수식을 젤법에 의한 TiO$_2$-SiO$_2$분체합성 및 광촉매활성

김 범관, 水野 哲孝*, 安井 至 *

창원대학교 공과대학 공업화학과, *동경대학 생산기술연구소
(1996년 4월 23일 접수, 1996년 9월 30일 채택)

Preparation of TiO$_2$-SiO$_2$ Powder by Modified Sol-Gel Method and their Photocatalytic Activities

Byung-Kwan Kim, Noritaka Mizuno*, and Itaru Yasui*

Dept. of Chemical Technology, Changwon National Univ., Changwon 641-773, Korea
*Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi Minato-ku, Tokyo, 106, Japan
(Received April 23, 1996, Accepted September 30, 1996)

요 약: DCCA로 1-도데카놀을 이용한 수시 젤법에 의한 TiO$_2$-SiO$_2$분체를 합성하였으며, 이들의 합성분체에 대한 characterization과 광촉성분석에 대해 검토하였다. 500°C 까지의 고장변화는 TiO$_2$단독분체가 33.0wt%, TiO$_2$/SiO$_2$의 풀비가 75/25, 50/50 및 25/75 백분율 분체는 각각 67.0wt%, 70.0wt% 및 73.0wt%였고, 그리고 SiO$_2$단독분체는 42.5wt%이었다. 이를 밝히는 거의 대부분이 무기물질이었다. 합성물의 분체는 TiO$_2$단독분체를 제외하고는 무정형구조물이었고, 아나타야 세의 무질로의 성질은 SiO$_2$에 의해 역제되었다. 합성물의 분체는 실자의 형태가 관찰되지 않았으나, 600°C, 1시간 가열에 의한 TiO$_2$단독분체, TiO$_2$/SiO$_2$의 풀비가 75/25 및 50/50 백분율은 모두 서브미크론의 입자를 보였으며, 풀비가 25/75의 백분율 및 SiO$_2$단독분체는 여전히 빌코드 상태였다. 비포변화 역시 SiO$_2$의 증가와 함께 증가하였으며, 제공크기 역시 SiO$_2$ 성분에 의존하였다. 그리고 이를 가질들의 광촉매활성은, TiO$_2$/SiO$_2$의 풀비가 75/25 백분율의 경우, 수소발생량으로 0.240 μmol/h.g-cat을 나타내었으며, TiO$_2$단독분체의 그것보다는 약 2.6배, 표준광촉매물질인 P-25(Degussa P-25)보다는 약 2.0배 가량 큰 값을 나타냈다.

Abstract: Various TiO$_2$-SiO$_2$ composite powders were prepared by the modified sol-gel method using 1-dodecanol as DCCA (Drying Control Chemical Additive). Their characterizations were carried out and their photocatalytic catalysis was examined on the evolution reaction of hydrogen. The weight losses at 50°C of only TiO$_2$ and SiO$_2$ powders were 33.0wt% and 42.5wt%, respectively, and those of the TiO$_2$-SiO$_2$ powders (TiO$_2$/SiO$_2$ = 25/75, 50/50 and 75/25) were about 70.0±3.0wt%. The released substances from the powders were almost organic matters. The as-prepared powders except only TiO$_2$ powder were amorphous. Transformation of anatase to rutile was hindered by SiO$_2$ component and the crystallinity of anatase was decreased with increasing SiO$_2$ contents. The as-prepared powders were bulky states. By heating at 60°C for 1 hr TiO$_2$-SiO$_2$ powders (TiO$_2$ = 100%, TiO$_2$/SiO$_2$ = 75/25,50/50) showed agglomerates consisted of particles in submicron, but those of TiO$_2$/SiO$_2$ = 25/75 and SiO$_2$ = 100% were still bulky states. Specific surface area of the powders heat-treated at 600°C for 1hr was increased with SiO$_2$ contents and their pore sizes were also depended on SiO$_2$ contents. The photocatalytic activity of TiO$_2$/SiO$_2$ = 75/25 heat-treated at 600°C for 1hr was 0.240 μmol/h.g-cat as H$_2$ evolution rate. This value was about 2.0 times that of P-25(Degussa P-25) as a standard photocatalyst.
1. 서 론

최근, 산화물 반도체의 하나인 이산화티타늄이 환경 정화용광장제 등에서 많은 주목을 받고 있다[1-7]. 반도체의 경우, 반도체 band gap보다 큰 에너지가 가진 빛이 조사되면 반도체내의 전자가, 그리고 전도에 대해서 전자가 이동이 된다. 이산화티타늄의 반도체 에너지는 약 3.2eV이며, 파장이 390nm이하의 빛이 이들의 경우에 유효하다. 빛과 광촉매를 이용한 반전기화학반응은 유해유기물질의 분해에, 유기합성 등에 이용되어지고 있어 뿐만 아니라, 물 혹은 알코올 등의 유기화합물로부터 직접 수소를 발생시키는 반응은 태양광에너지의 화학에너지로의 전환이라는 관점에서 많은 연구가 이루어져 있다[8-11].

촉매로서는 TiO₂계 이외에 SrTiO₃계, KNbO₃계가 논리 알려져 있지만, TiO₂계 촉매가 보다 많이 연구되어 있으나. 또한, TiO₂계촉매에 있어서는 제조법 및 촉매에 대한 연구와 조사항에 관한 연구도 많이 행해져 있다. 특히, TiO₂만이 촉매에서는 수소발생이 생기지 않는 반응의 경우라도, Pt이나 RuO₂의 첨가에 의해 수소발생수율이 현저하게 증가한다는 사실이 알려져있다[12-14].

촉매법은 무기기능재료화합법의 하나로서 잘 알려져 있으며, 금속알콜사이드로부터 소정의 격을 조제할 경우, 출발촉매의 알코올용매에 첨가제를 넣는다든지, 용매전체를 다른 용매로 치환시키는 것에 의해 격의 특성을 변화시킬 수 있다. 이와 같은 화합수정치가지를 DCCD(Drying Control Chemical Additives)가 부여하며, 포름알데히드, 디메틸포름알데히드, 알콜울, 디에틸 및 염마산의 유기고분자 등이 보고되어 있다[15-19].

본 연구는 DCCA로서 도텍카놀을 선택한 수식 촉 - 제법을 이용하여 TiO₂-SiO₂계 분체를 합성하고자 하였으며, 이들 생성물에 대해 XRD, TG-DTA, FT-IR 및 BET법 등을 이용하여 Characterization을 행하였다. 그리고, 광전화법으로 Pt담지를 행한 이들 생성물의 광촉매활성을 수소발생량측정으로 검토하였다.

2. 설 험

2.1. 시료의 조제

Fig. 1에 TiO₂-SiO₂계 분체합성을 위한 Flow-chart를 나타내고 있다. DCCA로서 1-도태카놀(학명 Chemical Co., 시약1급)을 선택하였으며, 1-도태카놀 8.0g을 2-프로포폴(동일화사, 정밀분석용) 24.0g에 용해시킨 용액을 조제하였다(이것을 A용액이라 함). 이어서 테트라에테톡시실란(TEOS)(동일화사, 시약1급) 8.0g에 0.24M 염산(동일화사, 특급시약) 10.0g을 혼합한 B용액(물로 TEOS:HCl:H₂O=1:0.06:14.5)을 조제하였다. A액과 B액을 200mL 비이온에 위해 출발용액으로 하였으며, 이 용액을 70℃, 3시간 유지시켜 치화 및 에이징을 행하고, 120℃, 4시간 전조하여 분체를 합성하였다.

소정물질의 TiO₂-SiO₂계분체를 얻기 위해서는, Fig. 1에 나타나 있는 것과 같이 B액의 테트라에토크실산을 대신하여, 소정물질의 비탄소트리아이소프록사이드(TTIP)(동일화사, 특급시약)과 테트라에토크실산을 취하여 같은 방법으로 합성하였다.

2.2. 시료의 분석 및 촉매활성의 측정

여러분 생성물의 가열처리에 의한 결정성평가 및 염적성질의 검토는 XRD(Rigaku Co., RU-200) 및 TG-DTA(Shimazu Co., DTA-40, TG-40)를 사용하여 행하였으며, 생성물의 형상 및 응집상태의 관찰은 SEM(Hitachi-7000, 전역방사형)을 사용하여 행하였다. FT-IR(Perkin Elmer, PARAGON-1000PC)에 의한 치외흡수спект럼은 KBr법으로 4400~4000cm⁻¹에 걸쳐 측정했다. 또한, 이들 시료에 대해 BET법(측정장치 : Nippon Bell Co., BELSORP-36)의
Fig. 2. Apparatus for photoreaction with inner irradiation cell (450W Hg lamp).

Fig. 3. TG curves of TiO$_2$-SiO$_2$ powders.

3. 결과 및 고찰

3.1. 화합물의 메커니즘

또한, 결화(gelation)에의 영향인자로는 균속알코올 사이드의 농도는 물론, 물, 용액에 해당하는 알코올 류, 촉매작용을 하는 산 또는 염기의 농도 등이 중요할 수 있다. 본 연구에서는 Fig. 1에 나타낸 것처럼, 상기의 영향인자 외에 결화에의 인자로서 1-도데카 토를 첨가하여 생성물을 합성하였다.

3.2. 합성 TiO$_2$-SiO$_2$계분체의 characeterization

Fig. 3과 Fig. 4는 양작한 시료의 TG 및 DTA의 결과이다. 500℃까지의 감량변화를 살펴보면, 먼저 TiO$_2$단독시료의 경우 33.0wt%의 감량을 보이고 있으며, TiO$_2$/SiO$_2$의 몰비가 75/25, 50/50, 25/75일 때의 감량은 각각 67.0wt%, 70.0wt%, 73.0wt%를 나타낸다. 이와같은 결과로 SiO$_2$용비가 증가함수록 감량은 증가하고 있다는 것을 알 수 있다. 그러나, SiO$_2$단독시료의 경우는 도리어 42.5wt%로 감소하고 있다. 이러한 감량은, Fig. 10에 나타나 있는 FT-IR의 결과로부터 알 수 있고, 주로 성형재료의 공정하의 유기물질의 탈리에 기인하고 있음을 알 수 있다. 이어서 DTA 변화를 살펴보면, 먼저 TiO$_2$단독시료의 경우 210℃부근부터 변형반응이 시작되어 적혈연 소반응이 펼쳐지게 될 수 있다. 이후에도 변형반응은 460℃부근까지 이어지고 있음을 알 수 있다. TiO$_2$/ SiO$_2$의 몰비가 75/25, 50/50, 25/75인 생성물의 경우, 변형반응의 시작온도와 종결온도가 TiO$_2$의 용수의 증가함수록, TiO$_2$단독시료의 것과 비교하여 각
각 저온 및 고온쪽으로 이동해 있음을 볼 수 있다.
그리고, 격렬한 연소반응에 의한 강한 발열의 측에 SiO2에 대한 TiO2의 물가가 감소함에 따라 고온쪽으로 이동해 있으며, 그 밑의 발열반응압력은 TiO2단
독시료의 그것과 거의 비슷하다고 볼 수 있다. SiO2

단독시료의 경우에는, 발열반응의 시작이 보다 더 적은
축으로 이동해 있으며 약 350℃에서 450℃부근에는
 홈영계-크가 나타나있다. 이 피-크는 구조수에 해당
하는 Si-OH 중의 -OH가 H2O로의 탈리에 기인하는
것으로 생각되어진다.

이어서 얻어진 각각의 시료에 대한 900℃까지의
열처리 온도에 따른 변화를 XRD범으로 살펴본 것이
Fig. 5에서 Fig. 9까지이다. 각각의 온도에서의 열처
리 시간은 1시간으로 하였으며, TiO2단독시료의 가열
변화를 Fig. 5에서 살펴보면, 합성작용의 생성물은
무정형으로 나타났으며, 500℃까지 열처리한 경우에는
아나타야계 단일상으로 열처리 온도가 올라갈수록 결
정성이 좋아짐을 알 수 있다. 그리고, 600℃, 1시간 열처리한 경우에는 루틸(rutil)상이 약간 생성되고 있
으며, 열처리 온도가 상승함수록 아나타야계상은 소
멸되고 루틸상의 결정성이 더욱더 발달해 있음을 볼
수 있다. 여기에 소정의 SiO2를 첨가한 것, 즉 TiO2/
SiO2의 물가가 75/25, 50/50, 25/75인 시료에 대한 열처리 변화를 살펴보면, 어느 것에서도 루틸상은 나
타나지 않고 있으며, 합성작용의 생성물은 모두 다
무정형이었다. Fig. 6의 물가가 75/25인 시료의 열처
리 변화를 살펴보면, 500℃에서 아나타야계상이 나
타나고 있으며, 900℃까지 열처리하여도 루틸상은
나타나지 않고 아나타야계 결정상만이 생성해 있음을
알 수 있다. 그리고, Fig. 7 및 Fig. 8에서 알 수 있

Fig. 6. XRD profiles of TiO2-SiO2 powder (Ti/Si= 75/25) with heat-treatment : (A) anatase.
Fig. 7. XRD profiles of TiO₂-SiO₂ powder (Ti/Si = 50/50) with heat-treatment: (A) anatase.

Fig. 8. XRD profiles of TiO-SiO powder (Ti/Si = 25/75) with heat-treatment: (A) anatase.

Fig. 9. XRD profiles of only SiO₂ powder with heat-treatment.

Fig. 10. FT-IR spectra of the as-prepared powders.

The XRD profiles show that both TiO₂-SiO₂ and TiO-SiO samples exhibit characteristic peaks of anatase structure, indicating the formation of this crystalline phase after heat treatment.

The FT-IR spectra reveal the presence of various functional groups, including hydroxyl (-OH) and alkyl (CH₃, CH₂) groups, which are typical of the as-prepared materials.

The results suggest a successful synthesis of mixed oxide powders with desired crystalline phases, suitable for various applications.
동에 균질하게 입힌 후에 600℃에서 1시간 열처리한 후에 적외화학분광법으로 분석하였다. 시료의 TG 및 DTA의 결과를 보면, 250℃에서 400℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 400℃에서 600℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 600℃에서 700℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 700℃에서 800℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 800℃에서 900℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 900℃에서 1000℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1000℃에서 1100℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1100℃에서 1200℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1200℃에서 1300℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1300℃에서 1400℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1400℃에서 1500℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1500℃에서 1600℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1600℃에서 1700℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1700℃에서 1800℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1800℃에서 1900℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 1900℃에서 2000℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2000℃에서 2100℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2100℃에서 2200℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2200℃에서 2300℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2300℃에서 2400℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2400℃에서 2500℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2500℃에서 2600℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2600℃에서 2700℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2700℃에서 2800℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2800℃에서 2900℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 2900℃에서 3000℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3000℃에서 3100℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3100℃에서 3200℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3200℃에서 3300℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3300℃에서 3400℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3400℃에서 3500℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3500℃에서 3600℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3600℃에서 3700℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3700℃에서 3800℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3800℃에서 3900℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 3900℃에서 4000℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4000℃에서 4100℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4100℃에서 4200℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4200℃에서 4300℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4300℃에서 4400℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4400℃에서 4500℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4500℃에서 4600℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4600℃에서 4700℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4700℃에서 4800℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4800℃에서 4900℃에 걸친 중간에 보다 큰 산화가 나타난 것을 알 수 있었다. 4900℃에서 5000℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5000℃에서 5100℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5100℃에서 5200℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5200℃에서 5300℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5300℃에서 5400℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5400℃에서 5500℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5500℃에서 5600℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5600℃에서 5700℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5700℃에서 5800℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5800℃에서 5900℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 5900℃에서 6000℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6000℃에서 6100℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6100℃에서 6200℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6200℃에서 6300℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6300℃에서 6400℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6400℃에서 6500℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6500℃에서 6600℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6600℃에서 6700℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6700℃에서 6800℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6800℃에서 6900℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 6900℃에서 7000℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 7000℃에서 7100℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 7100℃에서 7200℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 7200℃에서 7300℃에 걸친 중간에 보다 큰 산화가 나타난 것으로 보인다. 7300℃에서 7400℃에 걸친 중간에 보다 큰 산화가 나타나

Fig. 11. FT-IR spectra of the powders heat-treated at 600℃ for 1hr.

Fig. 12. FT-IR spectra of the powders heat-treated at 900℃ for 1hr.

응집체로 전이 임자가 관찰되지 않았다. 이들 사전으로부터 알 수 있듯이, TiO$_2$/SiO$_2$의 용이 50/50인 시료까지는 SiO$_2$의 터란이 증가할수록 임자가 미세하게 있으며, 임자간의 응집이 더욱 일어나 있음을 알 수 있다. 그러나, TiO$_2$/ SiO$_2$의 용이가 25/75인 시료 및 SiO$_2$단독시료의 경우, 미

3.3. 비표면적 변화 및 광촉매활성

Table 1은 600℃, 1시간 염전한 시료에 대한 비
표면적 변화 및 광조사에 의한 수소발생량을 나타내고 있으며, Fig. 14와 Fig. 15에는 누적제공용적 및
세공크기분포변화를 각각 나타내고 있다.

비표면적의 경우, TiO$_2$/단독시료는 4m2/g를 나타내었으며, SiO$_2$/단독시료는 662m2/g를 나타내었다. TiO$_2$/ SiO$_2$/의 경우에는 SiO$_2$의 용이가 증가할수록 거의 직선적으로 증가하였다. 이러한 결과는 일반적으로

Table 1. Specific Surface areas and Photocatalytic Properties of the Powders heat-treated at 600℃ for 1hr

<table>
<thead>
<tr>
<th>Composition (mol%)</th>
<th>Surface area (m2/g)</th>
<th>H$_2$ evolution rate (μmol/g-catal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$/SiO$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 0</td>
<td>4</td>
<td>0.093</td>
</tr>
<tr>
<td>75 25</td>
<td>127</td>
<td>0.240</td>
</tr>
<tr>
<td>50 50</td>
<td>255</td>
<td>0.040</td>
</tr>
<tr>
<td>25 75</td>
<td>393</td>
<td>0.002</td>
</tr>
<tr>
<td>0 100</td>
<td>662</td>
<td>-</td>
</tr>
</tbody>
</table>

* P-25(Standard photocatalyst)
로가 0.240μmol/h.g-cat로서 최대값을 나타내었으며, 이것은 TiO₂단독시료의 그것보다는 약 2.5배 가량 큰값이고, 표준투측헤이 P-25(Degussa P-25)의 그것보다는 약 2배가량 큰값임을 알 수 있다. 그리고, SiO₂의 mol%가 50이상으로 커지면 촉매활성이 크게 감소하고 있음을 알 수 있다. 수소발생에 대한 촉매능력을 지배하는 인자는 아나타야계형 TiO₂의 존재 및 이들 촉매면에서 Pt의 분산 상태나 결정점경의 크기 등이 일반적으로 알려져 있다[29, 30]. TiO₂/SiO₂의 물비가 75/25인 시료의 수소발생속도가 TiO₂ 단독시료의 그것보다도 약 2.5배가량 큰값을 나타내는 이유로는 Fig. 5과 Fig. 6에서 나타나 있는 아나타야계형 TiO₂의 존재함을 알 수 있다. Fig. 5에 나타나 있는 TiO₂단독시료의 600℃, 1시간 열처리시의 시료의 XRD패턴을 살펴보면, 아나타야계형 TiO₂에 루트형 TiO₂가 존재해 있음을 알 수 있고, Fig. 6의 그것은 살펴보면 아나타야계형 TiO₂만 존재하고 있음을 확인할 수 있다. 그리고, 표준투측헤이 P-25의 수소발생속도보다도 약 2배가량 큰값을 나타낸 이유로는, TiO₂/SiO₂의 물비가 75/25인 시료의 표면면적이 P-25의 그것보다 약 3배가량 크기 때문에, 촉매면상에 Pt전하량의 차이 등에 의해 생긴 것으로 생각된다.

4. 결 론

DCCA로 1-도데카놀을 이용한 수식 줄-겔법에 의한 TiO₂-SiO₂계분체를 합성하였으며, 이들 합성분체에 대한 characterization과 촉매활성에 대해 검토하였다. 결과를 요약하면 다음과 같다.

1. 500℃까지의 갈량변화는, TiO₂단독시료의 경우 33.0wt%, TiO₂/SiO₂의 물비가 75/25, 50/50 및 25/75인 경우 각각 67.0wt%, 70.0wt%, 73.0wt%였으며, SiO₂단독시료의 경우는 42.5wt%였다. 그리고, 이들 탈리는 거의 대부분이 유기물질이었다.

2. 열처리 분해는, 합성직후의 경우 TiO₂단독시료를 제외하고는 X선상으로 비정질상태였으며, 아나타야계의 루트형의 삼전이가 SiO₂에 의해 방해되었고, 아나타야계의 결정화도는 SiO₂함량증가에 따라 감소하였다.

3. 합성직후의 생성물은 다양 유기물질을 함유하고 있기 때문에 밸크상의 응집체로 전혀 입자가 관찰되지 않았으며, 600℃, 1시간 열처리한 경우는 TiO₂단독시료 및 TiO₂/SiO₂의 물비가 75/25, 50/50인 시료는 열처리된 응집체도 보였지만 서로크론의 단자들을 이루어 있었으며, TiO₂/SiO₂의 물비가 25/75인 시료 및 SiO₂단독시료는 여전히 밸크상태였다.

4. 600℃, 1시간 열처리한 경우의 비표면적은 SiO₂의 함량증가와 함께 증가하였으며, 이들시료의 세공 크기 역시 SiO₂단독시료를 제외하고는 SiO₂함량증가와 함께 증가하였다.

5. 600℃, 1시간 열처리시의 시료의 촉매활성은 TiO₂/SiO₂의 물비가 75/25인 시료의 활성상이 가장 좋으며, 수소발생량으로 0.240μmol/h.g-cat을 나타내었다. 이 값은 TiO₂단독시료의 그것보다는 약 2.5배, 표준투촉수입질인 P-25(Degussa P-25)보다는 약 2.0배 가량 큰 값이었다.

감 사

본 연구는 교육부(한국과학기술연구원)의 1994년도 대학교수 국비배화과견(공동연구)에 의해 이루어진 것으로 이에 감사드립니다.

참고문헌

1. 김병관·김종영, 공업화학, 6, 107(1995).
2. 양종규·김종영·김병관, 대한화학공학회지, 17, 1279(1995).
4. E. Pelzetti, V. Maurino, C. Minero, O. Zerbinati, and E. Borgarello, Chemosphere, 18,