킬레트 수지에 의한 몰리브덴과 텅스텐의 흡착특성

안 주원*, 김 복련*, 서 영근

경상대학교 공과대학 응용화학공학부 및 항공기부품기술연구센터, *경상대학교 대학원 환경전산학
(2000년 1월 29일 수수, 2000년 3월 6일 재수)

Adsorption Characteristics of Mo and W Using Chelating Resins

Jou-Hyeon Ahn†, Bok-Reon Kim*, and Yang Gon Seo

Division of Applied Chemical Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University, Chinju 660-701, Korea
*Department of Environmental Protection, Graduate School, Gyeongsang National University, Chinju 660-701, Korea
(Received January 29, 2000; accepted March 6, 2000)

Abstract: Three kinds of chelate resins bearing iminodiacetic acid, diethanolamine or diethylenetriamine groups have been applied to selectively separate and recover one component in a mixture of Mo and W, where their chemical properties are very similar. The adsorption behavior of metal ions was investigated for each chelate resin under various experimental conditions such as time, pH, and metal ion concentration by a batch experiment. The chelate resins associated with Mo or W ions were also characterized by FT-IR and 'H NMR. The metal uptake of each chelate resin was decreased with increasing pH. The resins were found to selectively chelate Mo(III) over a pH range of 1-6. The chelate resin with diethylenetriamine groups showed the maximum adsorption capacity for Mo and W over a pH range of 1-6 among three resins used. However, the resin with iminodiacetic acid groups showed the best result to separate Mo and W selectively.

Keywords: chelate resin, polyethyleneimine, tateine, iminodiacetic acid

1. 서 론

최근에 일반 산업 및 의학적 산업 등에서 사용되는 철조각물이나 몬데스의 저온에서의 수분을 연료로 사용하고 고온 동작 자체에 휘발성의 유가금속의 탈취, 그리고 유가금속의 연료 및 고온 동 작의 회수, 방사성 폐기물의 처리 등에 관심이 증가되고 있으며, 다양한 방식으로 채광을 사용하여 유가금속을 포함한 폐기물을 이용하는 철조각물의 보존과 재활용을 목적으로 한 많은 연구가 진행되고 있다(1-4). 전통적 폐기물에 비해금속이 아닌 폐기물의 방출 피해를 최소화 하기 위해 폐기물 교체에 사용하는 유가금속의 흡착 및 회수에 관한 연구의 일환으로, 질체물 수지의 이용이 증가하고 있는 폐기물에 대한 흡착 및 회수에 관한 연구가 진행되고 있으며, 순환적인 문제를 해결하기 위한 연구가 활발히 되고 있다(5). 최근 수처리법들의 중요성으로 한 지정 산출법(7,8), 일반적 충돌법(9), 단일산 충돌법(10,11) 등에 의하여 산업폐기물뿐만 아니라 유가금속의 회수 및 보존에 관한 많은 연구들이 진행되고 있으며, 화학물질, 동물, 인체의 사용, 작업자, 여하 망막 등 여러 기술자들이 개발해왔다. 그러나 이는 금속도금제에 비해 비교적 낮은 금속도금이 흔히 이용되는 비효율적이고 비용이 아주 비싼 단계이었다.

본 연구에서는 비교적 낮은 금속도금에서 효율적으로 사용할 수 있는 질체물 수지의 특성을 이용한 유가금속의 농도 및 회수에 관한 연구의 일환으로, 질체물 수지의 이용이 증가하고 있는 유가금속의 흡착 및 회수에 관한 연구가 진행되고 있다. 본 연구의 실험 목적은 질체물 수지, 즉 iminodiacetic acid-(E-(CH2)COOH), diethylenetriamine-(E-(CH2CH2NH)3), 그리고 diethanolamine-(E-(CH2CH2OCH2CH2NH)2)를 이용하여 채광체의 저온, 저우한 정밀 관찰, 종류의 수지, 조성방법, 방출물의 특수, 인과, 영향에 중요한 요소로 널리 사용되고 있는 금속인 Mo와 W에 대한 흡착성과 하약하여 잘 Mo와 W의 분리에 정확한 횡정조건 및 정착성으로 확보하기 위하여 실험에 관하여 고기실함을 수행하였다.
2. 실 정

2.1. 실험자료 및 전처리
Mo와 S은 Sodium molybdate dihydrate (Na₂MoO₄·2H₂O)와 Sodium tungstate dihydrate (Na₂WO₄·2H₂O)를 용해하여 조사농도 4 mM으로 만들었다. 질량먼지 수치로는 imidazolic acid (HN(CH₂COOH))，diethanolamine (H₂N(CH₂CH₂OH))，diethylthremitrime (HN(CH₂CH₂NH₂) 등 중 세포내의 림프질을 갖춘 고분자 수지를 사용하였다.

본 연구에서 사용한 Ambirete B 710은 주로 병소로 사용되는 것에 대비하여 다음과 같이 선택하였다.
- 산화수지 (Ambirete B 710)
- AMBIRETE B 710은 처리 전에 수지와 같이 준비하였다. Ambirete B 710을 2:5 M H₂SO₄에 1N NaOH로 조절해 냉각한 후 중분이 흙에 중분으로 제조하여 60 ℃ 용접 오랫동안 건조하였다. 그리고, 다른 실험에 주입된 C-CH₂-CH₂-NH₂로는 적절 제공하여, 20-50 mesh의 입자규모를 선택하여 실험하였다.
- 수용제액은 Mw의 농도는 Thermo Jarrel Ash 10.5mL의 Inductively Coupled Plasma (ICP)를 이용하여 각각 화수와 1000 mV 2009 mV에서 측정하였다. 고분자 수지입자는 원소 분석은 Perkin Elmer Series II CHNS/O Analyzer로 분석하였다.

2.2. 칼리미트의 수지 입합

2.2.1. 폴리비닐알코올을 포함한 플라스테인(PVBC) 수지입합
Vinylbenzyl chloride (VBC)는 dinitrilebenzene (DVB)를 합류함으로서 암모니아 계수(polydiallyltrimethyl ammonium chloride) 30 g, 젤라틴 3 g을 사용하였고, 윤활용으로는 단중산염 VBC 68,(25 g, 가라 деле DVB 33.14 g, 수용성액으로 홍합용액을 사용하였고, 중합유동과 수용성을 사용하여 40 ℃에 작용하였다.

수지입합의 경우, 수지용액의 질량농도는 200 mL/L 입자규모를 조절하였다.

2.3. 실험장치 및 방법
2.3.1. 윤활전작업
설-pocket에 각각 Mw의 초저농도 약 4 mM의 수지 100 g에 0.1 g의 블랙도 수지를 첨가한 후 플라스테인으로 60분 용접 동안 Shaking water bath에서 30 ℃를 유지하면서 120 rpm으로서 하중이 흉당하기 전 후 광학의 농도 및 흉당시의 흉당은 양을 측정하였다.

2.3.2. 회전실 실험
플라스테인의 특성에 따라 실험적 평가를 수행하였다.

Kd = 수지에 결합된 수지농도 (mg/mL)
유액의 대응되는 수지농도의 양, mg/mL

그러나, 실험 후 남아 있는 플라스테인 수지로 셀어 양 중 경우에 있는 BFR-95를 이용하여 셀어부에 쌓였다.
Table 1. Properties of Chelate Resins Used in This Work.

<table>
<thead>
<tr>
<th>Chelate Resin</th>
<th>Microanalysis (%)</th>
<th>Ligand Content (mmol/g)</th>
<th>Specific Surface Area(m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>77.15</td>
<td>6.60</td>
<td>14.11</td>
</tr>
<tr>
<td>CHN(CH₃)₂(H₂O)₃</td>
<td>77.30</td>
<td>8.54</td>
<td>4.27</td>
</tr>
<tr>
<td>CHN(CH₃)₂(H₂O)₂</td>
<td>81.27</td>
<td>8.02</td>
<td>5.82</td>
</tr>
<tr>
<td>CHN(CH₃)₂(OH)₂</td>
<td>56.62</td>
<td>6.77</td>
<td>5.18</td>
</tr>
</tbody>
</table>

- a) not measured
- b) content of -CH₃
- c) calculated from the nitrogen content

3. 결과 및 고찰

3.1. 칼리아트 수지의 용성

본 연구에서 허용한 칼리아트수지 (-CH₃)을 포함하는 플러스터 수지입자의 가요도는 30%이며, 세정을 흡증하기 위해 세정용 성분으로 트립레스와 이소아미아황산을 뿌리때 1 : 3으로 섞은 용액을 사용하였다. 실험을 사용한 제로할미마아세테이트 수지의 라이온 함량과 표면적을 Table 1에 각각 나타내었다. 라이온 함량은 원소 분석 결과의 염소와 질소 함량으로부터 계산하였으며, 표면적은 BET 방법으로 측정하였다.

3.2. 뿌리합성성형

3.2.1. 단일성분에서의 pH 변화에 따른 뿌리합성성형

інимид라계(-CH₃)를 지니는 CHN(CH₃)₂(H₂O)₃ 크랩리아트 수지의 Mo와 W의 폐합유량에 대한 pH의 영향을 Figure 1에 나타냈다. Mo와 W 모두 포화된 pH의 모든 영역에서 우수함이 대 로 나타났다. 그리고, Mo와 W의 용액은 pH가 증가함수록 감소하였으며, 실제로 pH가 9이상의 범위에서 Mo와 W 모두 변형 용해가 일어나지 않았다. Mo의 경우, pH가 1일 때의 용해량이 pH가 2일 때의 용해량으로 더 적은 것과 pH 2이하의 영역에서 Mo와 eligonz을 형성하기 때문에의 것으로 사료된다 [12,13]. CHN(CH₃)₂(OH)₂의 iminodiacetate기여요소가 유사한 N-benzyl-imino-

다이아세트산의 유무 작용에 대해 벤자일차단간 열아야 수지의 임금에 동등한 영향을 줄 수 있는 [14].

그러나 pH 9이상의 영역에서는 뿌리합성 수지의 iminodiacetate acid기여요소의 용해성의 영향이 있고, Na₂MoO₄와 Na₂WO₄에서 음 금속은 음 (MoO₄²⁻와 WO₄²⁻) 역시 동전화를 따르는 Dornan exclusion principle에 따라 같은 음전화 액기의 반반히 흡착에 도달할 수 있는 여지로도 생각된다. diethanolamine기여요소는 CHN(CH₃)₂(OH)₂의 경우, pH의 변화에 따른 Mo와 W의 폐합유량을 Figure 2에 나타내었다. Mo와 W 모두 각각의 증가에 따라 두 물질은 조직형을 유지하는 흡착을 나타내었다. CHN(CH₃)₂(OH)₂의 경우, 단일성분에서는 -CH₃에 양성자가 결합하여 CH₃O⁻로 양전화를 받 수 있다. 이 경우에 금속이 음인 MoO₄²⁻와 WO₄²⁻사이에 정전적 인력 (electrostatic inter

Figure 1. Effect of pH on equilibrium sorption of Mo and W by CHN(CH₃)₂(H₂O)₃.

Figure 2. Effect of pH on equilibrium sorption of Mo and W by CHN(CH₃)₂(OH)₂.
Figure 3. Effect of pH on equilibrium sorption of Mo and W by 8-CN(CH3)CH2NH2.

action에 의해 이온화 (ion pair) 형성을 할 수 있다. 또한 비공극 전자도지 않고 있는 NA-OH 의 유도 우수 한 역할을 하는 Lewis base-interaction에 의해 흡착이 형성될 수 있다. Figure 1과 Figure 2를 비교할 때, 8-CN(CH3)CH2OH와 8-CN(CH3)COOH보다 신선 pH영역에서 흡착능력이 큰 것은 이러한 전 전자를 인자 때문인 것으로 보아된다. 이의 경우 유전성의 지형을 통해 경제적으로 electrostatic interaction이 더 큰 역할을 나타내었음을 것으로 생각된다. 그러나, Figure 2의 회합물 Mo 및 W의 분포는 선형적이지 않은 특성을 보았다.

dihydropyrimidine기를 지니는 8-CN(CH3)CH2N(OH)2에 대한 Mo과 W의 흡착도를 Figure 3에 나타내었다. 이 경우에도 앞의 두 밴드에 의해 심사지로 pH가 증가함에 따라 Mo와 W의 흡착이 증가하는 경향을 보였다. 앞서 설명한 바와 같이 Mo의 경우에는 전반적으로 흡착량이 크게 열렸다는 점을 나타내었으나, W의 흡착량은 미묘한 8-CN(CH3)COOH의 경우와 같이 정전적 인자와 우수한 전자도지가 동시에 나타났다.

나는, 이전의 예와 같이 전반적으로 인식한 것과 일치한다. 따라서 8-CN(CH3)CH2OH에서 Mo와 W의 흡착도에 대한 분석이나 여러 가지 실험에서는 이에 대한 본질적인 점을 나타내었다. 8-CN(CH3)CH2NH2에서는 Mo와 W에 대한 분석은 나타내었다.

3.2.2. pH 값의 변화에 따른 흡착도

 실험 결과는 저항도의 각 이온화의 흡착성을 이해하기 위해 Mo와 W의 각각은 각각의 pH 수용에서 녹아, 각 금속이온의 결과는 0.48 mM의 흡착량을 보였다. 이 정도의 8-CN(CH3)CH2OH 수용에 의한 흡착량은 약 30%로 매우 낮게 보다고 할 수 있다. 8-CN(CH3)CH2OH의 흡착도는 Mo와 W의 각각은 4 mM에 대한 흡착량이다.

각 밴드의 수지는 흡착도와의 관계가 잘 나타난다. 8-CN(CH3)CH2NH2와 8-CN(CH3)CH2OH 및 8-CN(CH3)COOH의 경우, pH가 높을수록 각각의 흡착량은 증가한다.
Figure 5. FTIR spectra of ①-CH₃(CH₂O)(OH)(A), ②-CH₃(CH₃OH)(MoB) and ③-CH₃(CH₂OH)(W/C).

Figure 6. FTIR spectra of ①-CH₃(CH₂O)(OH)(A), ②-CH₃(CH₃OH)(MoB) and ③-CH₃(CH₂OH)(W/C).

Figure 7. FTIR spectra of ①-CH₃(CH₂O)(OH)(A), ②-CH₃(CH₃OH)(MoB) and ③-CH₃(CH₂OH)(W/C).

Figure 8. NMR spectra of free iminodiacetic acid (A) and iminodiacetic acid in the presence of Mo (B) and W (C) in D₂O.

Figure 8의 Mo 또는 W가 결합하지 않은 iminodiacetic acid와 Mo 또는 W가 결합한 iminodiacetic acid의 1H NMR 스펙트럼을 나타내었다. D₂O 콜럼에서 미만에서 있는 양성자는 중추에서 미만 혈
리 고용이 일부도로서 스펙트럼상에 나타나지 않았다. 자유 iminodiacetic acid의 CH₃COH에서 양성자의 스펙트럼은 3.8 ppm에
서 나타났다.

iminodiacetic acid와 Na₂MoO₄의 1:1 용액에서는 free iminodiacetic acid의 양성자 스펙트럼이 3.8 ppm에서 아주 작게 나타났지만, free iminodiacetic acid에 결합하는 폴리가 거의 모두 사라졌다. 이것은
모노 iminodiacetic산의 Mo와 1:1로 대부분 결합(complex)을 형성하는 것으로 생각된다. 실제로 Freeman 등 16과 Sumit
 등의 NMR 연구에서 이와 유사한 같은 변동이 일어나 [HN
(CH₃CHOH)₂](MoO₄)₂⁻ 복합체가 형성된다고 하였다.

[MoO₄]²⁻ + NH₂COOH → [HN(CH₃COOH)]₂⁻ + H₂O

Figure 8의 A에서처럼 [HN(CH₃COOH)₂]MoO₄의 스펙트럼은
CH₃COH의 양성자들에 해당하는 기본적인 경향을 나타내고 있고
있다. 그리고 D₂O 콜럼에서 N-H가 거의 모두 N-D로 차지되었으
므로 N-D의 형성을 한 스펙트럼이 나타났으며, 하나의 양성자와
다른 양성자가 다른 양성자보다 더 많은 복합체 복합체를 형성한다.
iminodiacetic acid와 Na₂WO₄의 1:1 용액에서 Mo와 free iminodiacetic acid
양성자 폴리가 크게 나타났다. 그리고 Mo와 비슷하게 [HN(CH₃COOH)]²⁻처럼 구조를 갖는 복합체가 형성된다고 생각된다. 그러나 이러한 복합체는 Mo와의
복합체보다는 더 안정하다고 사료된다.

3.5. 액체상 화학 실험
3.5.1. 화학시험에 따른 화학물질의 변화
pH를 1~6까지 변화시키는 시간에 따른 화학물질을 Figure 9에
대비하였다. 각 급수 순으로 화학시험에 도달한 시간은 원래에서
보는 약 1~6시간을 갖는 스펙트럼으로 나타나며, 화학시험
의 약 5~6시간에서는 약 2~3시간 이내에 화학시험
에 도달하는 것으로 나타났다.
본 실험에서는 pH 5에서 수 분출물의 질에서 수에 대한 Mo
과 W의 화학물질을 비교하였다. 그 결과를 Figure 10과 Figure 11
에 나타내었으며, 여기에서 분출물은 점의 시간의 화학시험의 각각
의 수에 따른 화학시험에 나타난 것이다.
Figure 9. Adsorption amount of Mo with time using ②-CH₃N(CH₂COOH)₂.

Figure 10. Rate of attainment of equilibrium sorption of Mo on different resin at pH 2.

Figure 11. Rate of attainment of equilibrium sorption of W on different resin at pH 2.

Figure 12. Relation between equilibrium sorption capacity and equilibrium concentration in bulk solution.

3.5.2. 으뜸 유효성 및 분배계수

pH 2에서 급속이온의 초기농도를 0.5 mmol/L에서 6 mmol/L까지 변화시키고, 질량의 양은 0.1 g으로 고정하여 형광 흡광경을 이용하여 실험실에서 약 30 min 후에 샘플을 착취한 다음 실험을 Figure 12에 나타내었다. Figure 12에서 각지역은 질량이 형광으로 도달했을 때 응력의 능도이며, 직선은 급속이온의 활성에서 일정한 값에 접근한다는 것을 알 수 있다. 초기농도 50mmol/L에서 ②-CH₃N(CH₂COOH)₄의 경우 Mo에 대한 최대 유효성은 454 mmol/g, W에 대해서는 290 mmol/g이었다. 그리고, ②-CH₃N(CH₂COOH)₄의 경우 Mo에 대한 최대 유효성은 3.44 mmol/g, W에 대해서는 1.81 mmol/g이었다.

Figure 12은 급속이온의 투과 성과의 pH에 따른 분배계수.
Figure 13. Distribution coefficients of Mo and W as a function of pH using $\text{OCH(NH}_2\text{COOH)}$

물에 담겨있는 것이며, 분배계수는 산성영역에서 pH가 증가함에 따라 감소하였다. 그러나, Mo 화물의 경우 일부 산화된 비가 있지만 pH 1의 K$_{a1}$값에 pH 2의 K$_{a1}$보다 더 작다는 것을 알 수 있었다.

4. 결론

$\text{OCH(NH}_2\text{COOH)}$, $\text{OCH(NH}_2\text{CH}_2\text{NH}_2)$, $\text{OCH(NH}_2\text{CH}_2\text{OH)}$ 등은 종류의 염해드 수치를 이용하여 Mo와 W의 분리 용적 및 회수 실험을 하여 다음과 같은 결론을 얻었다.

염해질환 실험에서 각 염해드 수치에 의한 각 수용액 중에 수용액에 대한 양적적인 수용액을 요하는 pH비례를 조사한 결과는 각 염해드 수치에 대한 Mo와 W의 실험에 따른 결과를 비교해보면, pH에 따라 다소 차이가 있으나 대부분 약 10시간 정도 동안 염해질환에 도달하였고, 흡착량은 pH 5~6에서는 2~3시간이면 용액량에 도달하였다.

중정전형의 수수화된 염해드 수치의 조건은 염해질량이 증가함에 따라 염해질량의 증가량이 있고, $\text{OCH(NH}_2\text{CH}_2\text{NH}_2)$는 산소를 나타냈다. 각 염해드 수치에 대해 수용액이의 조건도 $\text{OCH(NH}_2\text{CH}_2\text{OH)}$ 수지는 Mo는 1.99 mmol/ℓ이고 W은 1.75 mmol/ℓ이었다. 본 연구가 금속의 분리 및 회수와 관련된 문제에 있어서 연구되었는데, 실험조건에서는 실험량 $\text{OCH(NH}_2\text{CH}_2\text{COOH)}$, $\text{OCH(NH}_2\text{CH}_2\text{OH)}$로 수치로 나타났다.

참고 문헌