고분자막을 통한 퍼놀과 α-나프톨의 투과특성에 미치는 Triton X-100의 영향

김준호, 이길호, 최영국, 배재욱**

구공대학교 화학공학부, 한국화학연구소, 수원대학교 화학공학부
(2000년 1월 17일 접수, 2000년 4월 24일 채택)

The Effect of Triton X-100 on the Permeation Characteristics of Phenol and α-Naphthol through Polymeric Membranes

Jun-Ho Kim, Choul-Ho Lee, Young-Kook Chot, and Jae-Heum Bae**

Department of chemical engineering, Kong Ju National University, Kong-Ju 314-701, Korea

* Korea Research Institute of Chemical Technology, Taepyeong 306-600, Korea

** Department of chemical engineering, University of Su Won, Su-Won 445-745, Korea

(Rceived January 17, 2000; accepted April 24, 2000)

Abstract: Semi-equilibrium dialysis (SED) is an acceptable method for evaluating surfactants which might be used in the MEUF (Micellar-enhanced ultrafiltration) for the rejection of organic pollutants selectively from aqueous solution. In this study, Triton X-100 is proposed to use as surfactants for forming micelles in SED. We investigated the effect of Triton X-100 on the permeation characteristics of phenol and α-naphthol through polymeric membranes to examine the feasibility of surfactant for forming micelles in SED. The CMC (Critical Micelle Concentration) of Triton X-100 was found to be about 0.2% at 18°C. We found that the rejection coefficient of α-naphthol which may be more hydrophobic is much higher than that of phenol for Triton X-100. Also, we found that the optimum temperatures for the solubilization of solute into Triton X-100 micelles and for the desorption of solute from Triton X-100 micelles are 45°C and below 25°C, respectively. It was concluded that Triton X-100 might be used for the removal of hydrophobic organic pollutants in aqueous systems at the condition of low MWCO (molecular weight cut off) and temperature concentration higher than the CMC.

Keywords: SED, membrane separation, micelle, solubilization, surfactant

1. 서론

다양한 산업부문으로부터 배출되는 폐수에는 채널, α-나프톨 같은 지표물질의 도입에 의한 환경오염 유기 화합물(NOC)을 포함하고 있으 며, 이들 성분은 다양한 환경오염물로 인해 인간의 건강에 해를 끼칠 수 있다. 이들 유기물을 제거하기 위한 전통적인 기술은 electrolytic dialysis, reverse osmosis, activated carbon adsorption, solvent extraction, distillation 과 같은 방법이다. 본 연구는 방법 중에서 퍼놀의 경우에는 전기적인 분리가 어렵고 상 화을 주로 하여 많은 에너지를 소요되기 때문에 효율적이지 못한 단점을 지니고 있다. 따라서 분리의 경우에는 퍼놀과 같은 함유물을 이용할 수 있는 생물활성 물질의 문제에 직면하고 비교적 적은 염도 차이에 의해 분리가 이루어 지므로 에너지가 적게 소요되고 연속 공정이 가능하기 때문에 다수량대에 많은 양을 처리할 수 있으며, 장비의 설치 및 조작에 용이한 장점들이 있다. 그러나 동물 연구가에 의해 빌딩용 실내 공기의 제어가 필요하다는 단점이 있다. 이들 단점을 보완하기 위해 역상요정(Reverse osmosis process)이 개발되었으나 효과적으로 처리가 가능하기 때문에 비교적 많은 비용을 지불하기 어렵다는 단점을 지니고 있다[12].

본 실험에서는 MEUF의 결과와 같은 효과를 얻기 위해 SED (semi-equilibrium dialysis) 장치로 이용하여 실험하였다. SED는
1. 실험

2.1. 실험재료 및 기기

2.2. 분석법

2.3. 배쳐율

2.4. 실험방법

3. 결과 및 고찰

3.1. Triton X-100의 염해이질도(CMC)

3.2. Triton X-100의 농도에 따른 배채율

공업화학, 제11권 제3호, 2000
3.3. 용질의 농도가 비율점에 미치는 영향

Figure 3 and Figure 4는 용질의 농도를 변화시켰을 때의 농도가 α-나프탈린의 배제율의 차이를 비교한 그래프이다. 실험 조건은 분획분차량(MWCO)이 1000일 경우, 운도는 25℃, 그리고 Triton X-100의 농도를 1 w/v%와 0.01 w/v%에다. 그림에서 보듯이, 폐윤과 α-나프탈린 모두 용질의 농도가 증가함수록 배제율이 낮아지는 것을 알 수 있다. α-나프탈린의 경우에는 배제율이 임계이심능도(CMC) 이상에서는 관성하게 감소하나 임계이심능도(CMC) 이하에서는 급격하게 감소하였다. 폐윤의 경우에는 배제율이 임계이심능도(CMC) 이상과 이하 모두 급격하게 감소하였다. 소수성이 강한 α-나프탈린의 경우에는 임계이심능도(CMC) 이상에서는 사용효과가 증가하였고, 침수성이 강한 폐윤의 경우에는 입계이심능도(CMC) 이상과 이하 모두 사용효과가 낮았다. 하지만 α-나프탈린과 폐윤 모두 저농도일 때는 거의 대부분이 배제되었 다. 이는 Triton X-100이 항상한다. 사용효과가 증가하였으나, 플름산이 강한 폐윤의 경우에는 입계이심능도(CMC) 이상과 이하 모두 사용효과가 낮았다. 다만, α-나프탈린의 경우 폐윤보다 배제율이 더 높았다. 그 이유는 α-나프탈린의 경우 폐윤의 경우보다 더 소수성이 강하기 때문에 배제율이 높은 것으로 보인다.

3.4. 분획분차량(MWCO)이 배제율에 미치는 영향

Figure 5와 Figure 6은 분획분차량(MWCO)이 변화할 때에 배제율과 α-나프탈린의 배제율의 차이를 나타낸 그래프이다.

배제율을 보면, 분획분차량(MWCO)이 증가함에 따라서 배제율이 낮아지는 것을 알 수 있다. 폐윤의 경우보다 α-나프탈린의 경우 배제율이 더 높았음을 알 수 있다. α-나프탈린의 경우에는 임계이심능도(CMC)의 이상이나 이하의 경우 분획분차량(MWCO)이 증가함에 따라서 조건의 차이는 있지만 배제율의 차이가 거의 없음을 알 수 있었다.

3.5. 분획분자량(MWCO)과 Triton X-100의 농도가 배체율에 미치는 영향

Figure 7: a-나프탈렌의 제거에 분획분자량(MWCO)의 변화목 Triton X-100의 농도의 영향에 대해 조사하였다. 여기서 사용한 염브레인은 분획분자량(MWCO)이 1000, 3000, 10000, 그리고 25000의 것을 사용하여 실험하였다. 그리고 a-나프탈렌과 Triton X-100의 초기 농도는 각각 200 mg/L과 1 mg/l에 사용하였다. 그림을 통해 a-나프탈렌의 배체율의 변화를 보면 0.73에서 0.98로 나타났다. 우리가 실험한 것 중에서 분획분자량(MWCO)이 10000의 경우 배체율이 비교적 좋은 것으로 나타났다. 그러나 염브레인의 분획분자량(MWCO)의 변화에 배체율이 크게 차이가 없는 것을 알 수 있다. 또한 Triton X-100의 농도가 증가함수록 배체율이 증가한 것을 알 수 있다.

Figure 8은 페놀의 제거에 분획분자량(MWCO)의 변화와

Figure 9. Effect of concentration of Triton X-100 on rejection of a-naphthol.

Triton X-100의 용도의 변화에 따른 영향에 대해 조사하였다. 사용한 염브레인은 분획분자량(MWCO)이 1000, 3000, 10000, 그리고 25000의 것을 사용하여 실험하였다. Retentate의 부분이 낮은 Triton X-100의 농도가 초기 농도는 각각 1 mg/l과 200 mg/L의 용액을 사용하였다. 그림을 보면 저농도의 배체율의 범위가 0.31에서 0.75까지 나타났고, 분획분자량(MWCO)이 10000의 경우 배체율이 가장 좋은 것을 알 수 있다. 또한 분획분자량(MWCO)과 함께 배체율이 증가하는 경향을 볼 수 있다. 그리고 Triton X-100의 농도가 증가함에 따라 배체율이 증가하는 것을 알 수 있었다.

3.6. 면도가 배체율에 미치는 영향

a-나프탈렌의 용제에 미치는 요인의 효과는 원액에 따른 배체율을 측정함으로써 간단히 알 수 있다.

Figure 9: a-나프탈렌의 제거에 원액의 영향을 조사한 것으로, 25°C, 35°C, 그리고 45°C의 온도로 실험하였다. 그림을 통해 보면, 온도가 증가함에 따라 a-나프탈렌의 배체율이 증가하는 경향을 보였다. 원액 또한 염브레인의 MWCO는 조사하지 않았지만, 25°C와 35°C의 경우 Triton X-100의 농도가 0.1과 0.5 mg/l 사이, 45°C의 경우 Triton X-100의 농도가 0.05과 0.1mg/l 사이에서 배체율이 급격히 증가하는 것을 알 수 있다. 이것은 이 두용액의 고도에서 온도가 증가함에 따라 배체율이 증가하는 경향을 보였고, 45°C의 경우 배체율이 30°C의 경우보다 높은 것으로 나타난다.

4. 결론

SED에서 미생물의 생대활성성도 Triton X-100을 사용하여 유기물질 즉 페놀과 a-나프탈렌의 용제특성과 배체율에 대한 조사하였다. 먼저, 생대활성성도의 농도의 영향을 보면, 최대활성성도의 능도가 증가함수록 배체율이 증가하는 것을 알 수 있다. 생대활성성도의 농도가 증가함에 따라 염브레인(MC) 근무하에서 배체율이 급격히 증가하는 것을 알 수 있다. 용제의 농도를 보면, 용제의 농도가 증가함수록 배체율이 감소하였다. 소수성은 강한 a-나프탈렌의 용제에 염브레인(MC) 근무하에서 배체율이 급격히 증가하였고, 추수성은 강한 배체율의 경우에는 염브레인(MC)의 시험에 따라 배체율이 감소하였다. 하지만 a-나프탈렌과 페놀 모두 저농도 일 때는 거의 대부분이 제거되었다. 분획분자량(MWCO)의 변화에 따라 배체율이 크게 변하였다.
화에서 따른 배제율을 보면, 분획분자량(MWCO)이 증가함수록 배
제율이 높아지는 것을 알 수 있었다. 실험한 분획분자량(MWCO) 1000, 3000, 10000, 20000 중 분획분자량(MWCO)이 1000이 경우 배제
율이 가장 높다. 온도에 따른 배제율을 보면, 온도가 증가함수
독 용질의 배제율이 증가하는 것을 알았다. 또한 α-나프통의 배
제율은 25℃와 35℃에선 0.1과 0.5 w/v% 사이, 45℃에선 0.05
와 0.1 w/v% 사이에서 급격히 증가하는 것을 알았다. 45℃에서
마찰 속에 용해된 용질은 25℃ 이상의 온도에서 용량성과 있을 수
있고, 이온은 용질이 녹아 후에 배제하고 배출할 수 있을 것으로
가정한다[1]. 결과적으로 α-나프통이 배제보다 배제율이 현저
들었는데 그 이유는 α-나프통의 경우 배제와 경우보다 더 소수
성이 강하기 때문이다.

결론적으로 Triton X-100를 이용하여 제한중 유기물을 배
제시키는에는 일체형농도(CMC) 이상의 용액을 이용하여 분획분
자량(MWCO)이 낮고 온도가 높은 조건에서 소수성이 강한 용
질을 사용하는 것이 가장 이상적이다.

감 사
본 연구는 한국과학자재 지원 공주대학교 자원해양응용 신소재연
구센터의 자원에 의한 것입니다.

참 고 문 헌