Simulation Study on the Effects of Heating Rate and Particle Size Distribution for the Formation of the Agglomerate During CWM Combustion

Soo-Ho Kim, Young-Hwan Kim, Kap-Sung Hwang*, and Song-Sun Hong

Dept. of Chem. Eng., Chungbuk Nat’l Univ., Cheongju 286-079, Korea
*Dept. of Environmental Eng., Chungbceong College, Chungbuk 363-890
(Received December 15, 1997, Accepted February 27, 1998)

Abstract: A theoretical model of particle agglomeration was developed to investigate the adhesive force between contiguous coal particles in CWM agglomerate. While heating bituminous coal to about 400°C or above, the transient occurrence of plastic behavior of coal particles can be observed. The adhesive force in the process of agglomeration of coal particles was found to be proportional to the duration of plasticity of the particles. In the research, how the heating rate and the particle size distribution of CWM fuel influenced the formation of the agglomerate in CWM fuel at the heat-up stage was investigated by the model of particle agglomeration. Simulation program used to this experiment was RKG method and was programmed by Fortran. It was represented that by the model of particle agglomeration, the adhesive force in the process of the particle agglomeration in CWM fuel was inversely proportional to the heating rate but proportional to particle size.

1. 서론

최근 유연한 환경기술의 하나로 관심을 끌어온 석탄-수 혼합연료(CWM: coal-water mixture)는 고체인 석탄을 액체상태로 변형하여 연소시킴으로써 석탄 사용량의 많은 문제점을 해결시킬 수 있는 뿐 아니라 가스화(gasification)나 액화(liquefaction) 기술에 비하여 경제성이 높고 대규모의 새로운 시설투자가 필요없고 단기간에 기존의 오일 보일러 시스템을 개조하여 사용할 수 있는 효과적인 대체 에너지원으로 평가되고 있다[1, 2].

CWF(coal-water fuel) 또는 CWS(coal-water slurry)라고도 호칭되는 CWM 연료의 구성은 60~70 wt.% 정도의 미분한 물, 그리고 연료의 유동성을 증가시키고 안정성을 높이기 위한 소량의 첨가제로 구성되어 있다[2].

CWM 연료는 무게비로 30 wt.% 이상의 수분을 포함하고 있으며, 수분에 의한 건조과정이 포함된 다단계 과정을 거쳐 연소 과정이 진행된다고 볼 수 있다[3, 4].
1) 무분배 CWM 백색의 가열과정
2) 연료 중에서 포함된 수소의 증발 과정
3) 화합물의 발생 및 연소 과정
4) 고정탄소의 연소 및 화합물의 생성 과정

이러한 CWM 연료의 연소 메커니즘에 대하여는 여러 형태의 측정법을 통해 많은 실험들이 제작되었으나 현재까지 정확한 현상 파악은 이루어지지 못했다.

또한 분배 백색의 미세한 미인용 분산 함량이 적고 크기가 작은 배산분진이 발생되므로 슬러지, 파울링, 대류류 트랜스포마션
상이 감소하고 비산분리의 저항이 상승하여 전기접관기의 효율
이 높아지는 효과가 있다.

일반적으로 CWM 액체가 로터리 주입들인 CWM 액체의 수
분은 증가하기 시작한다. 이러한 현상으로 액체의 석탄 입자들은
고온에서 창작되며 빠르게 가열된다. 400°C 또는 그 이상 가열되면
석탄 입자들은 융합된다. 융합의 범위는 석탄 입자들과 석탄 속
물의 시간-온도 관계에 의하여 각간한 영향을 받는 플라스틱성의
저온기간에 의존한다[8].

플라스틱성의 지속기간이 석탄입자들이 융합하고 함께하신에 중
분히 간다고 생각한 CWM 융합은 설명될 뿐만 아니라, 반면
이 지속기간이 빨라지면 악화로 융합한 CWM 음합체들이 형성되어
최선의 상당한 영향을 미치게 된다. 따라서 플라스틱성과 시간의
경과(plasticity-time history)는 CWM 음합물의 연료에 대하여 중
요한 것으로 알려져 있다[10].

본 연구에서는 유리에 주입된 CWM 연료의 액체 가열속도와 액
체중의 석탄 입자크기가 가열대에서 CWM 연료와 CWM 음합물 형성
에 미치는 영향을 입자 음합모델에 의하여 고찰하였다. 2. 이론적 모델 - CWM 액체에서 석탄입자 음합모델
2.1. 유연함의 플라스틱성
약 400°C 또는 그 이상 유연성이 가열될 때 석탄 입자들의 플라
스틱성 가동의 진이 경우에 관찰될 수 있다. 초기의 'butimun': 암소를 필터로 된 적성 슬러리로 유연되는 액체 성분(但imun)의 결과로서 플라스틱성의 변진을 설명하므로, 초기의
'metaplasm'은 이로써 악화적으로 바뀌어진다. metaplasm 입자에
따른 액체 metaplasm은 다음의 일반적 반응물에 의하여 생성
되고 모드된다[6].

coking coal(C) { k₁ } \rightarrow metaplasm (L) \rightarrow semicoke \rightarrow coke

\text{primary gas} \quad \text{secondary gas}

coke 형성을 단단한 형태로 표시한 이반응들은 다음의 수학적
모델로 표현될 수 있다.

\[
\frac{dC}{dt} = -k_1C \quad (1)
\]

\[
\frac{dL}{dt} = k_1C - k_2L \quad (2)
\]

이러한 수학적 모델의 가정은 반응들이 1차 반응이라는 것이다.
Fong 등[10]은 물리적인 융합에 의하여 형성된 액체 metaplasm을
고려하기 위하여 이 모델에 대한 수정을 하였다. Fong 등의 모델
에 따르면 액체 metaplasm의 일부는 융합으로 이동하지 않은
유연의 융합에 의하여 우션적으로 형성된다. 융합이 더 증가함에 따라 그
온은 가열에 의한 질량이 빠른 부가하는 액체 metaplasm을 생성한다.
결과적으로 액체 metaplasm은 석탄으로부터 분산한 융합분을 형성
하고 고체 coke로 전환될 수 있다. 석탄 입자들의 플라스틱성 기
간동안 반응단계에 그에 따른 속도 표현은 다음과 같다.

\[
\frac{dC}{dt} = k_1C - r_m
\]

\[
\frac{dL}{dt} = k_1C - r_m \quad (3)
\]

\[
\frac{d\bar{L}}{dt} = k_1\bar{C} + r_m - k_3\bar{L} \quad (4)
\]

여기서 \(\bar{C}\)와 \(\bar{L}\)는 각각 반응하지 않은 석탄과 액체 metaplasm의
전반분으로, \(r_m\)는 물리적 음합속도이며, \(k_1\)와 \(k_3\)는 속도상수이다.
(3)식과 (4)식의 초기조건은 다음과 같다.

\[
\bar{C}(0) = \bar{C}_i \quad (5)
\]

\[
\bar{L}(0) = 0 \quad (6)
\]

여기서 \(\bar{C}\)는 반응하지 않은 석탄의 초기 질량분율이며, (1-mass
fraction of mineral matter)로 주어진다.

(3)식과 (5)식으로부터 반응하지 않은 석탄의 질량분율(\(\bar{C}\))을
반응속도 상수 \(k_1\)과 물리적 음합속도 \(r_m\)의 함수로서 다음과 같이
표현한다.

\[
\bar{C} = \exp\left[-\int_0^t k_1 dt\right] \int_0^t \exp\left[-\int_0^t k_1 dt\right] dt + \bar{C}_i \quad (7)
\]

\[
\bar{L} = \exp\left[-\int_0^t k_1 dt\right] \int_0^t \exp\left[-\int_0^t k_1 dt\right] \left[r_m + \bar{C}_i k_1 \right] dt
\]

\[
\exp\left[-\int_0^t k_1 dt\right] + k_1 k_1 \exp\left[-\int_0^t k_1 dt\right] \left[r_m - \bar{C}_i\right] dt \quad (8)
\]

\[
\exp\left[-\int_0^t k_1 dt\right] \frac{d\bar{L}}{dt} \quad (9)
\]

물리적 음합속도(\(r_m\))는 석탄입자의 가열속도에 의하여 주어지고,
음합분의 Gaussian 분포에 의하여 증가하며, 30K/분 표준편차를 갖
는 623K의 평균 음합온도에서 결정된다[10].

\[
r_m = \frac{L_m}{\sqrt{2\pi} \sigma_T} \exp\left[-\frac{(T_m - T_r)^2}{2\sigma_T^2}\right] \left[\frac{dT_r}{dt}\right] \quad (10)
\]

여기서 \(T_m\)는 석탄입자의 온도, \(T_r\)는 석탄입자의 평균 음합온도,
[10]는 석탄입자의 가열속도, \(\sigma_T\)는 음합온도의 표준편차(23K)
그리고 \(L_m\)는 석탄에 존재하는 초기 액체 metaplasm의 질량분율이다.

속도상수 \(k_1\)과 \(k_3\)는 Pittsburgh seam 유연탄에 대한 경험적 레
이터로부터 다음과 같이 결정된다. \(L_m\)는 0.25로 주어진다[10].

\[
k_1 = 6.6 \times 10^7 \exp(-14,500/T) \times \frac{1}{\text{sec}} \quad (11)
\]

\[
k_3 = 1.9 \times 10^9 \exp(-261,200/T) \times \frac{1}{\text{sec}} \quad (12)
\]

이 모델에서 액체 metaplasm에서 괴발분의 생성에 의한 부풀음
현상은 중요하지 않은 것으로 가정되었으며, 그러므로 CWM 음
합물의 반응은 안정하나 유지된다(즉, 부풀음 현상은 무시된다).
또한 괴발분은 액체 metaplasm에서 형성되며, 미세 다공성의 coke 전
유물이 쌓이고 액체 괴발분이 형성되며, 석탄 입자로는 액체 석탄, 액
체 metaplasm, mineral matter, 미세 가공물이 있는 coke 전유물로 구
성된다. 또한, 이상의 가정을 기초하여 각 성분들의 부피
분율은 다음과 같이 나눌 수 있을 것이다.

반응하지 않은 석탄의 부피분율(\(C\))은 다음과 같다.

\[
C = \frac{\rho_s}{\rho_c} \bar{C} \quad (11)
\]

여기서 C는 (7)식에서 주어진 반응물은 석탄의 점화량을 나타내며 ρ_0는 반응하는 석탄의 밀도, ρ는 석탄 잔여의 초기 밀도를 나타내며 다음과 같이 표현된다.

$$\rho_0 = \frac{\rho_0 - \rho}{\rho_0 - f_s (\rho_0 - \rho)}$$ \hspace{1cm} (12)

여기서 ρ는 mineral matter의 밀도이고 f_s는 mineral matter의 점화량이며, $f_s = 1 - C$로 주어진다.

(7), (11), (12)식으로부터 반응하지 않은 석탄의 부피 분율(C)은 다음과 같이 표현된다.

$$C = \left[\frac{\rho_0 - f_s (\rho_0 - \rho)}{\rho_0 - f_s (\rho_0 - \rho)} \right] \exp \left[- \int_0^t k_1 dt \right]$$ \hspace{1cm} (13)

액체 metaplastic의 부피 분율(L)은 다음과 같다.

$$L = \frac{\rho_k}{\rho}$$. \hspace{1cm} (14)

여기서 L은 (8)식에서 주어진 액체 metaplastic의 점화량을 나타내며, ρ_k은 액체 metaplastic의 밀도이며 ρ는 (12)식에서 주어진 석탄 잔여의 초기 밀도이다. 식 (8), (12), (14)로부터 액체 metaplastic의 부피 분율(L)은 다음과 같이 표현된다.

$$L = \frac{\rho_0 - f_s (\rho_0 - \rho)}{\rho_0 - f_s (\rho_0 - \rho)} \exp \left[- \int_0^t k_2 dt \right]$$ \hspace{1cm} (15)

$$k_2 = \exp \left[- \int_0^t k_2 dt \right] \left[k_2 \exp \left[- \int_0^t k_2 dt \right] \right]^{1/2}$$

Mineral matter의 부피 분율(f_s)은 다음과 같이 나타낼 수 있다.

$$f_s = \frac{\rho_0 - f_s (\rho_0 - \rho)}{\rho_0 - f_s (\rho_0 - \rho)}$$ \hspace{1cm} (16)

(12)식을 대입하면 다음과 같이 볼 수 있다.

$$f_s = \frac{\rho_0 - f_s (\rho_0 - \rho)}{\rho_0 - f_s (\rho_0 - \rho)} \frac{1}{C + L + f_s}$$ \hspace{1cm} (17)

이상에서의 값은 부피를 변형을 무시한다면 C, L, f_s의 값으로부터 coke의 부피 분율(E)은 다음과 같다.

$$E = 1 - (C + L + f_s)$$ \hspace{1cm} (18)

2.2. 임차 응집과정에서의 점축 영역

$$A = \frac{3}{2} \frac{r t}{\mu}$$ \hspace{1cm} (19)

여기서 A는 t시간에서의 접촉 면적, r은 합체 석탄임자의 반경, τ는 합체 석탄임자의 표면장력, μ는 합체 석탄임자의 접촉각 점도 그리고 t는 시간을 나타낸다.

석탄 잔여에 대한 이 접촉 면적의 성장 속도 $\frac{dA}{dt}$는 다음과 같이 표현된다.

$$\frac{dA}{dt} = \frac{3}{2} \frac{r t}{\mu}$$ \hspace{1cm} (20)

고-예 슬리지에서 액체의 접촉각 점도(μ)는 고체를 포함하지 않은 액체의 점도(μ^*)와 액체에서 고체의 부피 분율(1-L)에 의존한다고 가정하면 접촉각 점도는 다음과 같이 표현할 수 있다.

$$\mu = \frac{9}{8} \frac{\mu^*}{(1-L)^{3/2}}$$ \hspace{1cm} (21)

또한 액체 metaplastic의 표면 장력은 CWM 연료에서 점도와 변화에 따라 거의 변화가 없는 것으로 알려져 있다[7], 따라서 다음과 같이 가정한다.

$$\gamma = \tau$$ \hspace{1cm} (22)

식 (20), (21), (22)로부터 연관된 석탄 잔여물간의 접촉 면적의 성장속도 $\frac{dA}{dt}$는 다음과 같이 표현된다.

$$\frac{dA}{dt} = \frac{4 \pi \gamma L}{3 \mu} \left[(1-L)^{3/2} - 1 \right]$$ \hspace{1cm} (23)

여기서 r은 석탄 잔여의 반경이다.

접촉 면적 A에 대한 식 (23)의 초기 조건은 다음과 같이 된다.

$$A(0) = 0$$ \hspace{1cm} (24)

함께 계산하여 두 개의 연결된 석탄 잔여물간의 접촉 면적 A는 다음과 같다.

$$A = \frac{4 \pi \gamma L}{3 \mu} \int_0^t \left[(1-L)^{3/2} - 1 \right] dt$$ \hspace{1cm} (25)

2.3. 임차 응집과정에서의 응집력

임차 응집 과정내에 두 개의 합체 석탄 잔여물 사이의 응집력은 액체 metaplastic에 기인하는 표면장력과 coke 상호 결함에 기인하는 응집력의 합으로 표현된다.

2.3.1. 표면장력

Fig. 1은 CWM 응집물에서 두 개의 합체 석탄 잔여물을 보여준다.

$$l_{eff} = 2 \pi r^* L$$ \hspace{1cm} (26)

여기서 r^*는 neck region의 반경이며 다음과 같이 주어진다.

$$r^* = \left[\frac{A}{2} \right]^{1/2}$$ \hspace{1cm} (27)

표면장력 F_r는...
Fig. 1. Surface tension force at Neck Region of two coalescent coal particle in CWM agglomerate.

\[F_\gamma = \gamma_c \sin \theta \cdot L \cdot r_c \]

(29)

where \(\theta \) is the contact angle in Fig. 1 as shown, and \(\theta = 90^\circ \).

This force is due to the liquid metaoplast in the agglomerate.

Next, we consider the force due to agglomeration.

\[F_{\text{agg}} = 2\sqrt{\pi \lambda A} L \gamma_c \]

(29)

2.3.2. Coke agglomeration

Fig. 2 is a 3D model showing the formation of coke agglomerates during the CWM process. Coke agglomerates are formed due to the cohesive forces between the coal particles. The agglomerate is formed by the interaction of the liquid metaoplast and the solid coke particles. The agglomerate is composed of the following components:

1. Unreacted coal
2. Coke
3. Neck region
4. Ash
5. Liquid metaoplast

Stage 1: Formation of the agglomerate

Stage 2: Growth of the agglomerate

Stage 3: Completion of the agglomerate

Fig. 2. Agglomeration process of coal particle in CWM agglomerate.

In stage 1 and 2, the coke agglomerates are formed due to the cohesive forces between the coal particles. The cohesive force is given by

\[F_{\text{agg}} = \sigma g A \left(\frac{E - E_{\text{cm}}}{1 - f_a - f_{\text{cm}}} \right) \]

(30)

where \(\sigma \) is the bond stress, \(g \) is the gravitational acceleration, \(A \) is the contact area, \(E \) is the energy, and \(f_a \) is the fraction of free coke.

In stage 3, the agglomerate is completed at

\[F_{\text{agg}} = 0 \]

(31)

2.3.3. Bonding force

The bonding force in CWM agglomerates is due to the cohesive forces between the coal particles.
사이의 온실기(\(F_A\))는 표면장력(\(F_r\))과 coke 상호작용에 기인하는 온실기(\(F_e\))의 합으로 표현된다. 그러므로 식(29), (30), (31)로부터 온실기는 다음과 같다.

\[
F_A = F_r + F_e
\]

따라서 본 연구에서는 4차 RKG[Runge-Kutta-Gill][12, 13] 방법을 사용하여 Fortran으로 전산보수 프로그램을 작성하였으며, 서로 다른 입자 가열속도와 입자크기에 대한 입자 온실시간 동안의 온실기를 (3)~(22)식에서 설명한 입자 온실모델에 의하여 계산하였다.

전산모델에서 사용한 성분은 달러스 석탄(공업분석: 수분-2.38\% 서면-25.86\% 고성분-58.03\% 가성분-14.03\%)을 기준으로 하여 사용하였다. 달러스 석탄의 공업분석으로부터 mineral matter의 초기 질량분율은 0.14로 하였으며, 악체 metaplast의 표면장력은 0.01 dyne/cm, CWM 연료의 점도는 250 cp로 하였다. 또한 coke 전류물의 결합 온은 3\(\times 10^6\) mPa로 하였 다[6].

3. 결과 및 고찰

입자 가열속도가 빨면 석탄의 플라스틱성 지속기간이 석탄입자들이 완전하게 온실하기로 함에 없음 없을 경우에 되어 급격히 온실된 CWM 온실들이 형성될 것이다. 또한 철인 석탄 입자들 간의 온실력이 아이파로 CWM 온실들을 쉽게 구분할 것이며, 연소에 절에 따라 발생할 수 있다. 그러나 입자의 가열속도가 느리면 석탄의 플라스틱성 지속기간이 석탄입자들이 온실하고 함께 하게 된다.

기계 충분히 흐리지게 되고 강하게 용접된 CWM 온실들은 형성될 것이며, 연결된 석탄 입자들간의 강한 온실력으로 인하여 CWM 온실들은 파괴되기 어려울 것이며, 연소에 따른 영향을 미치게 된다[7].

3.1. 입자 가열속도의 영향

Fig. 3-8은 입자 가열속도의 영향을 보여주기 위해서 10\(^2\) K/sec, 10\(^3\) K/sec 그리고 10\(^4\) K/sec의 대표적인 입자 가열속도의 시간의 함수로서 입자의 온도, 반응하지 않은 석탄의 부피분율 C, 악체 metaplast 부피분율 L 그리고 coke 전류물(char)의 부피분율 E. 표준화된 가속도 A. 그리고 표면장력 F_r, coke 상호작용에 기인한 온실력 F_e 그리고 표면장력과 coke 상호작용에 기인한 온실력의 합으로 나타나는 입자의 온실기 F_A의 예측값을 보내 준다.

Fig. 3은 시간의 함수로 나타낸 석탄입자의 온도를 보여주고 있다. Fig. 4에서는 시간의 함수로서 반응하지 않은 석탄의 부피분율 C, 악체 metaplast 부피분율 L 그리고 coke 전류물(char)의 부피분율 E의 값을 나타내었다. 그레프에서 보여주는 것과 같이 서로 다른 입자 가열속도에 대한 C, L, E 3개의 일반적인 영향을 비교 시간 범위는 전체적으로 다를 지라도 매우 유사하다. 그림에서 악체 metaplast은 입자 가열속도가 증가함에 따라 감소하는 경향을 나타내며, 1차 양상은 입자온도 이상에서 석탄입자들의 물리적인 용융에 의하여 보수적으로 생성된 것이며, 2차 생성은 더 온도가 증가함에 따라 고온 가열에 의한 석탄입자의화 합물의 부가적인 악체 metaplast의 생성함으로 해석된다. 그리고 coke 전류물(char)의 부피분율 E는 반응하지 않은 석탄(C)과 악체 metaplast(L)가

공업화학, 제 9 권 제 3 호, 1998
Fig. 5. Predictions of normalized A versus time for different particle heating rate (mean particle diameter : 28 μm).

Fig. 6. Predictions of surface tension force due to liquid metaplast versus time for different particle heating rate (mean particle diameter : 28 μm).

Fig. 7. Predictions of adhesive force due to coke interconnection versus time for different particle heating rate (mean particle diameter : 28 μm).

이의 소모량 끝까지 증가하며, 이러한 현상은 가열속도가 증가함 수록 빠른 시간내에 이루어지는 것으로 예측되었다. 또한, Fig. 5의 점축면밀도를 πr^2 (r = 석탄입자의 반경)으로 나눈 값인 표준화된 점축면밀도 A는 석탄에서 악체 metaplast가 완전히 소모될 때까지 증가하며, 입자기열속도가 증가함에 따라 감소하는 경향을 나타내는 데 이는 쿠로 입자 온도에 필요한 석탄 플라스틱성(plasticity)의 지속기간이 감소하기 때문이다. Fig. 6-8에서 F_r, F_g 그리고 F_a의 값으로 나타난 응집력은 Fig. 5의 점축면밀도에 비례하며, 입자 가열속도가 증가함에 따라 감소하는 경향을 나타낸다. 결과적으로 보다 높은 입자 가열속도(보다 높은 로터 온도와 보다 작은 입자 직경에 의하여 압력)는 석탄입자의 가열간섭에 응집력을 형성하는 경향을 감소시킨다. 이것은 서로 다른 입자의 결합력에 감소시키고 탈착화도 측면에서 기간 동안 연소성을 증가시키는 원인 이 된다.

3.2. 입자 크기의 영향

Fig. 9-11은 CWM 연료 세포에 사용된 석탄입자의 크기의 영향을 보여주기 위해서 10^6 K/sec 입자 가열속도에서 입자 크기의 시간의 함수로서 표면적 F_r (Fig. 9), coke 상호결합에 기인한 응집력 F_g (Fig. 10) 그리고 표면적과 coke 상호결합에 의한 응집력의 합으로 나타나는 입자의 응집력 F_a (Fig. 11)의 예측값을 보여준다.

그림에서 보듯이 표면적(F_r), coke 상호결합에 기인한 응집력 (F_g) 그리고 F_a의 값으로 나타난 응집력 모두 입자크기에 비례하여 입자 크기가 증가함에 따라 증가하는 경향을 보인다. 따라서 가열속도가 같을 경우 입자 크기가 증가하면 석탄입자들이 가열 간섭에 응집력을 형성하는 경향을 보이고 있다. 이것은 CWM 역적내의 서로 다른 입자의 결합력을 증가시키게 되어
Fig. 8. Predictions of adhesive force between two coalescing coal particles versus time for different particle heating rate (mean particle diameter: 28 μm).

Fig. 9. Predictions of surface tension force due to liquid meta-plast versus time for different mean particle diameter (heating rate: 10^4 K/sec).

Fig. 10. Predictions of adhesive force due to coke interconnection versus time for different mean particle diameter (heating rate: 10^3 K/sec).

Fig. 11. Predictions of adhesive force between two coalescing coal particles versus time for different mean particle diameter (heating rate: 10^3 K/sec).
CWM 응집물의 크기의 증가시키며 연소산물에 미치는 영향에 대해 연구하였다.

4. 결론

RKG 방법을 사용하여 서로 다른 입자 가열속도와 입자크기에 대한 입자응집 기간 동안의 응집학을 입자 응집모델에 의해 예측
한 결과 CWM 연소의 입자 응집과정에서의 응집력은 입자 가열속도에 반비례하며, 입자크기에 비례하는 것으로 나타났다. 따라서
CWM 연소의 가열속도가 높을수록, CWM 연소에 사용된 석탄 입
자크기가 작을수록 CWM 연소는 우수할 것으로 예측되었다.

사용 기호

\(A \) \quad \text{contact area}

\(\frac{dA}{dt} \) \quad \text{growth rate of contact area}

\(C \) \quad \text{mass fraction of unreacted coal}

\(C_i \) \quad \text{initial mass fraction of unreacted coal (i.e., 1 - \(\tau \))}

\(C \) \quad \text{volume fraction of unreacted coal}

\(E \) \quad \text{mass fraction of coke-residue (char)}

\(E \) \quad \text{volume fraction of coke-residue (char)}

\(E_a \) \quad \text{threshold volume fraction of coke-residue (char)}

\(\frac{1}{2} \) \quad \text{threshold volume fraction of coke-residue (char)}

\(F_a \) \quad \text{adhesive force between two coalescent coal particles}

\(F_s \) \quad \text{adhesive force due to coke interconnection}

\(F_{s1} \) \quad \text{adhesive force due to coke interconnection in stage 1}

\(F_{s2} \) \quad \text{adhesive force due to coke interconnection in stage 2}

\(F_{s3} \) \quad \text{adhesive force due to coke interconnection in stage 3}

\(\tau \) \quad \text{surface tension force due to liquid metaplast}

\(t \) \quad \text{mass fraction of ash (mineral matter)}

\(s \) \quad \text{volume fraction of ash (mineral matter)}

\(k_a \) \quad \text{rate constant in eq. (1)}

\(k_r \) \quad \text{rate constant in eq. (2)}

\(k_{\text{ar}} \) \quad \text{arrenius type reaction rate}

\(L \) \quad \text{mass fraction of liquid metaplast}

\(L \) \quad \text{volume fraction of liquid metaplast}

\(L_s \) \quad \text{mass fraction of solid metaplast initially existing in coal}

\(r \) \quad \text{effective circumference}

\(r \) \quad \text{radius of coal particle}

\(r_{\text{m}} \) \quad \text{radius of contact area in neck region}

\(T \) \quad \text{mean melting temperature of coal particle}

\(T_0 \) \quad \text{temperature of CWM droplet/aggregate}

\(t \) \quad \text{time}

Normalized A normalized contact area, given by \(\frac{A}{A_{\text{th}}} \)

그리고 다음과 같이 정의한다.

\(\gamma \) \quad \text{surface tension}

\(\gamma_c \) \quad \text{surface tension of liquid metaplast}

\(\theta \) \quad \text{contact angle}

\(\mu \) \quad \text{viscosity}

\(\mu_c \) \quad \text{viscosity of liquid metaplast}

\(\rho_s \) \quad \text{density of ash (mineral matter)}

\(\rho_c \) \quad \text{density of unreacted coal}

\(\rho_l \) \quad \text{density of liquid metaplast}

\(\sigma_c \) \quad \text{bond stress of coke-residue (char)}

\(\sigma_t \) \quad \text{standard deviation of melting temperature of coal}

참고 문헌
