소화술리지 탐수성 증진을 위한 폐굴검질의 재활용

김은호, 손용기, 이미경, 최철, 박두수, 황영기

경남대학교 경질화학공학부

(1999년 12월 4일 접수, 2000년 1월 17일 편집)

Recycling of waste oyster shell for improvement in digested sludge dewaterability

Eun-He Kim, Eun-GI Shim, Mi-Kyung Lee, Chul Koak, In-Soo Park, and Young-GI Hwang

Division of Fine chemistry and chemical Engineering Kyungnam University, Masan 631-701, Korea

(Received December 4, 1998; accepted January 17, 2000)

요약: 소화술리지 탐수성 증진을 위한 재활용제로 폐굴검질의 촉매용을 검토하고 개량을 위한 최적 조건을 결정하여 식학적 탐수성을 비교-결과가 높。

폐굴검질을 이용하여 소화술리지를 개량함에 있어서 소화술리지 1.5사용량 0.2%하중 폐굴검질 5g을 추가하고 순도, pH면 탐수성은 각각 30%, 7 및 266×10⁻⁴ N/m²로 조사하는 것이다 소화술리지의 탐수성 증진을 위한 최적 조건으로 탐색되었다. 폐굴검질의 추가도는 1.33×10⁻⁵mg/kg로써 폐굴검질의 추가도는 1.33×10⁻⁵mg/kg과 비교하여 약 2배 정도 작아보이며 폐굴검질의 탐색된 습기량은 1.24×10⁻⁵mg/kg이 더욱 차이가 없었다. 이상의 결과를 바탕으로 시험 및 실험이의 재활용 중에서 폐굴검질과 유사한 성분을 함유하고 있는 폐굴검질을 폐굴 가능성이 높다고 것으로 평가된다.

Abstract: The purpose of this study was to examine applicability of waste oyster shells as conditioning agent, to determine the optimum conditions for improving digested sludge dewaterability and to compare with CaCO₃, if waste oyster shells were used as conditioning agent for dewatering digested sludge, it estimated that the optimum conditions were dosage 30 g/L, particle size 10mesh, temp. 30°C, pH 7 and dewatering pressure 2.66×10⁻⁴ N/m². On the basis of induced optimum conditions, its specific resistance was 1.33×10⁻⁵ mg/kg if adding waste oyster shells in digested sludge and was low about 2.8times than raw digested sludge 3.74×10⁻⁵ mg/kg. But, it was almost similar to 2.3times like adding CaCO₃ in digested sludge. Therefore, in view of waste recycling, it seemed that we could utilize waste containing analog composition with waste oyster shells.

Keywords: digested sludge, dewaterability, waste oyster shell, conditioning agent

1. 서 론

국내 도시수수 습리지의 발생량은 여러가지 요인에 따라 상이할 수 있으며, 예를 들어 2001년에 건조증량으로 약 3195 tcd/day 정도의 막대한 양이 배출될 것으로 추정되고 있으며, 후기 지속적 도수 보급율의 증가에 따라 더욱 증가하며 습리지의 처리, 처리 중의 환경적 문제를 야기할 것으로 예상된다. [1]. 특히, 이러한 습리지는 다양한 수용성과 해양가스 함유도 차이 및 각게, 최연후분석에 많은 이상가능을 초래하게 된다. 폐구체처리로 발생하는 습리지량은 처리분량과 비교할 때 약 1%만으로 적은 수량이라지만 환경적 관심도에 대한 처리, 처리 중의 환경적 문제를 발생시킬 수 있다. [2]. 또한, 이러한 수용성은 습리지의 처리, 처리 중의 환경상의 문제를 겪지 않게 하기 위해서는 수용성 유전을 하여 처리할 수 있는 수요를 충족시켜 처리수중에서 습리지량을 감소시킬 필요가 있다. [3]. [4]. [5].

1절로 전해진 습리지 처리비용은 도시수수 전체 처리비용의 1/2~1/4 정도의 비율을 차지한다. [6]. 또한, 습리지의 수용성은 도시수수 전체 처리비용의 1/2~1/4 정도에 해당한다. [7]. 그 중에서 수용성 습리지처리가 가장 큰

2. 이론적 고려

슬러지 여과의 기초식은 Poiseuille와 Darcy의 방정식으로부터 식 (1)과 같이 표현할 수 있다 [6].

\[
\frac{dv}{dt} = \frac{P \cdot A K}{\mu L} \tag{1}
\]

에서,

\[
\begin{align*}
&dv/dt : \text{슬러지 여과에서 탈리액의 시간에 따른 �灘적변화량} \\
&t : \text{시간 (sec)} \\
&V : \text{탈리액의 재질 (mL)} \\
&P : \text{탈수압력 (g/cm^2)} \\
&A : \text{탈수면적 (cm^2)} \\
&\mu : \text{달리액의 정체계수 (g/cm \cdot sec)} \\
&K : \text{퍼뮤지} \\
&L : \text{슬러지 케이크의 두께 (cm)} \\
\end{align*}
\]

식 (5)에서 탈리액의 단위체적 대류하는 케이크의 재질에 따라 탈리액의 단위체적 대류하는 케이크의 균속층으로 표현하는 것이 더욱 구체화되기 때문 카프 단위체적에 의한 대류는 단위부피에 의한 대류로 표현할 수 있다. 그러므로, 식 (5)는 식 (6)과 같이 표현할 수 있다.

\[
\frac{dv}{dt} = \frac{PA^2}{\mu (rwV + RA)} \tag{6}
\]

여기에서,

\[
\begin{align*}
&w : \text{슬러지 케이크의 전중점 (g/cm^3)} \\
&r : \text{비저항 (Specific resistance) (sec/g)} \\
\end{align*}
\]

여과조건에서 사용되는 압력이 일정하다고 가정하면 식 (6)은 적분하여 식 (7)을 얻을 수 있다.

\[
\int_{0}^{t} \frac{dv}{dt} = \int_{0}^{t} \left(\frac{-PdV}{PA^2} + \frac{R \nu}{PA} \right) dv
\]

\[
t = \frac{-PdV}{2PA^2} + \frac{R \nu}{PA} \quad \text{또는} \quad \frac{t}{V} = \frac{-PdV}{2PA} + \frac{R \nu}{PA} \tag{7}
\]

식 (7)은 \(V\)을 \(V = \nu \cdot C\) 즉, \(V\)의 집적수로 하는 \(V = k\cdot h\cdot x\)의 처럼의 대체 식 (8)로 표현할 수 있다.

\[
b = \frac{\mu \cdot rw}{2PA^2}, \quad a = \frac{\mu \cdot R}{PA} \tag{8}
\]

따라서, \(UV\)에 대하여 \(V\)를 Plotting한 직선의 기울기와 점과의 식 (8)에 대입하여 비저항과 케이크의 초기저항을 구할 수 있다. 여기에서, 기울기와 비저항값은 각각 압축력과 탈수압력 증가량을 의미한다. 식 (8)은 비저항에 대한 정리하면 식 (9)과 같이 표현할 수 있다.

\[
r = \frac{2PA \cdot b}{\nu \cdot w} \tag{9}
\]

식 (9)에서 \(w\)는 물결수직적으로부터 유도할 수 있다. 여기서 케이크와 탈리액의 유동에 대한 물결수직을 점수록하면 식 (10)과 같이 표현할 수 있다.

\[
Q_0 = Q_1 + Q_4 \tag{10}
\]

여기에서,

\[
Q_0 : \text{저작물 슬러지량} \\
Q_1 : \text{탈수 탈리액량} \\
Q_4 : \text{탈수 슬러지 케이크량} \\
\]

따라서, 물결수정은 식 (11)과 같이 건재할 수 있다.

\[
Q_0 = C_1 \cdot Q + Q_4 \tag{11}
\]

여기에서,

\[
C_1 : \text{저작물 슬러지 내의 고형물질 농도} \\
C_4 : \text{탈수 슬러지 케이크의 고형물질 농도} \\
\]

\[W = \frac{C_w C_k}{Q_t} \tag{12} \]

식 (10)을 \(Q_t \)에 대하여 정리하고 식 (11)을 \(Q_w \)에 대하여 정리하여 식 (12)에 대입하면 식 (13)을 얻을 수 있다.

\[W = \frac{C_k (C_t - C_C)}{C_w C_C} \tag{13} \]

식 (13)에서 움직임의 고형물량을 두시할 수 있다면 식 (14)와 같이 표현할 수 있다.

\[W = \frac{C_k C_C}{C_w C_C} \tag{14} \]

식 (14)에서 고형물의 농도를 \%로 표시할 수 있는 것으로 수정하면 식 (15)과 같이 표현할 수 있다.

\[W = \frac{100 (C_k - C_C)}{C_w C_C} \tag{15} \]

여기에서,

\(C_o \) : 사전 슬러지의 고형물질 농도 (%)

\(C_e \) : 사후 슬러지 케이크 고형물질 농도 (%)

3. 실험 및 방법

3.1. 소화슬러지의 특성

본 연구에 사용된 시료는 P. 사에 위치한 J. 하수종합처리장에서 발생되는 소화슬러지를 재취하여 사용하였다. 본 연구에 있어 \(4 \)℃에서 보관하였고, Table 1은 재취한 소화슬러지의 특성을 보여주고 있다.

Table 1. Characteristics of Digested Sludge

<table>
<thead>
<tr>
<th>Item</th>
<th>Range (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water content (%)</td>
<td>95.4~96.6 (96)</td>
</tr>
<tr>
<td>TS (%)</td>
<td>3.4~4.6 (4)</td>
</tr>
<tr>
<td>Temp. (℃)</td>
<td>24.3~26.5 (25.4)</td>
</tr>
<tr>
<td>pH (-)</td>
<td>7.2~7.6 (7.4)</td>
</tr>
</tbody>
</table>

Table 2. Experimental Condition for Dewatentability Estimate Using Waste Oyster Shell

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dosage (g)</th>
<th>Size (Mesh)</th>
<th>Temp. (℃)</th>
<th>pH (-)</th>
<th>Time (min)</th>
<th>Pressure (N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0~10</td>
<td>100</td>
<td>30</td>
<td>7</td>
<td>30</td>
<td>2.66</td>
</tr>
<tr>
<td>Size (Mesh)</td>
<td>6</td>
<td>20~200</td>
<td>30</td>
<td>7</td>
<td>5~25</td>
<td>2.66</td>
</tr>
<tr>
<td>Temp. (℃)</td>
<td>6</td>
<td>10~100</td>
<td>10~40</td>
<td>7</td>
<td>5</td>
<td>2.66</td>
</tr>
<tr>
<td>pH (-)</td>
<td>6</td>
<td>100</td>
<td>30</td>
<td>3~12</td>
<td>5~25</td>
<td>2.66</td>
</tr>
<tr>
<td>Time (min)</td>
<td>6</td>
<td>100</td>
<td>30</td>
<td>7</td>
<td>5~55</td>
<td>2.66</td>
</tr>
<tr>
<td>Pressure (N/m²)</td>
<td>6</td>
<td>10</td>
<td>30</td>
<td>7</td>
<td>5</td>
<td>2.66</td>
</tr>
<tr>
<td>Optimum condition</td>
<td>6</td>
<td>100</td>
<td>30</td>
<td>7</td>
<td>5</td>
<td>2.66</td>
</tr>
</tbody>
</table>

공업학회, 제11권 제 2 호, 2000
프로판, 이 (7)와 V를 Plotting하여 기울기(k) 값을 구하여 비적합도를 산출하였다. 그리고, 플러지 체크의 고탈을 점검할 때 플러지 체크의 공급이 일정한 때 플러지 체크의 점검을 한 다음 약 18cm 고정이 10cm 이상 컷지면서 검증기고 후 2개를 측정하였다.

4. 결과 및 고찰

4.1. 주입량의 영향

Figure 2는 소화습리치의 탄수소 증진을 위한 개량해석에 관계된 형질성을 꼽고 있기 때문에 개량해석 주입량 변화에 따른 비적합도를 보여주고 있다. 대체적으로 개량해석을 체취하지 않은 습리치의 비액체 귀중한 형질을 점검한 경우에 비적합도가 감소하는 경향은 보이지 않고 있어 개량해석에 습리치의 탄수소 증진을 위한 개량해석의 형질성이 증명된 것으로 평가되었다.

4.2. 임금의 영향

Figure 3은 소화습리치의 탄수소 증진을 위한 개량해석에 개

4.3. 연도의 영향

일반적으로 연도는 개량해석의 유형들은 크게 영향을 미치기 때

Figure 4는 소화습리치의 탄수소 증진을 위한 개량해석에 개량해석의 형질을 점검하기

4.4. pH의 영향

일반적으로 통합적으로 숙리지를 개발할 경우에 숙리지 임자의 세포분열이 예의를 들어야하므로, 숙리지 임자가 전화종합체로 쓰이는 것에만 의열적 즉 피피 4의 경우에 비례하는 1.0×10⁻⁵ M으로 가장 적으나 그 다음은 피피 4에서 1.1×10⁻⁵ M으로 피피 6에서 가장 적은 피피 6에서 보다 숙리지의 피피 3.5에서 최적의 발산성을 보였다고 [17]의 연구와도 거의 일치하였다. 이는 밀시에의 유기토양층을 첨가하여 속리지의 저밀도형을 통해 양으로 증가시킨다고 보고하고 있다.

이러한 결과는 늘 수피에서 피피 4출장자가 C₆-H₂와의 능이 가능한 출장자가 피피 6에 비하여 숙리지 포양단자가 보다 더 쉽게 증가할 수록 발산효과로 인하여 발산이 소수한 것으로 여겨진다.

4.5. 계량기간의 영향

Figure 6은 소화력의 발산성을 측정한 계량기간이 계량기간에 따른 비례관계를 보고하고 있다.

Figure 7은 피피 4열이 계량기간에 따른 비례관계를 보고하고 있다. 피피 4열은 2.66×10⁻⁵ M에서 7.38×10⁻⁵ M까지 증가함에 따라 비례

4.6. 탈수시험의 영향

Figure 8은 소화력의 발산성을 계량기간에 따른 비례관계를 보고하고 있다. 탈수시험은 2.66×10⁻⁵ M에서 7.38×10⁻⁵ M까지 증가함에 따라 비례관계를 보고하고 있다. 탈수시험은 2.66×10⁻⁵ M에서 7.38×10⁻⁵ M까지 평가하기 위하여 계량기간에 따른 비례관계를 보고하고 있다.
Figure 7. Effect of pressure on vacuum dewatering.

의 영향에서 인한 결과로 3.2와 3.3의 인장강도에 일치하는 것을 알 수 있으며 탈수 제어보다는 염망의 감소로 인하여 탈수 제어의 염망성에 기인한 것으로 판단되었다. 재활용물 양
자는 탈수 제어의 압착성과 탈수율을 유용하게 이용하여 아
주 효과적으로 작용하는 방식이다. 재활용물에 대한
고용을 위한 판단이 필요할 것이다. Corman [18]는 비적합성
탈수율의 하수도 섬 (16)과 같이 표현하였다.

\[R = \frac{C}{P^a} \text{ 또는 } R = \frac{C}{(1 - \alpha P)} \]

(16)

여기서,

\[S, a : \text{압축성을 나타내는 수치} \]
\[P : \text{압축성} \]
\[\alpha : \text{실험 수치 상수} \]

전고함수 변형성은 이론적 쪽의 물리적 구조가 변하지 않는다는 가정하에서 발달한 것이다. 따라서, 압축성 측정에서선 정립성에

위측과 하측을 차례로 이용하여 단계별로 각각의 압축성 측정은 단계별로, 정립성에서도 위측과 하측은 차례로 각각의 압축성

측정은 동일한 수치를 나타내어야 한다. 각각의 결과는 측정의 편차와

정립성에 의한 탈수 제어의 압축성의 크기 결정에 영향을 미치지 않는 것으로 판단된다. Figure 7을 이용하여 탈수율에 따른

적합성계수를 (Plotting)하여 거기기술한 압축계수 (15)를 구하였다.

본 연구에서는 0.30에서부터 일반적으로 도시하수 처리환적

의 압축성 0.4~0.65의 범위에 이르러 다소 낮은 값을 알 수 있으며

Cockley [19]와 Phoenix [20]가 Table 3에 제시한 압축계수에 비하

여 낮은 특성과 보이고 있어 폐결정에서 원한 탈수 제어의 압

축성의 차이점에 비해 압축성의 차이점에 비해 압축성의 차이점

가 차이점에 미치지 않은 것으로 판단된다. 서비스의 압축성의

이용성과의 구조상에 의하여 압축성의 차이점에 비해 압축성의 차이점

에 대한 차이점의 분석에서 앞서 언급한 제시가 적절하게 이용된 것으로 판단된다.

Table 3. Compressibility Coefficient from Cockley and Junes

<table>
<thead>
<tr>
<th>Type of sludge</th>
<th>Compressibility coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digested</td>
<td>0.7~0.86</td>
</tr>
<tr>
<td>Activated</td>
<td>0.6~0.79</td>
</tr>
<tr>
<td>Raw</td>
<td>0.87</td>
</tr>
<tr>
<td>Hums</td>
<td>0.8</td>
</tr>
<tr>
<td>This study</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Figure 8. Relationships between TV and V as dosage.

제시된 최적조건을 근거로 하여 폐결정률을 증가시킨 증가율

의 경우, 폐결정물의 수의 증가가 유안된 증가율의 경우에 V

에 대한 TV의 관계를 Figure 8에 나타내었다.

Figure 8에서 알 수 있듯이 기기중합형 폐결정장의 설치로 개

암하게 되었음에 비해 폐결정량은 증가하지 않은 증가율에서 더 큰

것을 알 수 있다. 또한, 소싱지 폐수의 종류에 따라서 TV의 큰지

의 현상이 성립하는 것으로 다소 한계가 있다. 본 연구에서는 기기중합형의

폐결정장의 설치가 소싱지 폐수의 종류에 influence가 있으므로 TV의

설계에 있어서 이러한 결과는 유용한 폐결정장의 설치의

설계상의 의한 것으로 여겨진다.

Table 4에 보다 자세히 보았을 때 적합계수는 증가해 가며 혼합

율에 증가함과 정량의 경우에는, 이 결과는 비적합성과

적합계수의 차이가 증가하면 등과의 변화의 변화를 나타낸다.

폐결정량은 적합계수와의 관계에 따라서 폐결정물의 성형의

적절한 수지의 경우, 기기중합형 임을 감소시킨 경우에 알 수

있으며 탈수율의 응용율과는 정밀도 90%이었으나 탈수율의 어

느정도 탈수율이 감소된 것을 알 수 있다. 즉, 탈수율에 폐결정

장의 성형의 차이가 빠른 경우에 각각 23%~80% 감소

한 74%~96%의 적절한 변형면에 폐결정율을 증가하지

은 증가율의 관계 (38%)에 따라 이어진 것을 알 수 있다. 또한,

적합계수와 비교적은 폐결정량의 증가기의 경우에

주기는 0.35~7.05m과 비교하여 모델에 적합한

374×10^3 m/kg 이하의 압착 도ormsg으로서 낮은 적합계수

과 적합지의 차이가 증가시킨 경우에 각각 24%~78% 감소

한 74%~96%의 적절한 변형면에 폐결정율을 증가하지

은 증가율의 관계 (38%)에 따라 이어진 것으로 생각

된다.

Table 4. Comparison of Slope, Water Content and Specific Resistance after Dewatering with Conditioning Agent

<table>
<thead>
<tr>
<th>Item</th>
<th>Agent</th>
<th>Raw sludge Before</th>
<th>Waste Oyster Shell</th>
<th>CaCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>(×10⁻⁶ sec/m²)</td>
<td>2.81</td>
<td>0.83</td>
<td>0.51</td>
</tr>
<tr>
<td>Water content (%)</td>
<td>96</td>
<td>83 (135)</td>
<td>74 (23)</td>
<td>89 (29)</td>
</tr>
<tr>
<td>r</td>
<td>(×10⁻¹² m²/kg)</td>
<td>3.74</td>
<td>1.33</td>
<td>1.34</td>
</tr>
</tbody>
</table>

* Dewatering efficiency (%)

5. 결론

소화슬러지를 알수성 증진을 위한 재료로서 폐공정의 적용성이 검토되고 개발을 위한 최적의 조건을 결정하여 섬작과 탈수성에 비교 검토하여 다음과 같은 결론을 얻을 수 있었다.

1) 폐공정을 이용하여 소화슬러지를 개발할 시에 소화슬러지 11.5% 입정, 100mesh이 폐공정 30%를 주입하고 온도, pH와 탈수성상의 각각 30, 7, 및 2.6×10⁻¹² m²/kg으로 조정하는 것이 소화슬러지의 탈수성 증진을 위한 최적의 조건임으로 평가되었다.

2) 폐공정을 개발함으로써 이러한 모든 조건이 개발하고 폐공정의 탈수성과 주요 인자에 입정, 11.5% 입정, 100mesh이 폐공정 30%를 주입하고 온도, pH와 탈수성상의 각각 30, 7, 및 2.6×10⁻¹² m²/kg으로 조정하는 것이 소화슬러지의 탈수성 증진을 위한 최적의 조건임으로 평가되었다.

참고 문헌

2. 조용호, 연단재료의 하수조제에 이용한 소화슬러지의 탈수에 관한 연구, 대한환경공학회, 7, 2, 49(1996).
3. 신모성, 소화슬러지의 하수조제에 의한 탈수특성, 대한환경공학회, 18, 8, 971(1996).
4. 박호진, 바이로의 하수조제에 이용한 소화슬러지의 탈수 특성, 대학환경공학회, 18, 8, 971(1996).
5. 신희정, 원자재의 하수조제에 이용한 소화슬러지의 탈수 특성, 대학환경공학회, 18, 8, 971(1996).
6. 신희정, 원자재의 하수조제에 이용한 소화슬러지의 탈수 특성, 대학환경공학회, 18, 8, 971(1996).
7. 홍정규, 원자재의 하수조제에 이용한 소화슬러지의 탈수 특성, 대학환경공학회, 18, 8, 971(1996).
9. 김남철, 비정량제절을 이용한 빠른·고기소화 및 절취학습의 슬러지의 탈수특성에 관한 비교·연구, 한국폐기물관리회, 15, 7, 729(1999).
15. 서정현, 고분자유체 접착에 따른 슬러지의 탈수특성 및 절수 특성, 대한환경공학회, 18, 12, 196(1998).