반응에 있어서, 글리세롤과 MS의 용액비 1:1의 용액으로 1,4-디옥산을 사용한 뒤에는 최적의 전환율을 보임을 알 수 있었다.
(3) 측면의 리파제는 유기용매 중에서 불순물 상태로 사용되어도 회수 후 용매급 재사용시에도 측면의 활성 저하도 미미 하였다.
감 사
본 연구는 과학기술부·한국과학재단 지정 환경청정기술연구센터(과제번호, 00-302)의 연구비 지원으로 수행되었으며 이에 감사 드립니다.

참 고 문 헌