Plasma Display Panel용 감광성 격벽 재료 및 Photolithography 공정 성질
박이순*, 정승원, 오현석, 김순환, 송수무

경북대학교 과덕자공학과
(1999년 4월 26일 접수, 1999년 11월 6일 채택)

Photosensitive Barrier Rib Paste for PDP and Photolithographic Process
Lee Soon Park*, Seung Won Jeong, Hyun Shik Oh, Soon Hak Kim, and Sang Moo Song

Department of Polymer Science, Kyungpook National University, Taegu 702-701, Korea
(Received April 26, 1999; accepted November 6, 1999)

요 약: 플라즈마 다스플레이 패널(PDP)의 격벽(barrier rib)은 일정한 선과 높이를 가지며 균일한 방전 공간을 제공하고, 접합한 커널 간의 전기적, 광학적 혼신(crosstalk)을 방지하기 위해 PDP의 하부 유리 기판 패널에 들어가는 구조요소이다. 본 연구에서는 사진작작(photolithography)법으로 격벽을 형성하는 데 필요한 감광성 격벽 재료가 제조되었다. 케이저는 무엇인지 고려할 때 에틸아세토아세톤을 BC/BCA = 30/70 wt %인 혼합 용액에 15 wt %로 용해 한 다음 암광 성능 판광 문제로 TFCDA/PETA = 50/50 wt % 혼합 용액, 공정서로는 Ingarc 651 격벽 방장ذي 도입한 다음 전선을 적절하게 분산시켜 제조되었다. 감광성 격벽 패스트의 각 성분, 조성 및 공정을 최적화하여 최초 높이 약 100 μm에 이르는 PDP용 격벽을 고정압도로 사진작작법으로 만들 수 있었다.

Abstract: Barrier rib for the plasma display panel(PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving ethylcellulose(binder polymer) in butyl carbitol(BC)/butyl carbitol acetate(BCA) = 30/70 wt % mixture solvent at 15 wt % concentration. To this solution a functional monomers consisted of tripropylene glycol diacylate/ pentacyrtil triacrylate = 50/50 wt %, Ingarc 651 photoiniator, and barrier rib powder were added and then the whole mixture was mixed in the three roll mill for 2 hr. The effect of component and concentration of photosensitive barrier paste on the photolithographic process was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to 100 μm height.

Keywords: plasma display panel(PDP), photosensitive barrier rib, photolithography, barrier rib, barrier rib paste

1. 서 론

Plasma display panel(PDP)는 Penning 가스체(Xe-Ne, Xe-He 등)의 용액 glow 방전에서 발생하는 플라즈마로부터 나오는 진공 진공

전장(주로 147 mm)의 원형을 가지고 작, 녹, 통과의 가시광으로 변환하는 경우에 이용하는 펜던조직성의 하나이다(1-4).

PDP의 격벽(barrier rib)은 일정한 선과 높이를 가지며 격벽의 방전 공간을 제공하고, 접합한 커널 간의 전기적, 광학적 혼신(crosstalk)을 방지하기 위해 PDP의 하부 유리 기판에 들어가는 구조요소이다. PDP의 격벽는 높이 약 50 μm, 폭 약 70 μm, 격벽 간의 간격(pitch)가 약 420 μm의 구조로 주로 이루고 있다(9).

PDP의 이러한 격벽을 형성하는 방법으로는 인쇄(screen printing)법, sand blast법 및 사진작작(photolithography)법이 알려져 있다. 이 중에서 인쇄법과 sand blast법이 의한 격벽의 형성이 격벽 간의 피치가 적은 고해상도 PDP에는 적합하기 어려하기 때문에 사진작작법에 의한 방법이 향상되어 연구되고 있다(7,8).

사진작작법에 의해 격벽을 형성하는 공정은 address 전극 및 유 전극이 형성된 PDP의 하부 유리 기판 위에 감광성 격벽 패스트(paste)를 일정 두께로 적은 후 도포하고 건조한 다음, 원하는 pattern의 마스크를 통해 자유선UV에 노출 및 형성을 하는 과정을 거쳐 덮어진다(8).

사진작작법에 필요한 감광성 격벽 패스트의 경우 PbO-B2O3-SiO2-ZnO를 구성으로 하는 glass frit와 염류머니나 미리 사용된 격벽 방장지를 intermittently intermediate polymer와 이를 염색시키는 용

액, 자유선에 광반응을 일으킬 수 있는 다양한 단일체 및 UV 광장치로 구성된 영상 용액(vehicle)에 열길이 분산시켜 제조

된다. 감광성 격벽 패스트를 사용한 사진작작법에 의한 PDP용 격벽의 형성은 격벽 패스트의 전선 도포에 필요한 유효적인 성

질 및 두께, 약 100 μm에 이르는 후막매시의 사진작작 공정 성

질을 동시에 만족시켜야 하는 특성을 가지고 있다(9). 본 연구에서는 감광성 격벽 패스트를 제조하고 각 성분의 사진작작 공정에 따

른 격벽 형성에 미치는 영향에 대해 조사하였다.

2. 실험

2.1. 시약

감광성 격벽 패스트의 바인더 고제로 사용된 ethylcellulose(20)를 Junsei Chemical사의 사진작관을 사용하였으며 용매로 사용된 butyl carbitol(BC) 및 butyl carbitol acetate(BCA)는 Tokyo Kasei사의 사진재료를 사용하였다. 다양한 단원체로서 4관

† 주 저자(e-mail: lspark@bh.kyungpook.ac.kr)
능성인 dipentaerythritolhexaoxy pentaacrylate(DPHEPA)와 3만능성 trimethylolpropane triacrylate(TMPTA), pentaerythiol triacrylate(PTA) 및 trimethylolpropane ethoxylate triacrylate(TMPTA), 2만능성인 tripropylene glycol diacrylate(TPDA), 1,6-hexanediol diacrylate(HDDA), ethylene glycol dimethacrylate(EGMA)는 Aldrich사의 시약급으로 사용하였고, 광 계시제로는 Ingacur 184, Ingacur 651 및 Darocur 1173를 Aldrich사의 시약급으로 사용하였다.

2.2. 감광성 격벽 paste의 제조

기본적인 감광성 격벽 paste의 제조 과정은 먼저 ethyl cellulose 바디어 고분자물 BC 및 BCA 혼합 용액(BC/BCA = 30/70 wt %)에 15 wt %로 휘도 및 교반기를 사용하여 증분히 혼합하였다. 이 용액에 PETA 및 TPDA와 같은 연료성 단량체가 Ingacur 651 광세계제의 양을 변화시켜 바디에 고정하여 충분히 교반하였다. 여기에 glass frit 및 알루미늄으로 구성된 격벽 형상용 무기물 분말을 투입한 다음 Exakt사의 3턴 롤러(three roll mill)를 사용하여 균질하게 분산시켜 감광성 격벽 paste를 제조하였다.[10,11]

2.3. 시험식 및 조성 평가

사전실험을 이용한 격벽의 형성은 먼저 감광성 격벽 paste를 PVP의 하부 유연기에 위에 bar coater를 이용하여 절반 도포하고 20℃에서 20분간 건조시켰다. 다음에 제조된 photomask를 통하여 200~1000μm/cm²의 경계를 제시하여 감광성 격벽 paste의 형성부분을 전경시킨 후 30~60초 동안 형성 용액을 분무하여 비교적 빠르게 재질하는 것을 거쳤다. 사전 실험을 거쳐 결정된 격벽 패턴은 10℃/min으로 550℃까지 승온시킨 후, 500℃에서 30분간은 소량의 공기를 투입하여 형성된 패턴에 포함된 바디어 고분자물 및 기타 유기물 성분은 제거함으로써 각을 제거함으로써 시험을 성공적으로 형성한 격벽을 얻었다[10,11]

2.4. 분석

2.4.1. UV spectrometry 및 노광기

사전식 실험 조건에 적합하게 광세계제의 선별을 위하여 UV-visible spectrometer(Shimadzu UV-2100)를 이용하여 광세계제의 속도 분석을 하였다. UV 노광 장치는 365 nm를 주파수대로 하는 고압 수은등록(mercury lamp)을 광원으로 가진 것을 사용하였으며 UV radiometer를 이용하여 측정된 365 nm 광장에서의 화학기는 9.8 μm/cm²이었다.

2.4.2. Thermogravimetric analysis(TGA)

감광성 격벽 paste의 바디어 고분자물로 사용된 고분자 사료의 소성 특성을 보기 위하여 TGA(DuPont 951 thermogravimetric analyzer)로 사용하였으며 10 mg 내외의 시료를 금속 기판을 하여서 T/℃의 속도로 800℃까지 승온시켜 시료의 중량 감소를 측정하였다.

2.4.3. Viscometry

감광성 격벽 paste의 절도 측정은 Brookfield viscometer(DV II+)를 이용하였으며 21℃에서 disc type의 RV spindle 07를 사용하였다.

2.4.4. Scanning electron microscopy

감광성 격벽 paste를 이용하여 형성된 격벽의 형상은 field emission scanning electron microscope(Hitachi S-4200)를 이용하여 관찰하였다. 시료는 Au coating으로 전처리하였으며 acceleration voltage는 15 kV이었다.

Figure 1. Effect of solvent mixture and concentration of ethyl cellulose on the rheological properties.

3. 결과 및 고찰

3.1. 감광성 격벽 paste의 구성 성분

3.1.1. Binder polymer 및 용매의 선택

감광성 격벽 paste의 바디어 고분자는 자체적으로 감광성 기를 지니고 있지 않으나 격벽 paste의 도포 특성 및 패턴 형성 후 소성 조성을 양극에 미친다. 여기에는 고분자 용매가 높고 약력으로 PDP의 격벽을 형성하는데 브레인성 성질이 우수하다고 알려진 에틸렌올로포스를 바디어 고분자로, 그리고 용매로서는 비피복 이 높고 에틸렌올로포스의 용매로 잘 알려진 BC 및 BCA를 편히 절도 특성에 조조하였다[12].

Figure 1에는 혼합 용매 BC/BCA의 비율 30/70 wt %를 고정하고 바디어 고분자인 에틸렌올로포스의 함량을 20, 15, 10, 5 wt %로 변화시킨 경우와 에틸렌올로포스의 함량을 15 wt %로 하고 BCA 및 BC를 단독 용매로 하였을 때 Brookfield 절도계로 측정된 절도 변화를 나타내었다. Figure 1에서는 BC/BCA=30/70 wt % 혼합 용매에 에틸렌올로포스를 20 wt %로 용해시킨 시료의 경우 절도가 6000 cp 이상으로 너무 높고 에틸렌올로포스를 10 및 5 wt %로 용해시킨 경우는 300 cp 빠르므로 절도가 낮아 bar coater로 유리 기판 위에 도포할 수 있다. 또한 바디어는 절도가 낮아도 도포가 되지 않으므로, 형성은 성공하였다. BCA, BC를 단독 용매로 하고 에틸렌올로포스를 15 wt %로 용해시킨 경우 절도는 20 rpm에서 약 2000 cp 정도로 적정하였으나 격벽 분말과의 화합성이 낮아 도포가 되지 않았다. BC/BCA=30/70 wt % 혼합 용매에 에틸렌올로포스를 15 wt %로 용해한 것을 바디어 용매로 하여 기타 형광제에 대한 영향을 조사하였다.
Table 1. Compatibility of Functional Monomers with Ethyl Cellulose Solution

<table>
<thead>
<tr>
<th>Monomer Func.</th>
<th>*Amount (g) and Evaluation</th>
<th>0.5</th>
<th>2.5</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bubble Clarity</td>
<td>Bubble Clarity</td>
<td>Bubble Clarity</td>
<td>Bubble Clarity</td>
</tr>
<tr>
<td>DPHIA</td>
<td>5</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>PETA</td>
<td>3</td>
<td>△</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>TMPTA</td>
<td>3</td>
<td>X</td>
<td>○</td>
<td>X</td>
</tr>
<tr>
<td>TMFE</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TPGDA</td>
<td>2</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>HDDA</td>
<td>2</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>EGDMA</td>
<td>2</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

* Based on 5.0 g of ethyl cellulose solution

Figure 2. UV absorption spectra of photoinitiators.

3.2.3. 작용물질의 결정
작용물질은 자외선 광에 의해 분해되어 라디칼을 형성함으로써
광활성 반응체의 광촉매를 촉진하여 작용물질 레이저의 감도
및 광중합 효과에 영향을 미친다[13]. 고압 수소(Hg) 증기에서 발
생하는 자외선 광은 254, 315, 365 nm 영역의 광이 주로 이루어
파장 영역에 따라 photomask로 사용된 glass를 통한 두께도가 달
라지게 된다. Photomask의 자외선 탱크 부분의 흡수 정도는 radiom-
eter로 측정한 결과 365 nm 파장의 흡수율은 약 15%, 312 nm
파장의 흡수율은 85%, 254 nm 파장의 흡수율은 100%로 나타났다.
따라서 UV-Visible spectroscopy를 이용하여 이론값 광물질의
원광선 투과율을 조사한 결과 Figure 2에서 보듯이 Darocur 1173 및 Inaguar 184보다 365 nm 부근에서 UV 흡수 peak을 보
이는 Inaguar 651을 적절한 광물질로 선정하였다.

Scheme 1. Photopolymerization of photosensitive barrier rib paste for PDP.

3.2. 작용물질의 결정
3.2.1. 작용물질의 결정
광물질의 자외선 광에 의해 광촉매의 광촉매를 촉진할 수 있는 작용물질 레이저의 감도 및 광중합 반응에 영향을 미친다[13, 14]. 고압 수소(Hg) 증기에서 발생하는 자외선 광은 254, 315, 365 nm 영역의 광이 주로 이루어
파장 영역에 따라 photomask로 사용된 glass를 통한 두께도가 달
라지게 된다. Photomask의 자외선 탱크 부분의 흡수 정도는 radiom-
eter로 측정한 결과 365 nm 파장의 흡수율은 약 15%, 312 nm
파장의 흡수율은 85%, 254 nm 파장의 흡수율은 100%로 나타났다.
따라서 UV-Visible spectroscopy를 이용하여 이론값 광물질의
원광선 투과율을 조사한 결과 Figure 2에서 보듯이 Darocur 1173 및 Inaguar 184보다 365 nm 부근에서 UV 흡수 peak을 보
이는 Inaguar 651을 적절한 광물질로 선정하였다.

Figure 3. Formation of PDP barrier rib by photolithographic process.
Table 2. Effect of Developing Solvent on the Barrier Rib Structure of FPD

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Developing speed</th>
<th>Sharpness of rib barrier</th>
<th>Adhesion to glass substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>○</td>
<td>Δ</td>
<td>△</td>
</tr>
<tr>
<td>THF</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Toluene</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Ethanol</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Isopropl alcohol</td>
<td></td>
<td>X</td>
<td>△</td>
</tr>
<tr>
<td>Toluene : ETOH (5:5)</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>Toluene : ETOH (3:7)</td>
<td>○</td>
<td>○</td>
<td>△</td>
</tr>
</tbody>
</table>

각벽의 해상도(sharpness)가 좋으며 유리 기판과의 부착력은 THF (tetrahydrofuran)를 포함한 경우 영향이 발생하지는 않았으나, 나머지 현상에서도 점토성 precipitate는 있는 예는 유리 현상 용액에 성장하였다. 이소프로필 알코올(isopropl alcohol)의 경우도 높으나 허용범위(etching)가 비교적 높은 하부에 허용하여 부착력을 악화시킨 것으로 현상된 경성을 일부 달라지는 것이 관찰되었다.

3.2.2. 관능성 단량체와 노광 시간에 따른 사진지적 성장

전광성 격벽 페이스트 기반 formulation에서 비율: 격벽 분말을 무게 비율 40:60 wt%로 고정하고 관능성 단량체의 함량을 변화시킬 때 노광 시간에 따른 격벽 형성의 현상을 조사하여 Table 3에 정리하였다. 전광성 격벽 페이스는 400 μm의 공극(open space)을 가지는 bar-coater로 유리 기판 위에 두께 도포한 다음 95 °C에서 20분간 건조 후 10 mW/cm²의 세기를 가지는 노광기를 이용하여 20초에서 100초까지 노광을 하였으며, 예약은 원상으로 유지하였다. Table 3에서 전광성 격벽 페이스 시료 RF-1 및 2는 조성 내에 관능성 단량체가 부피하여 노광 시간을 1000 mW/cm²까지 증가시켜도 고도도가 낮아 현상 과정에서 격벽 형성이 수반되었다. RF-5 시료는 관능성 단량체의 함량이 높아 노광 시간이 길어도 증가하는 양이 현상 결과가 형성되지만 photomask의 폐쇄 밀도 80 μm보다 높은 능의 110 ~ 120 μm 정도의 폐쇄 밀도로 형성될 수 있다. RF-3 시료는 노광 시간을 줄여도 현상 과정에서 형성된 격벽의 모자리가 정착되었을 뿐 RF-4의 경우는 형성된 격벽의 해상도, sharpness 및 유리 기판에 대한 부착력이 우수하였다.

3.2.3. 관광성지 및 격벽 분말의 함량에 따른 영향

일반적으로 변경 formulation에서 바인더, 용매, 관능성 단량체 및 부착력: 격벽 분말의 비율 40:60 wt%로 고정하고 관광성(Ragacur 651)의 함량 변화에 따른 사진지적 성장을 조사하였다. Figure 4의 (a)에서 보면 각각 성장성의 경우 각벽 형성 비율 15 wt%로 혼합이 적은 경우 완전히 형성되지 못하여 형성시 격벽 형성이 소실되었으나 관광성성의 경우 각벽 형성 비율 25 wt%는 (b)에서 보면 부득이 격벽의 형성과 유리 기판과의 부착력이 우수하게 나타났다. 현상 격벽 분말은 glass frit와 알루미늄의 미세 입자를 구성되어 있는데, 알루미늄은 산소 오염에서 격벽의 고온 스키오를 유지하는 역할을 하며 glass frit는 산소 오염에서 알루미나, 분말 사이의 공간에 유용을 viscous flow에 의해 차단 내부에 기구 없는 치열한 격벽이 형성되어만도 하는 역할을 한다. Glass frit은 또한 소량의 격벽에 배합되며 기판에 접착되지 못하는 중요한 역할을 한다.

Figure 4의 (c)에서 보면 각각 성장성의 경우 저감 30 wt%로 보일 때 격벽이 적은 경우 완전히 형성되지 못하여 형성시 격벽 형성이 소실되었으나 관광성성의 경우 각벽 형태를 유지할 수 있는 경우는 없었다. 부득이 격벽 분말의 비율 40:60 wt%로 부득이 전광성 기판의 기판과의 부착력이 우수하였다.

Table 3. Formulation of Photosensitive Barrier Paste and Photolithographic Process

<table>
<thead>
<tr>
<th>Barrier rib paste</th>
<th>EC</th>
<th>BC/TECA (30:70)</th>
<th>PETA/TGDA (1:1)</th>
<th>Photo-initiator</th>
<th>Barrier rib powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-1</td>
<td>0.75 g</td>
<td>4.25 g</td>
<td>0.5 (0.25:0.25)</td>
<td>0.4 g</td>
<td>8.56 g</td>
</tr>
<tr>
<td>RF-2</td>
<td>0.75 g</td>
<td>4.25 g</td>
<td>1.5 (0.5:0.5)</td>
<td>0.4 g</td>
<td>9.6 g</td>
</tr>
<tr>
<td>RF-3</td>
<td>0.75 g</td>
<td>4.25 g</td>
<td>1.5 (0.5:0.5)</td>
<td>0.4 g</td>
<td>10.35 g</td>
</tr>
<tr>
<td>RF-4</td>
<td>0.75 g</td>
<td>4.25 g</td>
<td>1.5 (0.5:0.5)</td>
<td>0.4 g</td>
<td>11.1 g</td>
</tr>
<tr>
<td>RF-5</td>
<td>0.75 g</td>
<td>4.25 g</td>
<td>3.0 (1.5:1.5)</td>
<td>0.4 g</td>
<td>12.6 g</td>
</tr>
</tbody>
</table>

Figure 5. TGA analysis of barrier rib after UV irradiation.

물리화학 발전시 내부 분위기를 오염시키는 원인으로 작용한다. 그리고 소성 온도가 너무 높을 경우 전체 PDP 제조 공정의 적합성이 문제가 되므로 가능한 낮은 소성 온도를 가지고 소성 후 완료 양이 적은 검증성 고분자의 설정이 중요하다.

Figure 5는 염의 RF-4 감광성 격벽 바이클을 사용하여 도료, 전조, 노광, 현상 공정을 거쳐 형성된 결과물과 에틸셀룰로오스을 열 응용분석(TGA)한 결과를 보여 주고 있는데 본원자 바이클의 에틸셀룰로오스는 300 ℃ 부근에서, 2성층성 단량체인 TFCD는 400 ℃부근에서, 그리고 3안성 폭은 단량체인 PETA의 경우는 512 ℃ 부근에서 열응해되었다. TGA 분석이 N2 기류(0.01 mL/min) 하에서 진행되므로 열응해 곡선에서 완료량이 10~20 wt %로 완전히 계 거지지 않는다.

위의 TGA 분석의 결과 소성률을 이용한 격벽의 소성은 가공 온도에서 10 ℃/min의 승수 속도로 550 ℃까지 승수시간 후 이 온도에서 30분간 분해시키고 1시간간 열응해시키므로 유기물을 분해하고 격벽 분해를 소결하였다. Figure 6의 (a)는 RF-4 시료로 공극 간격이 400 μm의 bar-coater를 도포하여 격벽을 형성하고 소성한 것으로서 격벽의 높이는 약 100 μm이며 광변성의 형광성 격벽 함유까지 진행되지 않아 현상 공정에 가기 때문에 도료가 낮은 격벽 단량체의 소성이 발생하는 것으로 생각되며 (b) 경유는 공극 간격이 400 μm의 bar-coater를 사용하여 격벽을 형성한 것으로서 (a)에 비해 높이가 80 μm 정도로 낮지만 광반응이 격벽 함유까지 충분히 진행되어 under cut이 나타나지 않고 격벽 형성도 우수 할이 관찰되었다.

4. 결론

사전식법에 의해 ESL라디액 디스플레이 패널(PDP)의 격벽을 형성하기 위하여 감광성 격벽 난용제를 제조하고 바이클 고분자, 온도, 다량성 단량체 및 UV 응용시작의 같은 구성 심화가 사전식법 공정에 미치는 영향을 조사하여 최적화하였으며 다음과 같은 결과가 얻었다.

1) 감광성 격벽 난용제의 바이클 고분자로 에틸셀룰로오스를 BC/RCA = 30/70 wt % 혼합 용액에 15 wt %로 용해한 것이 전체 입면정합성의 특성과를 나타내었다.
2) 완공성 단량체에 있어서는 2안성 단량체인 TGDA와 3안성 다량성 단량체인 DEGDA가 보고자 한다.

(a) RF-4 photosensitive barrier rib fabricated by 400 μm bar coater

(b) RF-4 photosensitive barrier rib fabricated by 300 μm bar coater

Figure 6. SEM image of barrier rib after firing process.

능성이고 격벽 분량과의 혼합성이 높은 PETA를 1:1의 비율로 혼합한 것이 우수한 감광성 및 해상도를 나타내었다.
3) 광변성으로서는 365 nm 부근에서 UV 조사시 조명 레이어 보이는 Iguazu: 653이 적합하였고 현상 공정 흐름은 에탄올이 격벽 형성 및 부착력을 영향을 미쳤다.
4) 감광성 격벽 난용제의 성분, 조성 및 공정을 최적화하였을 때 소성 후 높이 약 100 μm 정도의 PDP용 격벽을 사전식법으로 만들 수 있었다.

감사의 글

본 논문은 1998년도 한국학술성과연구회의 학술 연구비에 의하여 연구되었으며 이에 감사합니다.

참고 문헌