Pervaporation Separation of Water-isopropanol Mixtures Through Modified Asymmetric Polyetherimide Membranes: the Effect of NaOH Concentration for the Modification of Skin Layers on the Pervaporation Characteristics

Sang-Gyun Kim, Jonggeon Jegal, and Kew-Ho Lee

Membranes and Separation Research Center, Korea Research Institute of Chemical Technology, Taejon 305-606, Korea

(Rceived November 30, 1998; accepted January 16, 1999)

Abstract: Asymmetric polyetherimide membranes were prepared by phase inversion method. In the modification of the skin layers of polyetherimide membranes, the effects of NaOH concentration on the morphology and pervaporation separation of water-isopropanol mixtures were investigated. With increasing concentration of NaOH solution, polyamicacid structure was formed by the hydrolysis of imide group of polyetherimide, and the thickness of dense layer of the asymmetric membrane increased. In the pervaporation separation of water-isopropanol mixtures the overall permeation rate decreased and the separation factor increased with increasing concentration of NaOH solution. However, when the concentration of NaOH solution was very high, the permeation rate increased but separation factor decreased. From these results, it was found that the permeation behaviors of asymmetric polyetherimide membranes depended upon the concentration of NaOH solution. These modified membranes showed that both the permeation rate and separation factor increased as the operating temperature increased.

Key words: Polyetherimide, Water-isopropanol Mixture, Pervaporation, Asymmetric Membrane, NaOH

1. 서 논

무독증발 공정은 공처 또는 근처 혼합물, 이상질제 혼합물 등과 같은 유기 혼합물을 효과적으로 분리할 수 있는 방법으로, 석유화학 산업에 있어서 유기 혼합물의 분리공정으로서 그 가치가 귀중하고 있는 맥류공정이다. 1-3. 무독증발에서는 물리적동은 유기 혼합물이 맥에 대해 상대적으로 갖고 있는 염전적/수도론적 특성 차에 따라 발생되기에 때문에 비대칭 맥락이 주로 사용하며 지금까지 다양하게 연구들이 개발되었다. 3. 그러나 폴리아미드와 같은 장착구조의 분리막의 경우, 맥에 통한 확산속도가 아주 작기 때문 에 좋은 두께선택성과 뛰어난 분리율을 갖더라도 무독증발로 사용하기 어려운 실정이다. 4-5.

최근 들어, 맥의 두께로를 항상시키기 위해 플라스마 처리 또는 계면 종합, in-situ법이나 상관없이 방법 등을 수시 가시 방법들을 이용한 무독증발막의 제조 방법들이 개발되었고 6-12, 좋은 결과들이 보고되고 있다. 이 중 상관이 방법을 이용한 비대칭 맥막 제조는 다른 방법의는 달리 상대적으로 맥 제조비가 간편하고, 맥의 형성층 두께를 보다 용이하게 조절할 수 있는 장점 때문에 다른 방법보다 활발히 연구가 진행되고 있다.

2. 실험

2.1. 실험 재료
본 연구에서 막 소재로 사용된 폴리에테르아미드는 G. E. (General Electric, Canada)사의 상품명 Ultem 1000으로 100°C 이상에서 선트 후 사용하였고, 용매로 사용한 N-methyl-2-pyrrolidone (NMP)과 투과실의 공급액으로 사용한 아소프로판을 Junsan사 제품을 사용하여 사용하였다. 그리고 표면층의 개설에 사용한 수산화나트륨은 Samchun Pure Chemical Industries LTD (S.P.C.U)사 GR급 시약을 사용하였다. 또한, 비용에 사용한 종은 순수한 것으로 사용하였다.

2.2. 막 제조 및 표면 개선
25 wt. % 폴리에테르아미드/NMP 용액을 Gardner casting knife를 이용하여 유리판 위에 주조한 후, 순수에 진지하여 막을 제조하였고, 각 배지에 존재하는 용액을 모두 제거하기 위하여 60°C에서 12시간 이상 열수 처리하였으며, 이후 상온에서 건조하여 비비열 폴리에테르아미드막을 제조하였다. 또한, 비비용의 막의 화성 표면층 에 대해 및 구조 변화를 주기 위해 막의 한쪽 면만을 반응할 수 있는 반응가에 막을 장착하고 준비된 개설용액을 일정시간동안 점착시켜 비비열 폴리에테르아미드막의 표면층을 개설하였다. 이때 사용한 반응용액은 NaOH 용액이며, 농도는 0.5 M, 1 M, 2 M, 4 M이었다. 또한 사용한 반응시간은 5분부터 최대 20분까지였으며, 반응 후 표면에 전산한 수산화나트륨 수용액을 제거하기 위하여 순수에 충분히 젖힌 후, 상온에서 건조하였다.

2.3. 제조된 막의 특성조사
개설용액 농도에 따른 화학적인 구조 변화를 살펴보기 위하여 ATR-FTIR (Digilab FTS-40, Bio-Rad) 분석기를 사용하여 개설된 표면을 분석하였으며, 이때 사용한 사료막 두께는 134 μm이었다.
그리고 개설용액 농도에 따른 폴리에테르아미드막의 표면층 물질 분석을 현저히그리드 링터 없이 JSM-893A, JEOL을 사용하여 관찰하였다.

2.4. 투과실험 실험
본 연구에서는 나과 실험 실험 장치는 Figure 1에 나타내었다. 연구에 사용된 투과실험 장치는 공급조의 공급액을 피복률을 겸비하여 공급조의 용량은 25리

Figure 1. Schematic representation of the pervaporation device: (A) Feed Tank; (B) Heating Controller; (C) Pump; (D) Pervaporation Coll; (E) Temperature Indicator; (F) Pressure Indicator; (G) Cold Trap; (H) Vacuum Pump; (I) 3-way vacuum valve.

다며, 공급액은 90/10 무게비의 아소프로판용물 혼합액을 사용하였다. 또한, 공급 자유 발생하는 증기가 세어나가지 못하도록 한 점에 밀봉하여 공급액의 조성을 일정하게 유지하였다. 투과액은 작은 도수에서 동일한 유색 주름 수족이 발생하도록 설계되었으며, 하부 압력은 공조기구를 이용하여 강압 1 torr 미만으로 유지하였다. 또한 동과한 투과액은 가스 코로아그리프 (Shimadzu, model GC-5A, Porapak Q 충전기 샘플)를 사용하여 그 조성을 측정하였고, 액체로는 표면의 두께도 측정에 사용하였다. 이때의 선택도 (α)와 두께 (J)는 다음과 같이 정의하여 사용하였다.

\[
\alpha = \frac{P_r}{P_c}
\]
\[
J = \frac{W}{A \times T}
\]

\[
\sigma : \text{물에 대한 선택도}
\]
\[J : \text{투과도}
\]
\[W : \text{투과량}
\]
\[A : \text{막의 유료면적}
\]
\[T : \text{투과시간}
\]
\[P_r, P_c : \text{투과액의 물과 아소프로판용물의 무게 분율}
\]

3. 결과 및 고찰
3.1. 개설용액 농도에 따른 구조 및 물질 분석
수산화나트륨을 수용액으로 폴리에테르아미드 막의 표면을 개설한 후, 폴리에테르아미드의 이중 그룹이 가수분해되어 카로복산화

공업화학, 제 10 권 제 2 호, 1999
Figure 2. FT-IR spectra of the asymmetric PEI membranes modified for 5 min. with NaOH solutions of different concentrations.

Figure 3. FT-IR spectra of the asymmetric PEI membranes modified for 10 min. with NaOH solutions of different concentrations.

또는 카르복시산 영으로 이루어진 폴리아미산 고분자로 바뀌게 된다[13]. 본 연구에서는 개질 용액 농도와 시간에 따른 개질 현상을 살펴보았다. Figure 2에서는 개질용액 농도를 0~4 M까지 변이해 서 비대칭 백 의 열판을 5분 동안 만용 시험을 때에 적외선 흡수 스펙트럼을 보여 주고 있다. 1777 cm⁻¹과 1723 cm⁻¹ 부근의 아미 드 특성 펴크가 개질용액 농도에 따라 자음 감소하고 있고, 1648 cm⁻¹ 부근에서 secondary 아미드 I 번도의 C=O 스펴체 펴크와 1567 cm⁻¹에서 secondary 아미드 II 번도의 NH 변형과 C-N 하트 레이가 늦게 나타나고 있는 것을 통해 개질 농도에 따라 폴리아 미산 구조의 크게 변형한음을 알 수 있었다. 그러나 신경직으로 5 분의 개질 시간 동안에는 아미드 구조가 모두 변용에 참여하지는 않는 것으로 보인다. 그리고 카르복시산의 OH 펴크로서 in-plane OH bending 펴크가 1433 cm⁻¹에서 농도에 따라 증가하는 것을 통해 부분적으로는 수산화나트륨 수용액과의 반응에 의해 폴리아미 산이 만들어져서 전수성 그룹인 카르복시산, 카르복시산 형 등이 생성될 수 있었다.

Figure 4. FT-IR spectra of the asymmetric PEI membranes modified for 20 min. with NaOH solutions of different concentrations.

생성됨을 알 수 있었다.

Figure 3은 10분 동안 개질 용액 농도에 따른 반응 정도를 보여 주고 있다. 아미드 그룹의 가수분해 현상은 5분보다 현저하게 나타나 보이며, 2 M 10분의 경우는 상당히 많은 아미드 그룹들이 반응 에 참여하여 폴리아미산으로 바뀌었고, 카르복시산으로 변형하였음을 secondary 아미드 펴크의 1648, 1567 cm⁻¹ 부근과 1433 cm⁻¹의 카 르복시산의 하트레이나 펴크를 통해 확인하였다. Figure 4는 20분 동안 개질했을 때의 농도의 영향을 보여주고 있는데, 가수분해 반응이 10분보다도 상당히 많이 진행되었음을 보여주고 있다. 특히, 2 M 20분의 경우 아미드 그룹의 대부분 반응에 참여하여 극소량만이 남았음을 나타내고 있다. 이상의 결과로 아미드 그룹의 반응성에 대해서 살펴보았는데 반응의 정도는 거의 개질용액의 농도와 시간 에 의해 결정되어졌음을 알 수 있었다.

Figure 5에서는 개질용액 농도를 0.5 M에서 4 M까지 5분 정도 개질함을 하였을 때 폴리에테르가이드막의 표면에서 일어나는 물포지 변화를 보여주고 있다. 1 M 개질용액 농도에서는 표면이 1 μm정도까지 침해받은 것을 알 수 있고, 2 M에서는 폴리 입자들 물포지들이 형성되어 4 μm에 이르게 된다. 표면에 있는 농도는 개질용액의 물포지에 의해 폴리에테르가이드막의 아미드가 가수분해되어 폴리아미산 고 분자로 바뀌는데 개질층의 물포지가 침해되지거나 수산화나트륨의 농도가 크게 증가되면 오히려 침해층이 감소하는 것을 관찰 할 수 있었다.

3.2. 개질용액 농도에 따른 투과률의 변화

수산화나트륨 수용액의 농도를 0.5 M에서 4 M까지 변화시켜서 개질용액 농도에 따른 PES의 표면을 5정 정도 개질하였을 때의 물포지 변화를 분석하기 위한 결과를 Figure 6에 나타내었다. 0.5 M에서 2 M 농도까지의 두께는 크게 감소하였고, 농도에 대한 선택도의 1부는 신호가 증가하였다. 그러나 2 M에서 4 M 가지로 물포지의 선택도는 감소하였고, 두께도 중간에 있었다. 이러한 결과는 폴리에테르가이드막을 수산화나트륨 수용액에 대해 따라 아미드 그룹이 개질되여 카르복시산 또는 콜레스테롤의 폴리아미산 구조로 변형하여 표 면층의 물포저가 개질용액의 농도에 따라 침해된 형태로 변하였 기 때문에 나타나는 투과 차이를 도출된다. 즉, 0.5 M에서 2 M
Figure 5. SEM photographs of the cross sections of the asymmetric PEI membranes modified for 5 min. with different NaOH solutions of different concentrations: (a) non-modified; (b) 0.5 mole; (c) 1 mole; (d) 2 mole; (e) 4 mole.

Figure 6. Effect of NaOH concentration on the permeation rate and separation factor in the pervaporation separation of the isopropanol-water mixtures (90/10 wt. %) through the modified asymmetric PEI membranes; operation temp.: 40 °C, modification time: 5 min.

Figure 7. Effect of NaOH concentration on the individual flux and permeate concentration in the pervaporation separation of the isopropanol-water mixtures (90/10 wt. %) through the modified asymmetric PEI membranes; operation temp.: 40 °C, modification time: 5 min.

이러한 두 가지를 고려하여 개별 성분에 대한 두 가지 속도를 Figure 7에 무시 조성과 함께 나타내었다. 전체적으로 수산화나트륨은 수용액의 농도가 증가함수록 이소프로판올보다 물의 두상속도가 전반적으로 더 높았고, 이때의 두 상 조성 역시, 계발물을의 농도가 증가함수록 부투바에서의 이소프로판올 농도는 감소하였고, 물의 농도는 크게 증가하였다. 따라서 수산화나트륨 수용액의 농도에 따른 표면층의 침입구조의 영향이 두상증발 특성에 크게 영향을 주고 있는 것으로 알 수 있었다.

그러나 4 M의 경우에는 2 M보다 오히려 두상속도가 약간 증가하였고, 물에 대한 선택도는 다소 감소된 결과를 나타냈다. 이러한 두가결과에 대해서는 Figure 2와 Figure 5의 두 가지에 따른 적외선 흡수 스캐트립과 전자현미경의 물질도사 사진분석을 통해 다음과 같이 예측할 수 있었다. 수산화나트륨의 농도가 높으면 표면층에 대한 침입이 크게 증가하면서 이소프로판올과 물의 두상속도가 크게 증가하여 물에 대한 선택도는 증가한 것으로 생각된다.
Figure 8. Effect of operation temperature on the permeation rate and separation factor in the pervaporation separation of the isopropanol-water mixtures (90/10 wt.%) through the modified asymmetric PEI membranes: modification time 5 min.

Figure 8은 조작온도에 따른 투과 기동으로 40 ℃에서 60 ℃로 증가하면 투과도가 물에 대한 선택도가 모두 크게 증가하는 현상을 나타낸다. 먼저, 투과도 증가에 대한 결과는 수산화나트륨 수용액에 의해 이머그룹이 액산 구조로 바뀌면서 고분자 사이의 움동성이 증가하였기 때문에 조업 온도에 따라 투과도의 확산속도가 키진 결과로 투과도는 크게 증가된 것과, 물에 대한 선택도 증가는 개질되지 않은 지질층 부분의 이머그룹의 레간한 성질 때문에 친수성기인 이버산 구조는 조업 온도에 따라 개질시킨 움동성을 나타내게 된다. 따라서 분자집단은 보다 쉽게 투과되지만 이모프로판은 오히려 확산속도가 감소되는 영향 때문에 상대적으로 선택도는 증가한 것으로 예상되며, 이러한 투과특성은 개질능도와 상관없이 독립한 결과를 나타냈다.

4. 결 론

비대칭 폴리에테르아이미드막의 표면 개질에서 수산화나트륨의 농도 증가에 따라 이머그룹의 개질 반응은 증가하였고, 표면층에서의 폴리올로지 변화도 전반적으로 농도 증가에 따라 차별한 형태가 증가하였다. 그러나 반응 농도가 너무 높으면 요해가 지밀 레칭이 감소되었다. 이들 액의 투과등합 특성은 이모프론이 아미드산으로 변화하면서 나타내는 폴리올로지 변화가 크게 의존하는 투과특성을 나타냈다. 즉, NaOH 용액의 농도가 2 M까지 증가하였던 표면층의 폴리올로지가 보다 치밀되었기 때문에 투과도는 감소하고, 물에 대한 선택도는 증가하였다. 그러나 4 M로 농도가 높아질수록 치밀층의 두께가 약간 감소되면 투과도는 다시 증가하고, 선택도는 감소되었다. 결국, 개질용액 농도는 비대칭 폴리에테르아이미드막의 투과 특성에 많은 영향을 미치는 것으로 보인다. 또한, 조업 온도가 증가함수록 투과도와 선택도 모두 증가하는 투과등합 특성을 나타내었다.

참고 문헌
