메탄에 의한 이산화탄소의 환원반응에 관한 연구

홍성수·양진섭·김병기·주창식·이근대
부경대학교 공과대학 화학공학과, *표면공학과
(1997년 5월 13일 접수, 1997년 6월 20일 승택)

A Study on the Catalytic Reduction of Carbon Dioxide by Methane

Seong-Soo Hong, Jin-Seop Yang, Byung-Kee Kim, Chang-Sik Ju, and Gun-Dae Lee*

Department of Chemical Engineering and *Surface Coating Engineering, College of Engineering, Pukyong National University, Pusan 608-739, Korea
(Received May 13, 1997, Accepted June 20, 1997)

요약: 여러 종류의 담체에 담지된 나염 촉매상에서 메탄에 의한 이산화탄소 개질반응에 대한 연구하였다. 여러 가지 담체에 첨가한 메탄이 담지된 나염 촉매의 활성 성격이 높아져 촉매의 활성이 증가하였으며 촉매의 화학성도 높게 진행되었다. 전연체온이어에 담지된 나염 촉매와의 전환율은 증가함수록 활성성이 증가하였고, 10wt% 이상으로 담지한 경우에는 활성의 변화가 그다지 없어지지 않았다. 반응물중 메탄과 이산화탄소의 비율에 따라 전환율과 생성물의 수율이 크게 영향을 받았으며, CH₄/CO₂의 비가 1일 때 가장 높은 수소와 이산화탄소 수율이 나타났다. 촉매의 비활성화는 반응증에 생성되는 코크에 작용하여 진행되는 것으로 생각하며, 코크는 주로 메탄의 분해에 의해 생성되었고 코크의 형성은 whatsapp형으로 촉매의 비활성화 속도를 느리게 하였다.

Abstract: We have studied the reforming of carbon dioxide with methane over various supported nickel catalysts. The nickel supported on natural zeolite showed the highest activity and the nickel on acidic support showed higher activity and slow deactivation compared to nickel on basic support. The activity of nickel on natural zeolite increased with increasing loading rate and showed almost constant activity above 10wt% loading of nickel. The conversion and yield of products were affected by the mole ratio of reactants and the highest yields of CO and H₂ were obtained at CH₄/CO₂=1. The deactivation of catalyst was caused by deposition of coke which was formed by the decomposition of methane. The shape of coke was shown to be whisker type carbon, and it brought out the slow deactivation of catalyst.

1. 서론

최근의 신차한 환경문제의 하나인 저구온난화를 유발하는 주된 원인인 이산화탄소 배출과의 또는 용융화 물질의 전환은 현재 인류가 당면하고 있는 가장 큰 문제로 나타난다. 그러나 향후정부의 발달에 따라 에너지 수요가 증가하고 이를 에너지를 중단하기 위해서는 개발적인 화석원료의 사용을 줄이기 위한 노력이 대중적으로 이루어져 이산화탄소를 더 유용한 물질로 전환시키는 방법의 개발은 현재 신속히 해결해야 할 문제로 대두되고 있다. 그리고 이산화탄소는 우리 주위에 존재하는 탄소 원분에서 가장 갱 많고 또한 손쉽게 얻을 수 있는 탄소원이 다. 따라서 이산화탄소로 교환할 화학성도 이산화탄소로 이야기하는 것은 에너지 과정에 대한 대비, 그리고 환경문제 해결이라는 면에서 볼 때 매우 큰 의미를 지니게 된다.[1~2]

이산화탄소는 매우 안정한 화합물로서, 열역학적 면에서 볼 때 그 전환반응은 여전히 수반된다. 그러나 특정 조건 하에서는 탄화수소를 생성하는 것이 가능하게 되고 실제로 Ni, Fe, Rh 등의 촉매상에서 쉽게 수산화 반응으로 메탄을 생성하기도 하지만 C₃ 이상의 탄화수소를 생성하는 것은 힘들게 된다. 반면에 이산화탄소의 경우는 열역학적인 면에서 고려해 볼 때 C₃ 이상의 탄화수소를 생성하는 것이 가능할 것으로 보고되고 있다. 따라서 이산화탄소로부터 일반수소를 생성함에 빠르게 이것을 이용하여 C₂ 이상의 탄화수소를 생성시키는 것이 이산화탄소의 전환반응에서도 실용성이 큰 방법중의 하나라고 볼 수 있다. 이와 같은 이산화탄소의 전환방법이외에도 이산화탄소를 수소화시켜 메탄올이나 탄화수소를 생성하는 방법에 대해서는 이미 많은 연구가 진행되어 그 일부는 실용화되고 있다. 그러나 이러한 수소화 반응에 있어서는 그 제조 과정에서 많은 에너지를 소모하거나 또 다른 탄화수소를 필요로 하는 수소가 사용되어서는 문제가 되기 때문이다[3~4].
현제까지 알려진 대표적인 이산화탄소의 산화탄소로의 전환방법에는 배출을 이용한 이산화탄소의 환원법이 있고, 이 방법에 의해서는 산화탄소와 수소의 혼합물 즉 산화탄소가 생성되며, 특히 이 혼합물의 수소화 및 산화탄소의 비율로 구성되어 나타난다. 따라서 이와 같은 산화탄소를 이용하여 여러종류의 화학적(과 산화, ketone, alcohol 등) 또는 유기산화물(산화)을 할산화할 수 있다. 그러나 이와 같은 화학적 방법을 사용할 수 있는 혼합물의 또 다른 제조방법으로서 배관의 steam reforming 방법이 오래전부터 발전되어 현재 널리 사용되고 있지만 이 방법 또한 여러가지 문제점을 지니고 있다. 즉 이 배관에서는 고온과 과연용화 증기를 필요하며, 수반되는 water gas shift reaction에 의해 다양한 이산화탄소가 생성될 수 있으며, 또한 이 방법에 의해 얻어지는 화학탄소의 H_2/CO 비가 높아 액화가치 화합물을 할산화하는 원료로 사용할 때에 있어서 피로의 수소와의 미생 carbon chain의 growth가 제한받게 된다.

이상의 여러가지 점을 고려해 볼 때 본 연구에 의한 이산화탄소 소의 환원 방안은 지구산산화를 유도하는 이산화탄소와 배관을 이용금물로 전환시킬 수 있는 것으로 확장할 수 있다. 그러나 이 방법은 상황에 따라서만 할 수 있다는 점을 주의해야 한다. 그리고 이 방법은 상황에 따라서만 할 수 있다는 점을 주의해야 한다.

이와 같은 배관에 의한 이산화탄소의 환원방안은 이미 오래전부터 연구되었고 특히 최근의 연구에 의한 이 방식에서 비교적 높은 환원을 산화물이 채택되어 백지되어 있다[6-11]. 그러나 이와 같은 채택물은 대부분의 배관을 원소를 구성하는 것으로 경제적으로 할산화하는 데 대한 전략이 많이 없었다. 따라서 이 방식에서 비교적 높은 환원을 할산화하는 데 위해서는 실험상의 문제점을 나타내고 있었다. 따라서 이 방식에서 비교적 높은 환원을 할산화하는 데 있어서에는 실험상의 문제점을 보고하고 있는 Ni 채택에 대한 실험상의 문제점을 발전할 수 있다고 생각할 수 있었다. 실험상의 채택에 많은 기회가 지니게 된다.

한편 이 방법상에서 Ni 채택의 비활성화를 방지하는 수용 용량으로 알려져 있는 carbon deposition을 억제하기 위한 방식에 대한 많은 연구가 진행되고 있으며, 특히 적절한 배관한 저온수를 이용하여 carbon deposition을 억제하기 위한 연구가 진행되어 있다[12-14]. 현재까지의 이론에 대한 연구들은 대부분 basicity를 가지는 채택이 carbon deposition을 억제하는 효과를 나타내는 것으로 알려지고 있으며, 실제 이 방법은 여러가지 연구결과들을 비교해 볼 때 $Al_{2}O_{3}$에 비해 MgO가 배관에 사용된 경우 비교적 채택의 비활성화가 낮게 나타나는 것을 볼 수 있으며, 또한 basic strength가 더욱 강한 CaO가 Ni/MgO 채택에 향후히 채택의 경우 더욱 채택의 안정성이 증가하는 경향을 나타내는 것을 알 수 있다. 그러나 이와 같은 연구는 이론에 대한 제거적인 이론은 확장되어 있지 않다.

따라서 본 연구에서는 여러 종류의 채택에 탑재된 Ni 채택을 금강석공법에 의해 제조하고 이들의 성질을 조사하고 이산화탄소의 개발방면에서의 활용성을 조사하였다. 또한 채택의 종류에 따른 채택의 비활성화와의 관계에 대해 조사하였다. 특히 산성 및 염기성 채택의 반응성과 채택의 비활성화를 조사하였다. 한편 형질 제조파이어를 탑재하여 사용한 Ni의 담지율을 담지하여 채택을 제조하고 탑재율에 따른 Ni 염기의 분산도 측정과 승온환성시험(TPR)을 행하였고, 이에 따른 채택의 활성을 비교하였다.

현재 제작화학에서 탑재된 Ni 채택을 중심으로 반응조건, 즉 반응온도, 접촉시간 및 반응물의 물리적, 화학적, 화학적 환원 및 수소화 환원효과의 수울을 조사하였다. 한편 탑재된 Ni 채택의 BI활성화를 조사하기 위해서 반응 후의 채택에 대한 염기성 실험을 행하였고, SEM 및 XRD 등을 사용하여 채택의 성질을 조사하였다.

2. 실험

벽면에 의해 이산화탄소의 환원방법에는 귀금속이나 Ni 및 Co 등이 사용되고 있다. 이러한 금속의 열적 안정성과 활성성 증가시키기 위해서 알루미나나 실리카 등에 담지하여 사용하는 것이 일반적이다. 따라서 분 연구에서는 산성 및 염기성 채택에 Ni를 담지시켜 제조하였다. 담지에는 산성인 것으로 관리된 친고 계계화물(가용 영업안: 이하 NZ로 표시) 및 H-ZSM-5를 사용하였고, 염기성 담지로는 MgO 및 CaO를 사용하였다. 한편 이 방법에서 특이한 활성을 보이는 것으로 알려진 LaO(나)를 탑재하여 사용하여 반응성 및 채택의 BI활성화를 비교하였다.

달지된 Ni 채택은 금강석공법으로 제조되었다. 또한 담지에는 담지된 Ni는 10 wt%가 되도록 담지시킨 Ni(NO$_3$)$_2$를 수용액을 담지하여 약 10% 이상을 담지한 후의 수용액을 사용하였다. 담지에는 30-60 mesh 크기가 같은 것들 반응용에 사용하였고, 반응 전에 650°C에서 100 ml/min 수소로 2시간 동안 전처리시켜 완전하였다.

제조된 채택의 물리적 및 화학적 성질을 알아보기 위해서 특성분석을 행하였다. 우선 제조된 채택은 반응 후의 채택의 금강석공용으로 채택을 할산화하기 위해 X-ray 회절 분석(XRD), Rigaku Co Model DMX와 target: Cu-Kα를 행하였고, 또한 채택의 채택을 할산화하기 위해 기본적 채택의 경향을 측정한 (Quanta Chromatography Surface Area Analyzer)을 사용하였다. 한편 채택파이어의 형상 변화와 침석된 코크의 생성규도 및 형태를 알아보기 위해 주사전자밀고정(SEM, Hitachi 2700)을 사용하였다. 또한 반응용도의 비교적 빠른 속도로 코크의 침석이 일어나며, 반응 후 채택의 변화를 알아보기 위해 염기성 침석(TGA)을 사용하였다. 한편 탑재된 채택의 채택의 물리적 잘 알려야하기 위해 승온환성시험(TPR: Temperature-Programmed Reduction)을 행하였다.

달지된 Ni 채택에서의 이산화탄소의 매장에 의한 환원방법은 산업 연속 조건 반응장치를 사용하였다. 반응에 사용한 반응액은 CH$_4$(99.99%), CO$_2$(99.99%)를 수용 및 산소를 제거하기 위해 molecular sieve 및 MnO$_2$ trap을 통과시킨 다음 반응기에 공급되도록 하였다. 오염물질로는 산성물인 CO와 H$_2$O의 분석을 용이하도록 Ar(99.99%)를 사용하였다. 반응액 채택은 100 ml/min 용속의 H$_2$로 2시간 동안 환원시킨 다음 반응물은 반응하였다.
반응기의 직경 0.9cm, 길이 22cm의 석영반응기를 제작하여 사용하였고, 촉매는 반응기의 중심부에 석영산으로 지지되었 다. 반응온도는 PID식 온도조절기(HY-P100 controller)에 의해 ±1℃ 범위로 조절되었다. 이에 사용한 열전도체는 K형이었다.

응답시간 내의 촉매의 활성도를 살펴보기 위해 반응기에 중

전되는 촉매량을 변화시키고, 반응물을 Ar/CH4/CO2의 비율
이 3/1/1 이 되도록 하였고 전체유속은 100 ml/min으로 하였다.

반응물의 시료가 변화시키고 반응기에 Ar는 항상 60% 유지하도록 하였다.

반응물과 생물의 분석은 반응기에 on-line으로 연결된 기계로 조사하였다.

생물장 중 CO2와 H2의 유한한 분리가 상당히 어려웠으며, 이를 위해서는 반응기를 무게 넘는 속도로 도포하고 하였다. 또한 분석장 중 CH4, CO, CO2 및 H2의 분리기로 검출기 간 9m, 직경 1/8

in Teflon에 Pd로 중분위기를 사용하였다.

반응물과 생물장의 TCDD조시의 감도가 크므로 검출성을 확인하여 검출기를 사용하였다. 이를 사용하여 가진 반응 전후의 수소 및 산소에 대한 물질수지식이 잘 얻어졌다.

3. 결과 및 고찰

메탄의 이산화탄소 환원반응은 그 반응 특성상 비교적 높은

온도에서의 반응이 필요하므로 촉매 사용하지 않았으며

반응중의 피막을 반응기에 충전할 수 없을 스타일을

blank test로 하여 보았다. 반응이 거의 안개나지 않았으며,

일산화탄소 소나 수소 등의 생성물이 관찰되지 않았다.

개질반응은 환원된 니켈금속의 활성성에서 메탄의 반응, 생

물장의 산화알소의 배리 등에 의해 원칙적인 코로 안한 반

응반응의 pressure drop이나 반응기의 통제(plugging)현상이

이어날 수 있다. 특히 이러한 현상은 메탄이 이산화탄소 환

반응에서 무당지게 나타났고, 반응물은 반응기의 상부에서

흐려내면 반응기가 통제되는 문제점이 생겨 반응물의 품질

에서 상호로 흐려내는 장치로 전환되었다. 또한 반응물은 외

식지향되지 않으면 이러한 통제는 더욱 향상되어 진행되며 본

연구에서는 Ar로 회로시켜 대개 Ar:CH4:CO2의 비율을 3/

1/1로 하였다.

반응 후 생물장중에서 발생한 CO2의 반응은 덜소수가 증가된 탄소화합물의 생성은 발견되지 않았다.

3.1. 담체에 따른 활성비교

메탄의 이산화탄소 환원반응에서 니켈촉매의 담체로서는 기

제적 강도가 높고 열적 안정성이 높은 알루미나, 심리카 및

MgO 등이 많이 사용되어 있다. 그러나 이러한 담체들 중

의 고온반응에 소홀이나 탄소의 질적에 따른 활성의 저하 등이 문제가 독특하다. 따라서 니켈 촉매의 비활성화

을 줄일 수 있는 담체의 선택에 대한 연구가 필요할 상황이다.

본 연구에서는 우선 산성 담체로서 촉매라이온인 clinop-

tilolite의 구조가 가진 천연재료리석 및 강한 산화조절된 C-

ZSM-5를 선택하였고, 염적성 담체로서는 많이 사용되고 있는

MgO와 CaO를 사용하였고, 최근에는 니켈 촉매의 비활성화를 줄이는 것으로 알려진 La2O3 등을 사용하여 메탄의 이산화-

탄소 환원반응에서의 활성과 반응시간에 따른 비활성화의 경향

을 조사하였다.

Table 1에 여러 담체에 달려있던 니켈 촉매에서의 메탄 및

이산화탄소의 전환율과 생성물의 수용을 나타내었다. 전환율에

으로 보아 염성 담체에 비해 산성 담체인 촉매라이는제 담체에

에 달려진 경우에 점설 낮은 능동환원을 보여주고 있다. 특히

천연재료리석에 달려진 니켈 촉매는 650℃의 반응온도에서 약

8% 메탄 전환율을 보여주고 있다. 또한 H-ZSM-5에 달려

된 니켈 촉매도 비교적 높은 메탄 및 이산화탄소의 전환율을

보여주고 있다. 반면에 염성 담체인 MgO나 CaO에 달려있는

경우에는 매우 낮은 활성율을 보여주고 있으며, La2O3에 달려

된 니켈 촉매도 촉매라인에 비해 낮은 전환율을 보여주고

있다. 전면적으로 N2 > H-ZSM-5 > La2O3 > CaO > MgO의 순서로 활성화가 나타났다. 이와 같은 경계는 촉매라인에 달려

된 Ni 촉매를 사용한 Chang 등[16]의 보고에서도 나타났다. 촉매라이는 촉매반면의 활성성은 촉매라인과 잘 발전한 세포구조 및 이산화탄소에 대한 높은 화학능력으로 인해 이산화탄소의 전환율에

세 나타난 활성충지를 보여주기 위해서 생각된다. 한편,

Masson 등[17]에 의하면 촉매라인에 존재하는 산소는 금속 Ni의 분산

도를 증가시키다고 보고하고 있으며, Hudner 등[18]에 의하면 담체

가 가지는 산소의 분포를 CH3→CH4→H와 같이 촉

진작용으로 메탄화의 활성화는 비교적 강한 산소에서 CH4의

전환율을 거쳐 일어나는 것으로 보고되고 있다. 따라서 반응활

성은 담체의 산염에 의해 영향을 받는 것으로 생각된다.

한편 여러 담체에 달려진 니켈 촉매에서에 따른 메탄 및 이산화탄소의 전환율을 Fig. 1과 Fig. 2에 나타내었다.

CaO와 MgO를 담체로 사용한 경우에는 촉매의 비활성화가

급격히 진행되는 반면에 산성 담체인 천연재료리석과 H-ZSM-

5를 담체로 사용한 촉매에서는 반응중간이 급감하더라도 촉

매의 비활성화가 느리게 진행되는 것을 볼 수 있다. 특히 천연

재료리석에서는 비활성화가 거의 일시나지 않는 것을 볼 수

있다. 이것은 일반적으로 외연성 담체와 촉매에 비활성화가

느리게 진행되는 것으로 보고되고 있는 것과 다른 경향을 보

여주고 있다.

Guerrero-Ruiz 등[19]에 의하면 염기성 담체는 고

온에서 재화함환용 CO를 만들기를 촉매의 비활성화의 한

원인으로 알려진 Boudaouard 반응을 역전시키므로 촉매의 비활성화를 줄일 수 있다고 보고하고 있다. 그러나 본 연구의 결

과에 의하면 촉매의 비활성화는 주로 메탄의 분해에 의해 진행되고 Boudaouard 반응에서 관찰되지 않는 것으로 나타났다(3-4

장, 한편 Hudner 등[20]의 실험 Ni/MgO 촉매를 800℃ 고온에서

소성시켜 제거하면 NiO와 MgO에 solid-solution 상태로 만

들으로 비활성화가 억제될 수 있고, 높은 활성이 보여주고

보고하고 있다. 그러나 본 연구에서는 비교적 저온에서 소성시

켜 제거하였고 또한 산화성질이 높게 진행되는 것으로 보아

고온에서의 반응중에 금속 Ni 입자가 크기의 여부를 막혀

버리거나 금속 Ni 입자가 담체 속에 파동히도 깊게 생겨

된다. 한편 La2O3에서는 초기활성은 매우 낮으나 반응이 진행

됨에 따라 활성이 증가하는 것을 볼 수 있다. 이것은 Zhang

J. of Korean Ind. & Eng. Chem., Vol.8, No.4, 1997
Table 1. Catalytic Activities of Supported Ni for the Reforming of CO with CH₄

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conversion(%)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₄</td>
<td>CO₂</td>
</tr>
<tr>
<td>10wt% Ni/CoO</td>
<td>36.6</td>
<td>45.8</td>
</tr>
<tr>
<td>10wt% Ni/MgO</td>
<td>32.5</td>
<td>38.9</td>
</tr>
<tr>
<td>10wt% Ni/NZ</td>
<td>80.7</td>
<td>75.4</td>
</tr>
<tr>
<td>10wt% Ni/H-ZSM-5</td>
<td>76.3</td>
<td>75.7</td>
</tr>
<tr>
<td>10wt% Ni/La₂O₃</td>
<td>55.6</td>
<td>61.3</td>
</tr>
</tbody>
</table>

Reaction conditions: W = 0.2g, F = 100 ml/min, Ar/CH₄/CO₂ = 3/1/1, T = 600°C. These values were obtained after 3 hr reaction.

![Fig. 1](image) The effect of time on stream on the conversion of methane over various supported nickel catalysts: GHSV = 30,000 hr⁻¹, T = 600°C, Ar/CH₄/CO₂ = 3/1/1.

본 연구결과와 잘 일치하고 있는데, Ni/La₂O₃ 위에 새로운 니켈시판과 탄소성분이 형성되는 유도기간을 가진 다음 반응과 이산화탄소에 노출되기 때문으로 보고하고 있다. 따라서 이번 실험은 새로운 니켈 성분과 탄소성분이 반응을 증가시키는데 매우 중요한 역할을 하기 때문으로 생각된다.

3.2. 니켈유의 영향

전면 셀로사이드를 단체로 하여 Ni를 니켈시판을 담기하여 제조한 촉매에 대한 반응능성을 조사하여 결과를 Table 2에 나타내었다.

금속 Ni를 담지시키지 않은 전면 셀로사이드 자체는 반응이 전혀 일어나지 않았고, Ni의 담지량이 증가함에 따라서 CH₄와 CO₂의 진입이 증가 증가하다가 10wt% 이상으로 담지된 경우에는 전환율의 변화로 그다지 크게 없는 것을 볼 수 있다.

한편 Tang 등[13] 의하면 메탄의 이산화탄소에 의한 카리스밖에에서의 환경전은 금속 Ni이라고 보고되고 있다. 이러한 사실

![Fig. 2](image) The effect of time on stream on the conversion of carbon dioxide over various supported nickel catalysts: GHSV = 30,000 hr⁻¹, T = 600°C, Ar/CH₄/CO₂ = 3/1/1.

Table 2. The Effect of Loading of Ni on Natural Zeolite for the Reforming of CO with CH₄

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conversion(%)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₄</td>
<td>CO₂</td>
</tr>
<tr>
<td>Natural Zeolite(NZ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4wt% Ni/NZ</td>
<td>31.5</td>
<td>31.5</td>
</tr>
<tr>
<td>7wt% Ni/NZ</td>
<td>70.6</td>
<td>71.2</td>
</tr>
<tr>
<td>10wt% Ni/NZ</td>
<td>72.2</td>
<td>72.2</td>
</tr>
<tr>
<td>13wt% Ni/NZ</td>
<td>82.8</td>
<td>89.9</td>
</tr>
<tr>
<td>16wt% Ni/NZ</td>
<td>84.5</td>
<td>82.3</td>
</tr>
<tr>
<td>19wt% Ni/NZ</td>
<td>81.0</td>
<td>77.6</td>
</tr>
</tbody>
</table>

Reaction conditions: W = 0.2g, F = 100 ml/min, Ar/CH₄/CO₂ = 3/1/1, T = 700°C. These values were obtained after 6 hr reaction.

* not detectable

은 앞의 X-선 회절분석의 결과에서도 나타나듯이 반응 후의 촉매는 전부 금속 Ni로 환원된 것으로부터 알 수 있다. 즉 Fig. 3에서 나타나듯이 산화물 형태의 NiO가 각각 42, 63 및 75°에서 (012), (101) 및 (110)의 결정면이 반응 후에는 45, 52, 및 76°에서 (111), (200) 및 (220) 결정면은 노출된 Ni로 환원되었음을 알 수 있다.

또한 니켈유를 담지하여 제조한 Ni/NZ 촉매들의 수소에 의한 산소환산능에서의 활성도는 금속 Ni의 산화물 형태의 활성도를 보다 높게 보고되고 있다. 그 결과 Fig. 3에서 나타나듯이 Ni의 담지량은 10wt% 이상으로 담지된 경우에 전환율의 변화가 나타나지 않는 것으로 보인다.
Fig. 3. X-ray diffraction patterns of various loaded Ni/NZ catalysts: a) 4 wt%, b) 7 wt%, c) 10 wt%, d) 13 wt%, e) 16 wt%, f) 19 wt%, g) 19 wt% after reaction.

Fig. 4. Temperature programmed reduction spectra of Ni supported on NZ: a) NZ, b) 4 wt%, c) 10 wt%, d) 13 wt%, e) 16 wt%, f) 19 wt%

주로 담지율의 증가에 따라 환원이 용이한 니켈의 양이 증가함으로써 반응활성도가 증가하는 것으로 생각된다. 이것은 Fig. 3의 X-선 분석 결과에서도 알 수 있는데, 즉 담지율이 증가함에 따라 NiO peak의 크기가 커지는 것을 볼 수 있다. 그러나 실제로 10wt% 이상 담지율 촉매에는 담지율 급속 입자가 담지와 실제로 접촉하지 못하고 자유롭게 움직이면서 서로 충돌하여 더 이상 활성지점의 증가를 가져오지 못하는 것으로 생각된다.

한편 Vannice[22]에 의하면 반응률의 촉매에서 반응활성은 입자의 크기에 민감하게 영향을 받으며 최적의 입자의 크기에서 최대의 활성을 보여주다고 보고하고 있다. 따라서 이와 같은 입자의 크기에 영향을 주는 급속 Ni의 dispersion의 촉매 활성에 영향을 미칠 것으로 생각된다. 따라서 본 연구에서 저도 수소의 화학적작용에 의한 급속 Ni의 분산도를 측정한 결과에 4wt% 이하로 담지율 경우에는 분산도가 거의 0에 가까웠고, 7wt% 이상으로 담지율 경우에 거의 2~3정도의 값으로 일정한 값을 보여주었다. 실제로 본 연구에서 사용한 촉매의 분산도의 값이 활성에 영향을 미치기 보다는 급속 Ni 입자의 수에 의해 활성이 좌우된 것으로 생각된다.

3.3. 반응조건의 영향

메탄의 이산화탄소 환원반응은 주로 600℃ 이상의 고온에서 일어나며 반응온도와의 접촉시간이나 반응물의 상태에 따라 생성물의 분포가 달라지는 것으로 생각된다. 따라서 본 연구에서는 13wt% Ni/NZ 촉매에 대하여 반응온도를 450~750℃, 공간속도를 12,000~150,000hr⁻¹, 분양 비율 CH₄/CO₂ = 0.25 ~ 3의 범위에서 변화시켜 실험을 행하였다.

Fig. 5에서는 반응조건 725℃에서 장시간 반응조건을 경우의 반응활성의 변화를 나타낸 것이다. 메탄과 이산화탄소의 전환율의 반응조건에 의한 각각 93%, 90%이고 37시간 이상의 장시간 반응에도 불구하고 전환율이 약 85%, 92%로서 나타났다. 오랜시간의 반응에도 불구하고 비교적 낮은 비활성화(deactivation)를 보여주고 있다. 이와 같은 촉매의 비활성화가 메탄의 분말로 보고나 느린 것은 반응 후에 생성되는 코크가 촉매의 활성지점은 막는 형태보다는 whisker형으로 성장하여 촉매의 활성지점에 지정적인 영향을 주지 않기 때문으로 생각된다.

Fig. 6에서는 반응온도에 따른 메탄과 이산화탄소의 반응조건에 의한 전환율을 나타낸 것이다. 여기서 공간속도가 30,000hr⁻¹로서 비교적 높은 반응조건은 20 Paulo에서 가장 높은 활성을 나타내었는데, 이러한 사실은 메탄과 이산화탄소의 반응조건에 의한 전환율이 낮은 것으로 보고나 느린 것은 반응 후에 생성되는 코크가 촉매의 활성지점은 막는 형태보다는 whisker형으로 성장하여 촉매의 활성지점에 지정적인 영향을 주지 않기 때문으로 생각된다.
표 3. CO2를 포함한 CH4과 13wt% Ni/NZ катализатор의 반응에 대한 CO2의 영향

<table>
<thead>
<tr>
<th>CH4/CO2 Ratio</th>
<th>Conversion(%)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH4</td>
<td>CO2</td>
</tr>
<tr>
<td>1/3</td>
<td>100.0</td>
<td>50.1</td>
</tr>
<tr>
<td>3/5</td>
<td>95.0</td>
<td>67.3</td>
</tr>
<tr>
<td>1/1</td>
<td>93.1</td>
<td>95.9</td>
</tr>
<tr>
<td>3/3</td>
<td>81.5</td>
<td>98.9</td>
</tr>
<tr>
<td>3/1</td>
<td>70.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

반응온도: W = 0.2g, F = 100 ml/min, T = 725℃.

이들 값을 초기 상태에서 얻었다.

몇몇 상황에서 CO와 H2의 수율은 CH4/CO2의 비가 1인 경우에 가장 큰 값을 나타내었다. 이것은 이산화합소 환원반응에서 일어나는 중간가스의 반응에 의해 생성되는 수소의 상대적 높이가 및 민감한 관리가 있으며 이산화합소의 높은 활

성에 새겨진 것으로 생각된다. 일반적으로 이산화합소

계열 반응에서 수소의 선택도가 이산화합소의 선택도보다

다 클수록, 이들 중간가스가 수증기로 변환하여 수발가스와

반응에 의해 CO2와 수소로 전환되기 때문이다. 따라서 CO2

와 CH4의 비가 1보다 더 작은 경우에는 메탄의 분배에 의한 수소

의 생성이 증가함에 따라 수소의 선택도가 더욱 증가하는 것

을 볼 수 있다. 또한 이산화합소 환원반응에서 생성되는 CO/

H2의 비는 계열반응기의 배기온도, 압력 및 반응물 중의 H2/C

의 비율을 높이면 증가하는 경우 열역학적 계산에 의해 얻어진다.

Gadalla[23] 등에 의해 제시된 열역학적 정형곡선에 의하면

CO2와 CH4의 비율이 1.0이면 얻어지는 H2/CO의 비도 1.0인 것

으로 보고하고 있다.

한편 반응물의 비에 따른 반응시간과 백반과 이산화합소의

전환율을 Fig. 7과 Fig. 8에 나타내었다.

정적학적 방법을 보면 이산화합소의 분배가 증가하는 경우

에는 교체의 비활성화기가 그리도 많아 일어나지 않지만, 메탄의

으려고 증가하는 경우에는 교체의 비활성화가 급격히 진행되

는 것을 볼 수 있다. 특히 CH4/CO2의 비가 3인 경우에는 초

기에 교체의 활성이 급격히 빠져 약 20%의 백반 전환율과

37%의 이산화합소 전환율을 보이는 것을 볼 수 있다. 즉 메탄의

코르의 생선취임으로는 메탄의 분배와 Boudouard 반응이 있어

는데, 650~750℃의 온도범위에서는 전자의 반응이 열역학적으로

유리한 것으로 알려져 있다[24]. 따라서 이와 같은 보고는 본

북의 결과와 잘 일치하고 있음을 알 수 있다. 즉 이것은 교

육의 비활성화를 촉진하는 코르의 적절한 이산화합소의 분

해반응인 Boudouard반응에 의해 진행되지 않고, 주로 메탄의

분해반응에 의해 일어나다는 것을 의미하고 있다.

시각당 공간속도(GHSV)는 단위 기체의 억(1h)에 대한 전체

반응물의 유속(1h)으로서 구하였다. 또한 공간속도를 변환시

키기 위해 반응온도, 반응물의 분배 및 전체 반응물의 양은 일

정하게 유지하면서 측량의 증명률을 변화시켜 구하였다. 공간

속도에 따른 집속시간의 변화에 의한 메탄과 이산화합소의 전

환율을 구하여 Table 4에 나타내었다.
Fig. 7. The effect of CH\textsubscript{4}/CO\textsubscript{2} ratio on the conversion of CH\textsubscript{4} over 13 wt% Ni/NZ as a function of time on stream:
GHSV = 30,000 hr-1, T\textsubscript{R} = 725°C.

Fig. 8. The effect of CH\textsubscript{4}/CO\textsubscript{2} ratio on the conversion of CO\textsubscript{2} over 13 wt% Ni/NZ as a function of time on stream:
GHSV = 30,000 hr-1, T\textsubscript{R} = 725°C.

전체적으로 보면 공간속도가 감소함에 따라 총 접촉시간이 길어지면 따라 메탄과 이산화탄소의 전환율이 증가하는 것을 볼 수 있다. 그러나 공간속도 30,000hr-1 이하에서는 전환율이 단지 크게 증가하지 않는 것을 볼 수 있다. 이것은 공간속도 30,000hr-1에서 이미 거의 평형전환율에 근접하였기 때문으로 생각된다. 또한 이산화탄소나 수소의 수율에서도 공간속도가 줄어들어 따라 총 접촉시간이 길어지면 따라 전환율 증가하다가 30,000hr-1이하의 값에는 정체하는 것으로 볼 수 있다.

Table 4. The Effect of Space Velocity for the Reforming of CO\textsubscript{2} with CH\textsubscript{4} over 13 wt% Ni/NZ Catalyst

<table>
<thead>
<tr>
<th>Space Velocity (1/hr)</th>
<th>Conversion(%)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH\textsubscript{4}</td>
<td>CO\textsubscript{2}</td>
</tr>
<tr>
<td>12,000</td>
<td>94.5</td>
<td>95.6</td>
</tr>
<tr>
<td>30,000</td>
<td>83.1</td>
<td>96.9</td>
</tr>
<tr>
<td>60,000</td>
<td>80.0</td>
<td>84.7</td>
</tr>
<tr>
<td>150,000</td>
<td>71.0</td>
<td>75.4</td>
</tr>
</tbody>
</table>

Reaction conditions: F = 100 ml/min, Ar/CH\textsubscript{4}/CO\textsubscript{2} = 3/1/1, T\textsubscript{R} = 725°C. These values were obtained at initial state.

3.4. 코크의 침적에 따른 총화의 비활성화
메탄의 이산화탄소 환원반응에서 총화의 비활성화를 촉진하는 이유는 세가지로 나누어질는데, 즉 1) 탄소의 침착, 2) 금속 나전의 소실(sintering) 및 3) 담체에서 생긴 평균의 sp2colder
용량의 Ni 활성염의 파괴 등이다[19]. 또한 이들은 담체의 성
질이나 압축의 크기에 영향을 받는 것으로 보고되고 있다. 본
연구에서 사용한 총화에서는 반응 후 탄소의 침적에 따라 총화의 색이 검은 색으로 변할 것을 볼 수 있었다. 따라서 총
화의 비활성화는 대부분 탄소의 침적에 따른 활성염의 소실에
기인하는 것으로 생각된다. 이러한 탄소침의 침적은 다음과 같
은 반응으로부터 일어날 수 있다.

CH\textsubscript{4} \leftrightharpoons C + H\textsubscript{2} (1)
2CO \leftrightharpoons C + CO\textsubscript{2} (2)
CO + H\textsubscript{2} \leftrightharpoons C + H\textsubscript{2}O (3)

한편 본 연구에서 실제 실험된 반응온도인 600~750°C의 범
위에서는 (1)의 반응이 가장 우세하고 (2)의 경우는 오히려
역반응이 열역학적으로 유리하기 코크의 침적가 진행되기
도 한다[19]. 따라서 총화의 비활성화를 줄이기 위해 Yamazaki
등은 열기성 담체를 사용하면 신선한 CO\textsubscript{2}를 빠르게 촉매의 재활성화를 개발시킬 수 있다고 볼 수 있는데, 이것은 위의 비활성화 원
인에서 (2)에 의해서 진행되지 않는다는 것을 의미한다. 그
리고 (3)의 경우도 이산화탄소의 개질반응에서는 거의 일어나
지 않는 것으로 보고되고 있다[22]. 또한 반응물의 비율 변화
시에 설립된 3.3절에서 나타난 것처럼 이산화탄소의 비가 증가
하는 경우에는 총화의 비활성화가 거의 일어나지 않았으
나 메탄의 비가 증가하는 경우에는 총화의 비활성화가 재가
진행되었다. 따라서 원시고무화에 탄지된 Ni 총에서의 이산화탄소 환원반응에서는 주로 메탄의 분해에 의한 탄소의
침적이 일어나는 것으로 생각된다.

실제로 탄소의 침적을 없애기 위해 반응 후의 총화를
DTA를 이용하여 알아본 결과는 100~1000°C의 온도 범
위에서 총화부위가에서 수행된 열분석의 결과를 Fig. 9에 나
타내었다.

그러나 나타난곳이 500~700°C의 온도범위에서 발생

과 함께 두개감소가 일어나는 것을 볼 수 있는데, 이것은 Kim [26] 등의 결과와 잘 일치하고 있으며, 반응 후 및적인 탄소가 산소와 반응하여 CO로 바뀌어 남아가기 때문으로 생각된다.

화학을 통해 산화온도에 담긴 탄소를 담긴 채로 채워서 섭취화탄소의 계절화에에서 채택된 비밀화성화가 상당히 느리고 모두 반응이 진행되고 있음을 볼 수 있다(Fig. 9). 즉 37시간 반응 후에도 약 8% 정도의 탄소 전환율이 감소한 것임을 볼 수 있다. MgO나 CaO에 담긴 탄소는 채택된 비밀화의 속도가 매우 느릴 것으로 생각된다. 즉 코크의 질격에 불구하고 채택의 비밀화 성도는 매우 느리게 진행되었다고 볼 수 있다.

이산화탄소 환원반응에서도 생성되는 코크는 반응후 환경을 닫으면서 채택의 활성성은 급격히 떨어지는 경향(enceapulating carbon)과 활성화의 침체면에서isker 모양으로 성장하여 채택의 활성성에 약간적인 영향을 주지 않는 두 가지 형태의 탄소가 생성되는 것으로 보고되고 있다[27]. 후자의 경우에 약 65%의 코크의 질격에도 불구하고 활성화의 침체는 매우 낮은 비율로 진행되며, 채택의 비밀화성은 느리고 속도가 진행되고 있다. 따라서 천연 체온라이트에 담긴 탄소 채택에서는 잠재 반응 후에도 채택의 비밀화성 속도가 느릴 것은 후자의 경우처럼 급격히 원형을 향해isker 형태로 침체되어 채택의 비밀화성 속도를 낮추기 때문에 생각된다. 이러한 사실은 반응 전 및 반응 후 채택 코크를 주사진전자미경(SEM)으로 관찰한 결과(Fig. 10)에서도 잘 설명되고 있다. 반응 전의 채택에 비해 반응 후의 채택은 박테리아 모양의 코크가 성장하였음을 보여주고 있다.

4. 결론

반응에 의한 이산화탄소 환원반응을 여러 가지의 담재에 담긴 탄소 채택을 사용하여 수익에 이들의 활성성과 생성물의 수용에 영향을 미치는 인자들에 대해 조사하였으며, 채택의 비밀화성에 대해 조사하여 다음과 같은 결론을 얻었다.

1) 여러 가지의 담재 중에서 산소 담재가 반응활성이 좋았으며, 염가성 담재에 비해 채택의 비밀화성의 속도가 느리게 진행되었다. 또한 천연체온라이트에 담긴 탄소 채택에 가장 활성성이 좋았다.

2) 천연체온라이트에 담긴 탄소 채택의 비밀화성은 비교적 느리고 반응 후에도 향상이 증가하였고, 10 wt% 이상으로 담긴 경우에 채택성이 그저로 크게 변하지 않았다.

3) 천연체온라이트에 담긴 탄소 채택의 비밀화성은 비교적 느리고 반응 후에도 향상이 증가하였고, 750°C에서는 채택의 비밀화성과 비교적 빠르게 열어 떴다.

4) 반응온도 계층과 이산화탄소의 비율에 따라 전환율 및 생성물의 수용이 크게 영향을 받았으며, CH₄/CO₂의 비가 1:1 때 가장 높은 수소 및 이산화탄소의 수용을 나타내었다.

5) 채택의 비밀화성은 반응에서 생성되는 코크의 질격에 기인하는 것으로 생각되며, 코크는 주로 메탄의 분해에 의해서 생성되었고 코크의 형성은isker형으로 채택의 비밀화성을 느린 속도로 일어나게 하였다.
감 사

본 연구는 1996년도 한국학술진흥재단의 공모과제 연구비에 의하여 수행되었으며 이에 감사드립니다.

참고 문헌