Tetramethyl orthosilicate (TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (II) – The Kinetics of the Copper-Catalyzed Reaction of Silicon with Methanol –

Soon-Young Soh, Ho-Youn Won, Jong-Chin Chun*, Bum-Jae Lee**, and Hyun-Soo Yang***

Hanwha Research and Engineering Center, Taegon 305-345, Korea
Department of New Mater. & Appl. Chem., Chungwoon University, Hongsong 300-800, Korea
**Department of Fine Chemicals Engineering and Chemistry, Chungnam National University, Taegon 305-764, Korea
(Received September 12, 1996; accepted January 4, 1999)

요약: 금속 규소와 구리 촉매가 함유된 폐크목질과 메탄올의 반응에 의한 메소시를란의 합성에서의 TMOS 반응 생성속도를 산출하였다. 합성 촉매 수의 변화에 따른 영향을 제조하기 위해 유수의 기술을 사용하여 대형 모형은 메탄올의 유속을 반응 초기에 계정하여 변환시켰다. 실험 결과 TMOS 생성속도에 영향을 미치는 인자는 반응물의 유속이 아닌 반응물적, 사용량과 두께의 사용량을 확인하였다. 이들을 바탕으로 TMOS 생성 베이커버들의 조건, 수의 변화에 따라 생성물 양이 유속과 반응물의 속도에 따라서 크게 영향을 받았다. 화학 결합조건에서 규소 1%p 매재 TMOS 생성속도는 210℃에서 0.090 (g/min)이었으며, 이에 활성화 매개물들이 참가한 85 kcal/mol, 반응 생성속도 상수의 유속은 식 k = 4.09×10^6 exp (-4.73×10^7/T)로 나타났다.

Abstract: The copper-catalyzed reaction of silicon with methanol was carried out in a mixed bed reactor to obtain tetramethyl orthosilicate (TMOS). In order to determine the kinetics of the reaction per active site on the silicon surface, a flow rate transition technique was employed. A kinetic study showed the reaction was in linear relationship with the amount of contact mass and independent on the concentration of methanol. This result indicated that the rate-determining step was not the chemical process involving methanol, but the formation of silicon intermediate on the contact mass. On the basis of optimum experimental conditions, the TMOS formation rate per g-silicon is 0.090 (g/min) at 210℃, in which activation energy was 85 kcal/mol and reaction rate equation was k = 4.09×10^6 exp (-4.73×10^7/T).

Key words: Tetramethyl orthosilicate (TMOS), Kinetics, Direct Synthesis
탄물의 반응에 의한 TMOS의 직접 합성에서 메탄올의 유속 전이 기술 (flow rate transition technique)을 이용하여 메탄올의 농도를 급격히 변화시키면서 여러 가지 반응조건에서의 TMOS 생성속도를 축소하고, TMOS 생성 반응에 영향을 미치는 인자들에 대하여 고찰하였다.

2. 실험

2.1. 원료 및 분석
TMOS 합성 원료인 규소는 Sookawa계 규소 (순도 98% 이상, 입도 80-250 mesh), 메탄올은 Mallinkrodt제 (순도 99.8% 이 상)를 기화시켜 사용하였다. 검출물질의 검정시에 사용한 윤란 가 스는 대상산소액 체질감소 (순도 99.9%)를 기화시켜 사용하였다. 총과 및 조제용으로 사용한 금속염화물은 각각 Aldrich에 취급 되지 않아 사용하였으며, 순도와 입자크기는 각각 CuCl2 (99.9%), ZnCl2 (98.5%, 100 mesh)였다.
반응의 진행을 확인하기 위해서 영전기기지의 M600D 기계적으로 마크관에 배치하였다 (70% FS-1265: 30% OV-101 30% on Chromosorb P, 15 m x 1/8” OD, SS1과 온도 검출기 (TCD)를 장착하여 사용하였고, 실수분석을 위한 기계로 파장 및 그림 항목들은 Hewlett-Packard의 5890II GC/FID와 HP-1 커팅러 (25 m x 0.2 mm)를 장착하여 사용하였다.

2.2. 접촉물질의 제조 및 TMOS 합성
접촉물질의 제조 및 TMOS 합성은 이전의 자료에 기술한 방법 (2)에 의하여 동일하게 수행하였다. 즉, 총과로 사용한 CuCl2와 ZnCl2를 각각 정량하여 기형량을 규정하고 노즐안에 함축시켰다. 용액은 제조 후 윤란을 반응기에 넣고 활성화된 접촉물질을 제조하여 이를 질소분위기 하에서 보관하고 TMOS 합성 실험에 사용하였다.
이제 제조된 접촉물질을 실험 조건에 따라 정량하여 전입기, 넝크 네트워크와 교반기 등이 정밀한 교반동 반응기에 넣고 질소를 서서히 풍반으로 210 °C까지 상온시켰다. 이로 메탄올을 유입시키고 반응기 안쪽에 설치된 전입기로 가동시켜서 150-180 °C에서 유지되도록 하였다. 반응은 용액에 도달하면 철소 수입에서 증가여 60 min으로 교반되면서 메탄올의 유속을 조정하여 접촉물질의 반응시간이 반응 섭지소이며, TMOS는 융합기에서 형성되어 높은 피사체의 에바리미터의 220 °C에서 30분 경과시에 생성된 양을 측정하고 기계로 마크관을 사용하여 이 조건을 확인하였다.
반응 속도의 경우 단위시간당 생성된 TMOS의 무게 (g/min)로 표시하였으며, TMOS의 선택도는 생성된 메트닐실안 (methoxy-silane)중의 TMOS의 백분율 (%으로서 표시하였다.

3. 결과 및 고찰

3.1. TMOS 생성에 영향을 미치는 인자
TMOS 생성 속도는 반응장치와 함께 급격히 증가 (매세기인) 하여 어느 정도 시간 후에는 생성 속도가 전체가 거의 변경되지 않는 것이 주요한 기형량의 영향을 보였고, 이로 인해 생성량은 MCS 다음의 공정 연구(9)의 경우에는 거의 TMOS 생성량과 순도의 변화가 5% 이하로 유지되는 상태로 진행하였다. 이후 규소의 소모량이 70% 이상을 넘어서면 TMOS의 생성속도는 급격히 감소 (장기 기하행)의 현상이 보였다. 종합 생성량은 규소 표면화의 활성 이온수와 활성 탄소수에 의한 인자들의 비율에 주로 영향을 미쳤다.

Figure 1. Selectivity change in the TMOS formation at various methanol injection modes. Reaction temp. = 210 °C, contact mass amounts used = 20 g.
Figure 2. Dependence of the methanol injection jump mode on the TMOS formation rate per unit methanol flow rate. Reaction temp. = 210 °C, contact mass amounts used = 20 g.

그리고 투여시에서 규모와 반응속도를 위한 Tetramethyl orthosilicate(TMOS) 투입(제2호)

의 TMOS의 선택도와 생장속도를 측정하였다.
설명 결과 Figure 1에서 보는 바와 같이 메탄올 유속 변화가 TMOS의 선택도와 큰 영향을 미치지 않을음을 알 수 있었다. 이때 메탄올 유속을 사용한 실험으로부터 15분 경과 후에 측정한 값을 TMOS 선택도가 약간 작할하는 경향을 보이지 않았으나 다음 15분 경과 후 측정시에는 투입의 선택도로 회복되었다. 이러한 양의 불규칙성 현상은 전이 거점에 의한 선택도의 변화로 보할 수 있다. 이로 인해 메탄올 유속의 변화가 선택도에 큰 영향을 미친다고 볼 수 있으며 메탄올 유속을 급격히 변화시킴 (Figure 1: 0→1)와 급격한 변화 시 (Figure 1: 1→0)의 유속 전이 후의 TMOS 선택도가 변화의 필요로 따라잡아야 할 것이다. 이 또한 동일한 경향을 보여주었으며, 특히 메탄올 유속의 급격한 변화
반점시킨 경우 (Figure 1: 0→1→2→3→4→5→6→7→8→9→10)에서 실차보도 메탄
올 유속을 14.8 g/hr에서 2.8 g/hr로 변화시켰을 때 그 반점은 28 g/hr에서 14.8 g/hr로 변화시켰을 경우가 동일한 경향을 보였으므로 메탄올 유속이 TMOS의 선택도에 큰 영향을 미치지 않을
다는 사실을 탄력히다시고 사료된다.
또한, Figure 2에서 보이는 것과 TMOS 생성속도에서도 유사한 동일한 경향을 보였다. 즉, 메탄올 유속을 급격히 변경 경우 (Figure 2: 0→1→2→3→4→5→6→7→8→9→10)는 물론 메탄올 유속의 급격한 변화를 급격히 변경된 경우 (Figure 2: 0→1→2→3→4→5→6→7→8→9→10→11)에서도 Figure 1의 경우와 유사하게 거의 일정하게 TMOS 생성속도가 유지되는 경향을 나타내었다. 이것은 TMOS 생성에서 메탄올 주

임장을 위한 TMOS 생성량, 메탄올의 농도와는 유관하므로 더욱 고안되어야 한다.

이는 Ono[11]에 주의한 TMS 생성시 메탄올에 대한 반응속도가 접촉물질 제조로서도 723 K 144.14나보다는 투입의 다른 결과이다. 그러나 Weyenberg 등[12]은 메탄올 투입에서는 확인된 메탄올의 반응속도를 (MeOH)0/ (Si0Me3)의 반응속도를 TMS 생성시
반응속도가 메탄올의 반응속도에 대해서는 TMS 생성속도를 보다 높은 반응속도를 보고하였다. 따라서 본 실험 결과도 Weyenberg 등의 실험 결과와 일치하였으며, TMOS 생성 반응에 메탄올이 충분히 공급될 때 TMOS 생성속도와 메탄올의 농
도와는 무관하다고 판단하였다.

반면, 접촉물질의 양이 반응속도에 미치는 영향을 고려하기 위하여 동일한 조성제 갖는 반응물질을 각각 10 g, 20 g, 30 g, 40 g 사용시켰을 때 동일한 메탄올 유속, 85 g/hr에서 생성되는 TMOS
의 양을 측정하여 접촉물질의 사용량과 TMOS 생성속도와의 상

Figure 3. Kinetic plot for the TMOS formation rate vs. the contact mass used. Methanol flow rate = 8.5 g/hr, reaction temperature = 210 °C.

Table 1. TMOS Formation Rate at Various Reaction Temperatures

| Temp (°C) | TMOS Formation Rate | Remaining Si
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g/min)</td>
<td>(g/min, g Si)</td>
</tr>
<tr>
<td>180</td>
<td>0.114</td>
<td>3.139</td>
</tr>
<tr>
<td>190</td>
<td>0.144</td>
<td>4.002</td>
</tr>
<tr>
<td>200</td>
<td>0.173</td>
<td>5.107</td>
</tr>
<tr>
<td>210</td>
<td>0.186</td>
<td>5.539</td>
</tr>
<tr>
<td>250</td>
<td>0.162</td>
<td>3.877</td>
</tr>
<tr>
<td>240</td>
<td>0.097</td>
<td>2.40</td>
</tr>
</tbody>
</table>

a) Contact mass amount used: 10 g. Composition of contact mass: Cu/Si = 7 wt.%, Zn/Cu = 5 wt.%. Reaction time = 60 min after steady state.

결과를 그림으로 도식한 결과 Figure 3과 같이 나타났다.

Figure 3은 TMOS의 생성과 접촉물질의 사용량 사이에는 선형 관계가 있을음을 나타낸 것으로 보고하였다.

이상의 결과를 종합하면 TMOS 생성 속도에 영향을 미치는 인
자로 밀도에 따라 변화하는 메탄올 농도보다는 접촉물질의 사용량이며,
상자 같은 실험 결과로 TMOS 생성 범위에서 접촉물질의
표면에서 규소를 갖는 중간 생성물이 형성되는 반응 단계가 반
응 속도단계의 추정을 가능하게 한다고 사료된다.

3.2. 표면 반응속도 성분 산출

TMOS 생성을 위한 반응온도는 210~220 ℃의 범위에서 가장

적합한 규소 소모율을 보여주었고, TMOS 선택속도는 반응 온
도가 상대적으로 낮은 편이 수용성 선택도를 보여주고 있음을 보
관할 바 있다[2]. 이에 따라 180~220 ℃의 범위에서 설정한 조성

(Cu/Si = 7 wt.%, Zn/Cu = 5 wt.%)는 접촉물질 10 g을 사용
하여 반응을 수행하여 생성된 TMOS 양 및 규소 양을 측정하여
TMOS 생성속도를 산출하였다. 실험 결과를 Table 1에 수록하여

Table 1에서 보듯이 반응온도 180~210 ℃ 범위에서는 온도의
상승에 따라 생성속도가 증가하여 반응온도 1 ℃ 상승에 규소 1 g
당 TMOS 생성속도는 평균적으로 43×10^{-1} (g/min)을 상승하
였으며, 210 ℃에서 최대 생성속도인 0.039 (g/min)을 보여주고 있

Figure 4. Change of TMOS formation rate per g-silicon at various reaction temperature (Composition of contact mass: Cu/Si = 7 wt %, Zn/Cu = 5 wt %).

다. 그러나 이 결과를 그래프로 도시한 Figure 4에서 보듯이 210℃ 이상에서는 온도 상승에 따른 반응 속도가 다소 가파르게 증가함을 보여주고 있는 데, 이는 210℃ 이상에서는 반응이 진행함에 따라 접촉물질의 비활성화가 보다 빨르게 진행됨을 의미한다.

반응 온도에 따라 TMOS 생성속도가 증가하는 온도 범위인 180 ~ 210℃에서 규모 1~g당 TMOS 생성속도의 온도 의존성은 다음의 Arrenius식에 의해 설명될 수 있다.

\[k = A_0 \exp(-E/RT) \]

여기에서 \(A_0 \)은 반도수 인자, \(E \)는 활성화 에너지(kcal/mol), \(R \)은 기체상수 (1.987 cal/mol K), \(T \)은 절대온도 (K)이다.

Figure 5의 180~210℃ 범위에서 Arreniusplot을 나타내었다.

이제 상관관계는 0.96이었고, 반도수 인자 값이 4.09×10(kcal/mol)이 얻어졌다. 따라서 본 TMOS 생성 반응에서의 Arrenius식은 다음과 같이 나타낼 수 있다.

\[k = 4.09 \times 10^9 \exp(-4.73 \times 10^7/T) \]

한편, Okamoto 등[4]이 측정한 접촉시험에서 생성 반응에서는 활성화 에너지 값은 10.6 kcal/mol(접촉물질 제조온도: 430℃) 및 21.0 kcal/mol(접촉물질 제조온도: 220℃)로서, 접촉물질의 제조온도가 높을수록 접촉시험에서 낮은 활성화 에너지가 필요한 것으로 보고되고 있는데, 이것은 접촉물질의 제조온도가 높을수록 생성된 접촉물질의 활성도는 훨씬 높아지는 것으로 추정된다. 그러나 본 연구에서는 380℃에서 제조한 접촉물질을 사용한 결과, TMOS 생성 반응의 활성화 에너지 값은 8.5 kcal/mol로서 Okamoto 등이 430℃에서 제조한 접촉물질을 사용하여 측정한 활성화 에너지 값보다 상대적으로 낮게 나타난 것은 비록 양자간의 반응조건이 다소 차이가 있다고 할지라도 본 연구에서 적용한 환경변경로 이용한 접촉물질 제조 방식이 Okamoto의 방법보다 접촉물질 제조시 분산이 원활하고 조제법으로 사용한 Zn/Ca에

Figure 5. Arrenius plot for the TMOS formation.

접촉물질과 밀봉용의 반응에서 활성화 에너지를 낮추는 데 기여한 것으로 판단된다.

4. 결 론

1) TMOS 생성 반응에 영향을 미치는 인자를 파악하기 위한 실험을 수행하기 위하여 활성자인 수의 변화에 따른 영향을 제거하기 위하여 유속 전이 기법을 사용하였다. 밀봉용 유속이 TMOS 생성속도에 미치는 영향을 조사한 결과 TMOS 생성속도는 밀봉용의 유속이 높을수록, 즉 높은 유속으로 나왔다고 나타났다. 한편, 접촉물질의 사용량과 TMOS 생성속도의 상관관계는 뚜렷한 선형 관계가 있음을 확인하였다. 이것은 반응 메타니즘에서 반응속도 결정 단계가 밀봉용을 포함한 화학 반응이 아니고, 접촉물질과 규모 표면에 서 규모 중간체가 생성되는 과정임을 추정하게 한다.

2) 반응 온도 180~210℃ 범위에서는 온도의 상승에 따라 생성속도가 상승함을 보였으며, 규모 1~g당 최대 TMOS 생성속도는 210℃에서 0.033 (gm/min)로 나타났다. 이때 활성화 에너지 값은 8.5 kcal/mol로 나타났고, 반응 생성속도 상수의 온도 의존성은 식

\[k = 4.09 \times 10^9 \exp(-4.73 \times 10^7/T) \]