Polypropylene/Ethylene-α-Olefin 공중합체 블렌드의 물성

김 대 중*・이철 우†
대전산업대학교 화학공학과/환경개선형소재개발센터
*대전산업 석유화학사업부 대전연구소
(2000년 11월 10일 접수, 2001년 1월 10일 재판)

Properties of Polypropylene/Ethylene-α-Olefin Copolymer Blends

Dae Jung Kim* and Chul Woo Lee†

Department of Chemical Engineering/RBC, Taegon National University of Technology, Taegon 305-719, Korea
*Daeduk R&D Center, Daeilim Industrial Co. Ltd., Taegon 305-345, Korea
(Received November 10, 2000; accepted January 10, 2001)

요약: 블렌드의 치환도를 제조하기 위하여 homo PP와 block PP(매이블렌가 약 8 wt%) 공중합체(EBP)에 영향을 미치는 성분으로서 공중합체의 성분이 측정된다. EBP에 homo PP와 block PP의 농도가 높아질수록 EBP의 용도가 증가한다. EBP의 용도가 높아질수록 EBP의 용도가 증가한다.

Abstract: In order to improve the impact strength of polypropylene (PP), ethylene-α-olefin copolymers such as ethylene-propylene (EPR) and ethylene-octene rubber (EOR) were blended with two kinds of PP (homo and block PP), and the changes of mechanical and rheological properties were studied. The effect of rubber on the impact strength showed that EPR was superior to EOR in the blend of homopolymer PP, whereas EOR was superior to EPR in the blend of block PP. This result was interpreted in terms of differences in the compatibility between the rubbers and PP, which was observed by SEM. The tensile strength of the blends was comparable for both EPR and EOR up to 30 wt% rubber content, independent of PP. For rubber content of above 30 wt% however, the tensile strength of EOR was higher than that of EPR. According to the loss modulus measurements of the blends, the Tg of the rubber was lowered. This indicates that block PP (BPP) is compatible with EPR and EOR.

Keywords: polypropylene, ethylene-α-olefin copolymer, compatibility, loss modulus

1. 서론

고분자를 다양한 용도에 구조물 재료로 사용하기 위해서는 고감도, 내열성, 고탄성 및 고층각성 등의 특성이 요구된다. 이러한 요구조건을 만족시키는 고분자 재료를 만들 수 있다고 고분자 재료의 장점인 경량성, 가격의 저렴성 및 기공의 유용성 때문에 급격히 나아가는 기존 기술과 새로운 재료로 대체될 수 있게 된다.

일반적으로 한 가지 수지의 선택에 따라 원하는 성질을 모두 만족시키는 블렌드 재료를 만들 수 있다고 고분자 재료의 장점인 경량성, 가격의 저렴성 및 기공의 유용성 때문에 급격히 나아가는 기존 기술과 새로운 재료로 대체될 수 있게 된다. 그동안 이러한 고분자 블렌드는 플라스틱, 합금 및 고체의 다변화에 따라 요구되는 물질이 매우 다양하고 주로 변하는 최적의 추세에 비추어 볼 때 매우 적합한 방법이라고 생각된다.

고분자 블렌드의 물성은 모질지에 큰 영향을 받아 각기 구성 고분자의 장점을 최적 블렌드에서 발현하게 하여 구성 고분자들이 각 상태에서 적당한 위치에 적절한 크기로 배치된 모질지로 끌어가며 얻는다고 한다. 예를 들어 고층각성이 요구되고 가공성이 뛰어난 고분자 블렌드를 얻기 위해서는 수지에 치환계가 적절한 크기(마이크로 단위)로 구현하게 분산되어야 하고 수지와 치환계가 각각의 계면 접착력이 유리해져야 한다. 이는 비상용성의 고분자 양을 가지고 이러한 모질지를 얻기 위해서는 적절한 구조가 가진 상용화재를 선택하여 상의 계면 접착을 향상시킴과 동시에 계면 접착력을 상승시켜야 한다. 블렌드 재료 중에서 플라스틱이나 합금 재료(polypropylene, PP)와 같은 용도의 경량화의 필요에 대응하는 재료가 가능하며 여러 분야에서 수요가 급증하고 있다. 이 중에서 PP는 견고성 고분자로 높은 신속 및 촉각도, 유수한 가공성, 저렴한 가격, 훌륭한 내성 등의 장점을 가지고 있다. 그러나 이러한 재료의 높은 우점도 및 비교적 높은 수지로 인한 homo PP의 가장 적절한 치환재로, 이러한 단점을 극복하기 위해서 프로필렌에 α-올렌을 공중합시키는 방법을 사용하는데, 이 방법은 PP의 치환도 향상, 그리고 가공 속도를 감소시킬 수 있는 유용한 방법이나 새로운 물성을 가진 공중합체를 개발하기 위해서는 많은 시간과 비용을 필요로 한다. PP의 치환 물성을 개선시키는 가장 효과적인 방법은 서로 다른 특성을 갖는 두 가지 또는 세 가지 고분자 혼합물을 만드는 것으로 최근 PP/rubber 블렌드에
대한 연구가 활발히 이루어지고 있다[6,7].

PP 블렌드에서 중량강도를 향상시키기 위해 사용되는 rubber료로는 ethylene-a-olefin copolymer(8-10), acrylonitrile-co-butadiene rubber(NBR)[11,12], ethylene-propylene-diene rubber copolymer(EPDM)[13], butyl rubber, styrene-ethylene/butene-styrene triloblock copolymer(SEBS)[14], 그리고 ethylene-vinyl acetate copolymer(EVA)[15] 등이 보고되고 있다. 에틸렌-α-올레핀 공중합체에는 ethylene-propylene(EPR), ethylene-butylene, ethylene-hexene 그리고 ethylene-octene copolymer(EOC) 등이 있는데 이들은 상대적으로 에틸렌 함량이 많은 공중합제로서 plastic과 elastomer의 중간 성질을 갖는다.

PP 블렌드에 대하여 PP의 중량강도를 증가시키는 방법에 대한 많은 연구가 진행되어 왔으나 이들의 연구는 주로 미산화 PP와 EPR나 EPDM의 블렌드에 대한 연구로서 block PP(BPP)나 EOR의 블렌드에 대한 연구는 매우 부족한 실정이다. 그러므로 본 연구에서는 homo PP와 block PP(에틸렌이 약 8 wt% 공중합체를 포함한 PP 공중합체에 에틸렌-α-올레핀 공중합체인 EPR 또는 EOC를 참가했을 때, 에틸렌-α-올레핀 공중합체 내에 존재하는 α-올레핀 공중합체의 종류에 따른 상용화 효과와 에틸렌-α-올레핀 공중합체 함량 및 PP 수지의 변화에 따른 기계적 성질의 변화에 대해 살펴보았다.

2. 실험

2.1. 시료

본 실험에서 사용된 시료의 물성은 Table 1에 나타내었다. PP는 대림산업(주)의 homo PP (HPP)와 에틸렌-α-올레핀 공중합체를 사용하였다. 에틸렌-α-올레핀 공중합체는 금호화학의 K550XP probable grade의 ethylene-propylene rubber(EPR)와 Dow의 EC5180 grade의 ethylene-1-octene rubber(EOC)를 사용하였다. 실험 환경에서 제공된 분석 자료에 의하면 EPR와 EOR의 공중합체 함량은 각각 26% 및 28%였다. Table 2에는 HPP와 BPP의 물성을 나타내었다.

2.2. 블렌드의 제조

PP 블렌드에서 에틸렌-α-올레핀 공중합체의 함량과 에틸렌-α-올레핀 공중합체 내에 존재하는 α-올레핀 공중합체의 종류가 기계적 성과 유연성에 미치는 영향을 살펴보기 위하여 이중 압출기(Leistritz ZSE-500D)에 의해 블렌드를 제조하였다. 실험에 이용된 온도는 200℃였고 screw의 회전수는 150 rpm으로 고정하였다. 용융압출 후 찬물로 낮각한 후 절단하여 필름을 제조하였다. 블렌드 제조 환경은 Ca-S1(S1, 2차 산화수지제), Ciba-Geigy의 Irganox 1010 및 Irgafos 168을 첨가하였으며 대전 방지제로는 Ciba-Geigy의 SA-8MB를 사용하였다.

2.3. 기기 분석

2.3.1. 기계적 물성 측정

기계적 물성을 측정하기 위해 각 시료에 ASTM 규격에 따라 사출 성형(급속 D698)을 이용하여 제조하였으며 각 기계적 물성은 제조된 시료를 온도 23 ℃, 상대습도 50%의 조건에서 48 h 동안 보관한 후 측정하였다. 인장강도를 측정하기 위한 시료는 ASTM D638의 방법에 의거하여 사출 성형으로 제작하였으며 공중합계(Instron 4302)를 이용하여 측정하였다. 높은 중량강도는 ASTM D2958에 의거하여 사출성형으로 시료를 제작한 후 중량강도(Arnott-villeneuve 43-(02)를 측정하였다. 굽상강도는 독일산 중량강도(Instron 4323)를 이용하여 측정하였으며 시료에 12.8 mm/min의 일정한 속도로 20 mm까지 뉴로 이 때 변형값 값을 측정하였다. 열변형온도(heat

Table 1. Characteristics of Raw Materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Abbreviation</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo PP</td>
<td>HPP</td>
<td>M* = 13 g/10 min</td>
</tr>
<tr>
<td>Block PP</td>
<td>BPP</td>
<td>M* = 28 g/10 min, Ethylene content = 8 wt%</td>
</tr>
<tr>
<td>Ethylene-propylene rubber</td>
<td>EPR</td>
<td>M* = 27 g/10 min, MW = 120,000 propylene content = 26 wt%</td>
</tr>
<tr>
<td>Ethylene-1-octene rubber</td>
<td>EOR</td>
<td>M* = 13 g/10 min, MW = 155,000 octene content = 28 wt%</td>
</tr>
</tbody>
</table>

* Data from makers.
* Melt Index (M*) - measured at 230 °C.

Table 2. Physical Properties of Base Resins

<table>
<thead>
<tr>
<th>Properties</th>
<th>Unit</th>
<th>ASTM D1238</th>
<th>Homo PP (HPP)</th>
<th>Block PP (BPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melt index</td>
<td>g/10 min</td>
<td>13</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>0.90</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Yield strength</td>
<td>Kg/cm²</td>
<td>380</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>wt%</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Flexural strength</td>
<td>Kg/cm²</td>
<td>390</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>Kg/cm²</td>
<td>15,000</td>
<td>14,500</td>
<td></td>
</tr>
<tr>
<td>Izod impact</td>
<td>Kgm/cm</td>
<td>2.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>strength −20 ℃</td>
<td></td>
<td>107</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>HDT</td>
<td>℃</td>
<td>104</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 주사전자현미경 관찰

제조된 시험을 액체조소 하에 급냉시켜 재어밀한 과거 단면을 얻었다. 재어밀을 자일본에 1 h 동안 담가서 rubber 부분을 녹여낸 후 오븐에서 110℃의 열풍으로 자일본을 증발시키고 재어밀을 급료로 코팅한 후 주사전자 현미경(SEM, Cambridge Stereoscan 240)로 활성화하였다.

2.3.3 유변 측정

유변 물성은 Rheometrics RMS 800을 이용하여 건조한 블렌드에 따른 η*(complex viscosity)를 측정하여 분석하였다. 사용한 시험은 두께가 2 mm이고 지름이 25 mm인 디스크 모양의 시험을 사용하였다. 건조한 블렌드 시 230℃ 온도로 고정하고 고분자 간의 반응을 멈추기 위하여 전자 분사기에서 최대 strain을 10%로 하여 선형 점탄성(linear viscoelasticity) 측정하였다. 또한 에틸렌-α-올레핀 공중합체의 척가에 따른 고분자 블렌드의 유리전이의온도 (Tg)의 변화를 관찰하기 위해 시험을 길이 60 mm, 너비 13 mm, 그리고 두께 3 mm로 제조한 후, 최대 strain을 0.05%로 하여 6.28 rad/s의 일정한 진동수로 -80℃에서 20℃까지 2℃/min으로 승수 시키면서 손실탄성(inertia modulus)의 변화를 측정하였다.

3. 결과 및 고찰

에틸렌-α-올레핀 공중합체 rubber의 척가가 PP/rubber 블렌드의 기계적 물성에 미치는 영향을 살펴보기 위하여 α-올레핀이 블렌드로필린의 EPR과 1-옥탄의 EOR의 함량을 변화시켜 가며 물성의 변화를 살펴보았다. 이들 에틸렌-α-올레핀 공중합체는 EPR의 경우 가장(branch)가 에틸기가로서 매우 복잡한 반면 EOR의 경우는 혼합기로서 비교적 간단한 가지를 가지고 있다.

Table 1에서 보는 바와 같이 EPR과 EOR의 동정량 함량은 각각 26% 및 28%로 비슷한 값을 나타내었다. 그러나 프로필린과 1-옥탄의 분자량 비가 3:1이므로 EPR의 프로필린과 EOR의 1-옥탄 에 비해 분자수로는 약 2.47배 더 많이 함유되어 있어야 할 수 있다. 따라서 가의 개수는 EPR의 경우 2.47배 더 많은 값을 가할 수 있다.

3.1. HPP/rubber 블렌드

HPP에 EPR과 EOR의 함량을 변화시켜 가며 각각 혼합하였을 때 HPP/rubber 블렌드의 기계적 물성의 변화를 살펴보았다. 전체적인 경향은 충격방지로 척가된 에틸렌-α-올레핀 공중합체의 함량이 증가함에 따라 충격강도는 급격히 증가하는 반면 밸런스를 권한된 물성의 표면경도와 굴곡탄성은 감소하였다.

Figure 1에 각 조건에서 rubber 함량에 따른 인장강도의 변화를 나타내었다. 그동안 두 수가 있는 바와 같이 인장강도는 EPR이나 EOR의 경우 모두 rubber 함량이 증가함에 따라 감소함을 알 수 있었다. Rubber 함량이 30 wt%까지는 EPR과 EOR의 성능이 동일한 값을 나타내었고 그 이상의 함량에서는 EOR의 EPR에 비하여 더 높은 인장강도를 나타내었다. 인장강도와 파단력은 EOR의 경우가 EPR에 비하여 약간 높은 값을 보였는데 이는 EOR의 분자량이 EPR의 경우보다 더 크기 때문에 생각된다.

HPP/rubber 블렌드에 있어서 rubber의 척가에 따른 파단력의 변화는 Figure 2에 나타내었다. 충격방지 효과를 위해 척가된 EPR이나 EOR의 함량이 20 wt%까지는 rubber의 척가량에 따라 파단력이 급격히 증가하였으나 그 이후에는 rubber의 함량이 증가하여도 파단력은 일정한 값을 나타내었다.

Figure 3의 (a)와 (b)는 rubber 함량에 따른 HPP/rubber 블렌드의 지온에서의 (-30℃) 충격강도 변화와 상온에서의 충격강도 변화.
Figure 3. Izod impact strength of HPP/rubber blends with rubber contents: a) -30 °C, b) room temperature (23 °C).

회로 각각 나타낸 그림이다. 저온에서의 충격강도를 살펴보면 PP/EPR 블렌드의 경우에는 EPR의 함량이 30 wt%까지는 충격강도 개선 효과가 거의 관찰되지 않았다. 그러나 rubber 함량이 40 wt% 이하에는 충격강도가 급격히 증가하였다. PP/EOR 블렌드의 경우에도 경향은 유사했으나 EOR의 함량이 30 wt% 이상에서 충격강도가 급격히 증가하는 경향을 나타내었다. 따라서 HPP/rubber 블렌드의 경우에는 EOR이 EPR보다 저온에서의 충격강도 개선 효과가 더욱 우수할 수 있었다. 저온에서 rubber의 함량이 적을 때 충격강도 개선 효과가 적은 이유는 rubber의 T_g가 -50 °C 정도인 데 비하여 PP의 T_g는 0 °C 부근이므로 저온(-30 °C)에서는 PP가 유리상(glassy state)으로 되어 충격강도의 증가가 적기 때문이다.

Figure 4. SEM photographs of HPP/rubber blends: a) HPP/EPR = 80/20 by weight, b) HPP/EOR = 80/20 by weight.

Rubber의 함량이 적을 경우 EPR와 EOR의 차이가 거의 나타나지 않고 PP matrix의 영향을 많이 받는다. EPR이나 EOR 함량에 따른 상온에서의 충격강도를 살펴보면 EPR과 EOR은 30 wt% 이상에서 rubber의 함량이 증가함에 따라 충격강도가 감소하였으며, Rubber 함량이 20 wt%일 때의 결과를 보면 EPR 보다 EOR이 충격강도의 높은 영향을 보여 주었다. 그 이유는 HPP와 rubber 임차의 상용성에 충격강도에 큰 영향을 미치기 때문인 것으로 판단된다. 이러한 결과는 viscosity ratio가 비슷할수록 분산이 더 잘 된다는 기존의 연구 결과[19]와 비교해 볼 때 HPP의 viscosity ratio가 4.5인 EPR의 경우가 6.4인 EOR에 비해 분산이 더 잘 될 것으로 예상이 되었으나, Figure 4에 나타난 SEM 사진을 비교해 보면 오히려 EOR의 경우가 EPR에 비해서 HPP 매트릭스 내에 분산이 더 잘 되어 있음을 알 수 있었다. EOR이 EPR에 비하여 분산이 더 잘 된 이유는 EOR의 분자량 및 공질량 비율과 가치의 값이 때문에 것으로 판단된다. EOR은 액화된 측량에 제조되었기 때문에 분자량 분포가 적고 공질량 분포가 매우 균일하다[20]. 따라서 SEM 사진에서 보는 바와 같이 혼합 후 임시의 분산 상태도 EOR이 EPR 보다 더 균일하게 분포되었음을 것으로 생각된다. 또한 EOR은 EPR에 비하여 길고 고로게 분포된 것을 가지고 있어서 악간의 고분자 사이의 matrix로 확산(diffusion)되어 제약에서 효과적으로 entanglement을 이루어졌을 것으로 보인다.

3.2. BPP/rubber 블렌드

BPP에 충격 보강제로 사용된 EPR과 EOR의 함량을 변화시켜 각각 블렌드를 제조하였을 때 제조된 블렌드의 기계적 물성의 변화를 살펴 보았다. 전체적인 경향은 HPP에서의 결과와 마찬가지로 첨가된 EPR나 EOR의 함량이 증가함에 따라 충격강도는 증가하는 반면 강성과 관련된 물성인 표면경도와 굴곡탄성은 감소
Figure 5. Tensile strength of BPP/rubber blends with rubber contents.

Figure 6. Elongation at break of BPP/rubber blends with rubber contents.

Figure 7. Izod impact strength of BPP/rubber blends with rubber contents: a) -30 °C, b) room temperature (23 °C).

Figure 5는 EPR와 EOR 함량에 따른 BPP/rubber 볼렌드의 인장강도의 변화를 나타낸 것이다. 인장강도의 경우에는 연속성 수치로 HPP를 사용한 경우와 거의 동일한 결과를 보여 주었다. Figure 6에는 BPP/rubber 볼렌드의 파단수율을 나타내었다. 이 경우에도 연속성 수치로 HPP를 사용한 경우와 유사한 결과를 나타내었는데, 경도보강 효과를 위해 첨가된 EPR나 EOR의 함량이 30 wt%까지는 rubber가 첨가됨에 따라 파단수율이 급격히 증가하였고 그 이후에는 첨가량이 증가하여도 파단수율은 일정한 값을 나타내었다.

Figure 7의 (a)와 (b)는 각각 BPP/rubber 볼렌드의 rubber 함량에 따른 -30 °C에서의 충격강도와 상온에서의 충격강도의 변화를 나타낸 그림이다. 상온(-30 °C)에서의 결과를 살펴 보면 EPR나 EOR의 함량이 증가함에 따라 30 wt%까지는 충격강도가 서서히 증가하다가 30 wt% 이후에는 급격히 증가하는 경향을 나타내었다. 이 경우에는 HPP/rubber 볼렌드의 경우와 달리 rubber 함량이 30 wt% 이상에서는 EPR이 EOR에 비하여 우수한 결과를 나타내었다. 상온에서의 충격강도를 살펴 보면 BPP 볼렌드의 경우에는 EPR가 EOR에 비하여 충격강도 보강 효과가 더 우수하였다. 이러한 결과는 BPP의 구조에 기인한 결과로 해석된다. 즉, BPP의 제조 과정
에서는 두 개의 반응기를 연속으로 사용한다. 먼저 첫 번째 반응기에 에틸렌을 투입하여 BPP를 만든 후 두 번째 반응기에서 에틸렌을 첨가함으로써 BPP가 제조된다. 이렇게 제조된 BPP는 가온 두 부분에 PP로 양 열로는 poly(ethylene-co-propylene) 형태로 이루어져 있다. EPR는 에틸렌과 프로필렌이 무질서하게 배열되는 구조로 가지고 있어서 비슷한 구조를 가진 BPP의 poly(ethylene-co-propylene) 부분과 상호용이 수반함으로 예상된다. 또한 플록 형태의 PP 부분은 PP 부분과의 상호용이 좋고 플록 형태의 PE 부분은 PE 부분과의 상호용이 좋으므로 에틸렌 함량이 8 wt%로 적은 BPP는 methylene unit (CH2) 가 아닌 EOR 보다는 methylene unit 가 적은 EPR과의 상호용이 더 좋을 것으로 예상된다.

Rubber의 함량이 20 wt%일 때 BPP/EPR와 BPP/EOR 블렌드의 SEM 사진은 Figure 8에 나타내어 있다. 사진에서 볼 수 있는 부분은 본 블렌드의 rubber 성분을 차지한 것으로 녹여진 부분이다. 두 경우를 비교하여 보면 EPR의 EOR 보다는 미세하고 균일하게 분산이 잘 되었음을 알 수 있다.

3.3. 블렌드의 열적 거동

PP/에틸렌-α-올레인 공중합체의 이성분체 블렌드에서 에틸렌-α-올레인 공중합체의 구조가 PP와 에틸렌-α-올레인 공중합체 상호간의 상호용에 미치는 영향을 살펴보기 위해 Figure 9에 BPP/EPR 및 BPP/EOR 블렌드에 있어서 α-올레인 공중합체의 조성에 따른 손실탄성율 (loss modulus)의 변화를 나타내었다. RMS로 측정된 손실탄성율은 tanδ (손실탄성율/정강탄성율)와 함께 주로, 수지 또는 플랜드의 Tg에 민감하게 상호작용에 의한 상호용 효과로 볼 수 있다는 점을 가지고 있다. 그림에서 0 °C 부근에서의 피크는 PP의 Tg에 의한 것이며, 55 °C 부근에서의 피크는 rubber의 Tg에 의한 것이다. 일반적으로 RMS를 사용하여 BPP의 손실탄성율을 측정하면 약 0 °C 부근에서 순수한 PP에 의한 Tg가 관찰된다. BPP/rubber 블렌드의 경우에 PP의 고유한 Tg는 rubber의 함량에 영향을 미치지 않기 때문에 Tg가 변하지 않았다. 순수 EPR과 EOR는 -50 °C에서 에틸렌-α-올레인 공중합체에 가인한 Tg가 나타난다.[13,18, Choudhary[13] 등의 FF/EPDM 블렌

Figure 10에 BFP/EPR 플랜드에서 EPR의 조성에 따른 complex viscosity의 변화를 나타내었다. 플랜드의 점겟도 EPR의 함량이 증가함에 따라 증가하였다. 이러한 경향은 HPP/EPR, HPP/EOR, BFP/EOR 플랜드에서도 모두 공통적으로 관찰되었다.

4. 결론

 Homo와 block PP 수지(HPP 및 BPP)에 에틸렌-α-올레핀 공합체인 EPR와 EOR을 점キッチ하여 플랜드를 측정하여 품질을 측정한 결과 다음과 같은 결론을 얻었다.

1) HPP 플랜드에서는 EOR의 충격방하 효과가 BFP보다 더 우수하였고 BFP 플랜드에서는 EPR의 충격방하 효과가 EOR보다 더 우수하였으며, 이것은 SEM에 의한 형태적 관찰 결과 충격방하 계제의 EPR나 EOR가 사용한 PP(homo 또는 block) 간의 상용성의 차이에 의한 것으로 해석되었다.

2) 플랜드의 인장강도는 rubber의 함량이 30 wt%까지는 EPR과 EOR이 거의 동일한 값을 나타내었고 그 이상에서는 EOR이 EPR에 비해 더 높은 값을 나타내었다.

3) BFP/rubber 플랜드의 손실탄성수 측정 결과 rubber의 Tg가 점럿으로 이용되었는데 이는 BFP가 EOR이나 EPR의 상당한 함량을 갖고 있음을 나타낸다.

4) 플랜드의 complex viscosity는 고무함량이 증가함에 따라 PP의 종류에 관계없이 모두 증가하였다.

감사의 글

본 연구는 한국과학기술원 자정 대전산업대학교 환경개선형신소재 개발센터의 지원에 의한 것입니다. 이에 감사드립니다.

참고 문헌