The Effect of Plasma on Hydrophilic Surface Modification of LDPE

Seung-No Hung, Bup-Ju Jeon, and Il-Hyun Jung

Dept. of Chem. Eng., Dankook Univ., Seoul 140-714, Korea

(Rceived January 9, 1998, Accepted March 5, 1998)

Abstract: The effect of hydrophilic surface modification of low density polyethylene (LDPE) by plasma gas (O\textsubscript{2}, N\textsubscript{2}, and O\textsubscript{2}/N\textsubscript{2}) was investigated from the point of view of the functionalities of the generated LDPE surfaces and the contact angle. By virtue of x-ray photoelectron spectrums (XPS) and attenuated total reflectance-FT-IR (ATR) analysis, the LDPE surfaces treated with plasma were generated with oxygen functionalities of carboxyl, carbonyl, and the like. Nitrogen functionalities by nitrogen plasma and mixing of nitrogen and oxygen plasma treatment were identified with it. It was found that nitrogen plasma treatment showed with maximum value at contact angle for rf-power and treatment time, we had obtained optimum condition for hydrophilic surface modification at composite parameter, [W/FPM] = 550–550 GJ/kg.

1. 서 론

우수한 물성과 경제적인 가격으로 인하여 산업적으로 광범위한 분야에 적용되는 폴리에틸렌, 폴리프로필렌, 탄프론 등의 상용 고분자 소재들은 화학구조상 강한 결합을 유도하는 균형성이 전체적으로 없으므로 페인트나 잉크 등을 도장하거나 접착제 등을 사용하여 다른 소재들과 접합시키는 반면, 접착제를 사용하면 전부 소재들과 접합시키는 반면에 잘못된 접착처리가 요구된다. 이러한 문제점은 해결하기 위한 방법으로 화학적 처리(chemical treatment), 화염(FLAME) 처리, 코로나 (corona) 처리, 폴라즈마(plasma) 처리, U.V. 처리 등이 연구되고 있으며, 이 중 폴라즈마 처리법은 자연 건식방법으로 반응이 없는 표면층에 국한되어 급격하게 일어나므로 피처라드의 블랙(bulk) 표

생영향을 주지 않으며, 처리된 표면을 안정화시킬 수 있으며, 동시에 작업으로 안전한 모든 품질을 처리할 수 있어 표면처리의 효과는 많은 장점이 있다(1–7).

폴라즈마 처리 공정에서 일어나는 고분자 재료의 전수성 표면계

집은 폴라즈마 상대인 환경에 고분자 표면이 반응해 변하게 되고 이에 대한 결과로 카보닐(carbonyl), 카복실(carbonyl), 하이드로일족 (hydroxyl), 알데하이드(aldehyde), 아민(amine) 등의 기능성을 그중 고분자 표면에 생성함에 따라 나온 결과로, 이로 인하여 접

착에 대한 접착력이 현저하게 증가한다(8–12). 이러한 폴라즈마 처리반응

은 사용된 폴라즈마 기체의 종류에 따라 표면에 생성되는 기능성에 결정되며, 특히 폴라즈마 온도에 대한 영향 범위에서, Inagaki 등

[9]는 폴라즈마의 이온이나 전자보다 라디칼이 전수성 표면개질

에 미치는 영향이 더 크다고 발표하였다. 또한 고분자의 재료 추출

에서는 처리하지 않고 사용하는 소재의 결합성에 따라 폴라즈마 개질이 매우되는데, 일반적으로 고분자 표면은 폴라즈마 처리후에 제거될 수 있으며, 또한 처리되지 않은 상태로 전달될 수 있다. 따라서 처리 후 제거될 수 있는 결합은 PDMS(polydimethylsiloxane)와 같은 무기성(amorphous) 구조에서 발견되며, 이러한 무기성의 고분자

자는 체인(chain)과 시그먼트 운동성(skeletal mobility)의 다른 고분자와 비해 상대적으로 낮은 특성을 나타내며, 폴리프로필렌과 같은 결합성 고분자는 반응의 특성을 나타내지 못한다([9]. 최근에는 폴라

즈마 처리에 의하여 생성된 기능성 구조의 두께 구별(depth profile)

를 측정한 연구결과가 발표되기도 하였다([10]. 그러나 폴라즈마 처리

공정에서 폴라즈마 기체 종류에 따른 전수성 성형률 생성된 기

능성 구조물의 관계에 대한 연구는 아직 미흡한 실정이다.

따라서 본 연구에서는 산소, 질소, 산소 혹은 혼합 기체를 폴

라즈마 사용하여 rf-폴라즈마 반응기에 의한 폴라즈마 개질

을 수행하고, LDPE(low density polyethylene)등을 기초로 사

용하여 산소와 질소 혼합비의 폴라즈마 기체 종류, 처리시간, rf- 출력 등의 변수로 폴라즈마 표면처리를 수행하고, 이에 따

른 물질에 대한 접착력을 구별하여 접착성능을 조사하였다. 또한 각 조

건에서 LDPE 표면에 미치는 폴라즈마 기체의 영향을 살펴보고 위

해 SEM 등의 투명, morphology 변화를 관찰하고 FT-IR ATR과

XPS 등의 분석을 이용하여 도입된 기능성과 접착력의 관계를

조사하였다.
2. 실험

2.1. 실험 절차
본 연구에서 사용된 반응기는 rf-plasma 반응기(이하 시스템 제작)로서 주파수는 13.56 MHz, 최대출력은 600 W로 반응기에 압력은 rotary-pump을 이용하여 10 mTorr까지 유지할 수 있고, bell-jar형으로 설계되어 있다. 반응기의 재질은 스테인레스(stainless)이고 직경이 29 cm, 높이가 24 cm이며 기관의 위치가 cathod로부터 4 cm가 되도록 유지 조절하여 사용하였다. 또한 플라즈마 반사자의 주가지로 발생할 수 있는 재현성 문제를 방지하기 위하여 반사자의 세기는 5% 내로 유지되도록 설계되었으며, 플라즈마 반응기내의 압력을 확인하기 위하여 converton vacuum gauge(Granville-Phillips Co.) 가 사용되었고, 기계의 유무기는 MFC(mass flow controller, hitachi.co.)를 이용하여 조절하였다. Fig. 1에 본 연구에서 사용된 rf-플라즈마 반응기의 도식적 그림을 나타내었다.

2.2. 실험 방법 및 분석
본 연구에서는 패혈 형태의 표층용 LDPE(low density polyethylene)가 표면개질 고효율 제조로 사용되었으며, 모든 시험은 반응기에 도입시키기 전에 초음파 세척기를 20분간 중류수로 세척하였다.
플라즈마 표면개질 실험은 rotary pump로 반응기의 압력을 30 mTorr로 낮춘 후 반응기 내부에 남아있는 공기 및 수분을 제거하기 위하여 Ar 기체를 5분간 호르게 한 다음, 기관에 접근한 뒤를 통한 산소, 질소(이상 대상품 산소, 순수도 99.999%)를 분사하여 반응기 압력 90 mTorr에서 플라즈마를 발생시켰다. Table 1에서 보와 같은 조건으로 rf-플라즈마 반응기에서 표면처리를 수행하였다. 또한 실험 변수로 산소와 질소 기체의 혼합비(\\(w/\\text{v}\))%로는 2/1의 MFC를 통하여 조절하였다.
LDPE의 플라즈마를 이용한 표면개질 실험은 최대출력 5mW의 laser radiation source을 주로 위한 static contact angle meter를 사용하여 microsyringe로 의해 5개의 증류수를 점착, 고분자 점착 표면에 주입하여 위에 있는 자유형제를 압고 해체의 뒷에서 5번 이상 반복 측정하여 평균수치로 표면을 계산하였다. 또한

<table>
<thead>
<tr>
<th>Table 1. Typical Experimental Conditions of the Plasma Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-f power</td>
</tr>
<tr>
<td>20 - 200 W</td>
</tr>
<tr>
<td>Treatment time</td>
</tr>
<tr>
<td>1 - 40 min</td>
</tr>
<tr>
<td>Gas flow rate</td>
</tr>
<tr>
<td>10 - 15 sccm</td>
</tr>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>90 - 110 mTorr</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>28 - 30 °C</td>
</tr>
<tr>
<td>Plasma gas</td>
</tr>
<tr>
<td>O(_2), N(_2), O(_2)/N(_2)</td>
</tr>
<tr>
<td>Mixing ratio(\(O(_2) : N(_2)) 25 : 75 - 75 : 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Analytical Instrument Used for the Investigation of Modified LDPE Film by Plasma Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical instrument</td>
</tr>
<tr>
<td>SEM(scanning electron microscopy, Jeol, JSM-5000)</td>
</tr>
<tr>
<td>FT-IR ATR(attenuated total reflectance, Shimadzu, 8500)</td>
</tr>
<tr>
<td>XPS(X-ray photoelectron spectra, EG & G Escalab 230-IXL)</td>
</tr>
<tr>
<td>DSC(differential scanning calorimetry, Dapont, 2010)</td>
</tr>
</tbody>
</table>

결측값 측정은 rf-plasma 반응기에서 처리한 표에서는 조절된 24시간 간에 수행되었다. 본 연구에서는 실린지 점착액을 플라즈마 영향에 대한 LDPE 표면의 전반적 특성 수정으로 사용하였다. 또한 플라즈마 처리에 의해 LDPE 표면에 도입된 기능기와 표면 원소 조성비의 확인을 위하여 FT-IR ATR(attenuated total reflectance)과 XPS(X-ray photoelectron spectra)를 동시에 수행하였다. FT-IR ATR에서 스펙트럼의 해석도는 4 cm\(^{-1}\), 20 scan으로 기록하여 스펙트럼을 얻었다. ATR 장비의 경우, prism으로 KRS-5 (eutectic mixture of thalium bromide and iodide, TIBI) 결정을 사용되었으며, 표면 분석은 45°로 고정하여 분석하였다. XPS 분석에서 스펙트럼은 AIKα 빛이 사용되었고 코어level들에 대한 측정 수치는 각각 S(C0) = 1.00, S(N0) = 1.06, S(O0) = 2.64이다. 또한 플라즈마 기체에 따른 LDPE 표면의 morphology를 조사하기 위하여 SEM(scanning electron microscopy)가 이용되었다. 또한 플라즈마 처리된 LDPE 필름의 열적 성질의 변화를 살펴보기 위하여 DSC(differential scanning calorimetry)를 사용하였다. 본 연구에서 이용된 분석기를 Table 2에 나타내었다.

3. 결과 및 고찰

3.1. 플라즈마 처리된 LDPE의 열적 특성과 표면 morphology 변화

Table 3는 플라즈마 처리된 LDPE 필름의 DSC 결과이다. 표에 서처럼 비처리된 LDPE 필름과 플라즈마 처리된 LDPE 필름의 용융점, 용융물 등에 열적 특성이 변하기도 없음을 확인할 수 있으며, 산소 플라즈마 처리, 질소 플라즈마 처리, 산소와 질소 혼합 플라즈마 처리 모두 동일한 결과를 나타내고 있음을 알 수 있다. 이와 같이 플라즈마를 이용한 표면처리는 화학적 처리법 등의 다른 처리 방법보다 고분자 소재의 표면 성질에 영향을 미치지 않기 때문에 장점이 있으며, 이러한 험은 본 LDPE의 표면강화에서도 일치하고 있을음을 확인할 수 있다.
Table 3. Thermal Properties of Plasma Treated Polymer Films

<table>
<thead>
<tr>
<th>Experiment conditions</th>
<th>Melting temperature, °C</th>
<th>Heat of fusion, J/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>untreated LDPE</td>
<td>105.81</td>
<td>54</td>
</tr>
<tr>
<td>O₂ plasma treated LDPE 120 W, 15 sccm, 10 min</td>
<td>105.47</td>
<td>55</td>
</tr>
<tr>
<td>N₂ plasma treated LDPE 120 W, 15 sccm, 10 min</td>
<td>106.07</td>
<td>56</td>
</tr>
<tr>
<td>O₂/N₂ plasma treated LDPE 120 W, 15 sccm, 10 min, O₂/N₂ = 1</td>
<td>105.74</td>
<td>55</td>
</tr>
</tbody>
</table>

Fig. 2. SEM pictures of LDPE surfaces in treated with plasma gas(120 W, 10 min, 15 sccm): (a) untreated; (b) O₂ plasma; (c) N₂ plasma; (d) O₂/N₂ plasma.

Fig. 3. Typical FT-IR ATR spectra of LDPE treated with different plasma (120 W, 10 min, 15 sccm, O₂/N₂=1): (a) untreated; (b) O₂ plasma; (c) N₂ plasma; (d) O₂/N₂ plasma.

Fig. 2는 일정조건에서 폴라즈와 처리된 LDPE 필름의 표면 모형 변화를 살펴보기 위한 SEM 사진 결과이다. 사전에서 처럼 미처리된 LDPE 표면(Fig. 2.(a))에서 비롯한 폴라즈 처리된 LDPE 표면(Fig. 2.(b), (c), (d))은 높은 폴라즈 에너지로 인해 표면조도(surface roughness)가 증가하였음을 확인할 수 있다. 또한 폴라즈 기체 종류에 따른 표면조도 점에서 산소 폴라즈 처리가 가장 큰 영향이 있음을 알 수 있는데(Fig. 2.(b)), 일반적으로 산소는 폴라즈 기체로 사용되었을 때 화학적 제거(etching) 이나 용착(ablation)현상이 가장 잘 일어나는 것으로 알려져 있다 [3]. 산소와 질소의 혼합 폴라즈 처리(Fig. 2.(d))의 경우, LDPE 표면에서 작은 입자들이 확산되어, 이는 산소와 질소가 폴라즈 상태로 형성되며, 따라서 반응기내에서 생성된 질소산화물의 일부가 것으로 사료된다.

3.2. 폴라즈 처리된 LDPE 필름의 흡착성 표면 분석

Fig. 3은 일정조건에서 폴라즈 처리된 LDPE 필름의 1500~2000 cm⁻¹ 범위의 FT-IR ATR 흡수 스펙트럼 결과이다. 그림에서 처럼 처리되지 않은 LDPE 표면(Fig. 3.(a))의 ν(C-C, diene)을 나타내는 1600 cm⁻¹ 피크만이 나타나지만, 산소 폴라즈 처리(Fig. 3.(b)), 질소 폴라즈 처리(Fig. 3.(c)), 산소와 질소 혼합 폴라즈 처리(Fig. 3.(d))에 따라 카보닐, 카복실그룹 등의 ν(C=O) 진동에 의한 1600~1710 cm⁻¹ 범위에서 새로운 흡수 피크가 생성되어 1600 cm⁻¹ 피크와 겹쳐지면서 복잡한 피크가 나타남을 확인할 수 있다. 이로써 폴라즈 기체 종류에 관계없이 산소 폴라즈 처리에 의해 LDPE 표면의 산소 기능성 그룹이 생성되었음을 알 수 있다. 그 외의 FT-IR ATR 분석에서는 폴라즈 처리에 따른 피크 변화를 확인할 수 없다.

폴라즈 처리에 의해 LDPE 표면에 변화된 원소조성의 생성된 기능성 그룹들은 XPS 분석으로 보이는 C₆₀, O₆₀, N₆₀, core level의 상 대 강도로부터 조사되었다(Table 4). 비처리된 LDPE의 경우 산소 원소내에 산소와 질소 원소가 검출되었는데, 이는 산소와, 가수 분해 등의 반응으로 산소와 질소가 생성되며, 그 후 ATR 분석에서 나타난 결과로, 산소는 산소 폴라즈 처리(17.3%), 질소 폴라즈 처리(16.9%), 산소와 질소 혼합 폴라즈 처리(16.4%) 모두 표면 산소 함유량은 비슷한 수치를 나타내고 있으나 질소 폴라즈 처리, 산소와 질소 혼합 폴라즈 처리에서는 질소와 산소가 각 5.4%, 2.6%로 각각 검출됨을 확인할 수 있는데, 이는 질소 폴라즈 처리에 의해 LDPE 표면에 생성된 산소 함유량의 반응에 의한 결과들로 할 수 있다. 일반적으로 폴라즈 처리된 고분자 표면은 폴라즈와의 높은 에너지로 인해 생성된 자수의 반응에 의해 생성된 산소와 질소가 탐정에 존재하며, 반응이 끝난 후 대기압계 존재하는 산소분자와 결합하여 카보닐, 카복실, 알데히드 그룹 등의 산소 기능성의 기도가 도입된

3.3. 플라즈마 기체 종류와 공정변수에 따른 접촉각 변화

Fig. 4는 플라즈마 처리된 LDPE 표면의 접촉각에 대한 rf-출력의 영향에 대하여 나타내었다. 각 실험은 6개의 대기 침소가 있는 LDPE 표면의 접촉각을 15초 동안 측정하였다. 결과에서 소수의 침소가 있는 LDPE 표면(6%)이 rf-출력이 증가함에 따라 접촉각이 증가하므로 실험을 확인할 수 있는데 이는 FT-IR ATR와 XPS 분석결과에서 나타난 것과 같이 플라즈마 처리에 의한 LDPE 표면에 기능성 그룹 도입으로 인하여 나타난 결과이다. 일반적으로 rf-출력의 증기는 플라즈마내의 활성중의 수 률 증가시키고 반응성이 높은 입자들 고통동이 되어 이에 대한 결과를 고려한 표면과 반응속도를 증가시킨다[3]. 또한 플라즈마 기체 종류에 대한 영향을 고려한 침소 플라즈마 처리가 rf-출력에 관계없이 가장 적은 접촉각을 나타내고 있으며, 침소와 침소 혼합 플라즈마 처리, 침소 플라즈마 처리는 rf-출력과 접촉각이 감소하고 있음을 알 수 있었다. 따라서 LDPE 표면의 침소 표면개질에 미치는 플라즈마 기체 영향의 차이를 알아내기 위한 실험을 진행하였다.

관련여부 가장 적은 접촉각을 나타내고 있으며, 침소와 침소 혼합 플라즈마 처리, 침소 플라즈마 처리 순으로 접촉각이 감소하고 있음을 알 수 있다. 따라서 LDPE 표면의 침소 표면개질에 미치는 플라즈마 기체 영향의 차이를 알아내기 위한 실험을 진행하였다.

관련여부 가장 적은 접촉각을 나타내고 있으며, 침소와 침소 혼합 플라즈마 처리, 침소 플라즈마 처리 순으로 접촉각이 감소하고 있음을 알 수 있다. 따라서 LDPE 표면의 침소 표면개질에 미치는 플라즈마 기체 영향의 차이를 알아내기 위한 실험을 진행하였다.
리지간의 영향 결과처럼 LDPE 필름의 전준성 표면계절에서 절소 플라즈마 처리가 가장 효과적임을 나타내는 결과와 할 수 있다.

Fig. 7은 플라즈마 표면 처리에서의 플라즈마 공정변수가 복합적으므로 고려된 전체 에너지 유입량의 영향을 살펴보기 위하여 복합적 변수 (W/FMt)에 따른 LDPE 필름의 접촉각 의존성을 나타내었다. 여기서 W, F, M, t는 각각 rf-출력, 기체의 유량과 분자량, 처리시간을 나타낸다. 플라즈마 처리공정에서 낮은 복합에서 변수에서는 표면반응이 주도적이고 높은 복합에 변수에서는 속도공정이 표면반응보다 주도적이어서 끝의 등의 많은 불필요한 반응물이 일어나며 개질 반응이 완벽하게 진행되지 않는다[3]. 따라서 효과적인 표면계절 공정이 이루어지기 위해서 이 두 공정의 균형이 필요하다. 본 연구에서는 복합에서 변수가 증가함에 따라 접촉각이 감소하다가 복합에 변수가 520~650 GJ/kg 부근에서 정점을 이루어 이후 약간 증가하는 경향을 나타내고 있다. 이러한 경향은 앞서 설명한 것과 같이 (W/FMt)가 520 GJ/kg 이전에는 표면반응이 주로 일어나고 (W/FMt)가 550 GJ/kg 이후에는 석화나 degradation(용착)의 용착(ablation)공정이 주도적으로 일어남으로 인해 나타난 현상으로 설명될 수 있다. 따라서 LDPE 필름의 플라즈마 표면계절에서 플라즈마 종류에 관계없이 복합에 변수가 520~550 GJ/kg 부근에 가장 효과적인 전율성 표면계절을 나타내는 최적조건임을 확인할 수 있다.

4. 결 론

LDPE 필름의 산소, 질소, 산소와 질소 혼합 등의 플라즈마 기체 종류에 따른 전율성 개개효과를 표면 화학적과 접촉각 등의 물리화학적 분석을 통하여 얻은 결론은 다음과 같다.

1) 처리에 따른 LDPE의 표면 morphology 변화는 산소 플라즈마가 가장 큰 영향을 미치고 있음을 알 수 있었다.
2) 플라즈마 기체 종류에 관계없이 카본, 카복산 등의 산소 기능기가 표면에 생성되었고, 질소 플라즈마 처리와 산소와 질소 혼합 플라즈마 처리시 질소 기능기가 생성됨이 확인되었다.
3) rf-출력과 처리시간에 따른 접촉각 변화를 통하여 질소 플라즈마 처리가 가장 작은 접촉각을 나타내고 있음을 확인할 수 있으며, 산소에 대한 질소 기체의 혼합비가 증가함에 따라 접촉각이 감소하고 있음을 알 수 있었다.
4) 복합적 변수(W/FMt)가 520~550 GJ/kg인 부근에서 플라즈마 종류에 관계없이 LDPE 필름의 가장 효과적인 전율성 표면계절이 이루어짐이 확인되었다.

감 사

본 연구는 1999년도 단국대학교 대학연구비 지원에 의하여 수행되었으며 이에 감사드립니다.

참고 문헌
