
Jong Rack Sohn*, Dong Cheol Shin, and Man Young Park

Dept. of Industrial Chemistry, Engineering College, Kyungpook National University, Taegu 702-701, Korea
(Received August 13, 1996, Accepted September 17, 1996)

Abstract: A series of catalysts, NiO-ZrO₂/WO₃, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and WO₃ to ZrO₂ shifted the transition of ZrO₂ from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or WO₃) and ZrO₂. NiO-ZrO₂ without WO₃ was inactive for the ethylene dimerization, but NiO-ZrO₂/WO₃ was found to be very active even at room temperature. The high catalytic activity of NiO-ZrO₂/WO₃ was closely correlated with the increase of acid strength by the inductive effect of WO₃.

1. 서 론

실리카 및 실리카-알루미나에 담지된 산화니켈 축매는 ethylene의 증합 특히 이성화에 유효하다는 것이 알려져 있다[1-11]. 이 축매는 n-butene의 이성화반응에도 활성이 있으며 그 mechanism은 proton donor-acceptor type이라고 보고하였다[12]. Uchida 등은 산화니켈-실리카-알루미나 축매상에서 ethylene의 증합활성 및 butene의 이성화반응의 선택성에 대하여 연구한 결과, 증합활성 및 선택성은 축매 중의 알루미나 봉에 의존을 보였다고 하였다[2, 3].

이와 같은 축매의 에틸렌 이량화활성은 축매의 산성과 저산화가 난징이온과 관계가 있다고 보고되어 있다. 사실 C₂H₄-C₂D₄는 형광체 활성이 있는 산화니켈
에 산으로 알려진 황산나트륨을 첨가하여 에릴린의 이
향화에 활성이 있음이 알려져 있다[13]. 그리고 zeo-
lite에 전이금속의 양이온 혹은 금속으로 교환 혹은
분산된 촉매도 ethylene의 이향화 혹은 중합에 활성
이 있음을 보고되어 있다[14-16]. 전자에서 황산이
온으로 처리된 NiO-TiO2 및 NiO-ZrO2 촉매가 에릴
린의 이향화반응에 높은 활성을 입증하였고[17-19]. 본
연구에서는 계층적인 연구의 일환으로
실온에서도 에릴린 이향화반응에 촉매활성이 있는 세
로운 NiO-ZrO2/WO3 촉매를 제조하였으며 제조된
촉매의 특성과 촉매활성을 연구하였다.

2. 실험

2.1. 촉매제조

NiCl2 ⋅ 6H2O와 ZrOCl2 ⋅ 8H2O의 혼합 수용액에
10% NH4OH를 서서히 가하여 Ni(OH)2 ⋅ Zr(OH)4,
공정점을 얻었다. 이 절정물을 가물자 겔리 Cl-
이온이 절정되지 않음 때까지 중류수로 쌓은 후 100
℃에서 1시간 동안 건조하였습니다. 건조된 절정물을
10mesh 크기로 분쇄하였다. NiO-ZrO2/WO3 촉매는
WO3의 무게량이 일정한 wt%가 되도록 ammonium
metatungstate [(NH4)6H2W12O42 ⋅ xH2O]가 녹
아 있는 수용액에 앞서 제조된 Ni(OH)2 ⋅ Zr(OH)4, 분
말을 넣어 혼합시킨 후 여분의 수분을 110℃에서 24
시간 동안 중합 건조하였습니다. 건조된 시료를 건조기에
넣고 400℃ 이상의 여러 온도에서 1.5시간 동안 소
성시키NiO-ZrO2/WO3 촉매를 제조하였습니다. 제조된
촉매의 표면은 NiO와 WO3의 무게 %로 나타내었다.
각 25% 및 15%인 촉매를 의미한다.

2.2. 실험방법

제조된 촉매의 표면적은 BET 방법에 따라 액체질
소온도(-196℃)에서 질소기체의 흡착량을 측정하여
구하였다. 시료의 산의 세기는 일련의 Hammett 지
시약을 사용하여 정적으로 측정하였다[26-28]. 촉
매에 흡착된 pyridine의 적외선 스펙트럼은 석영으
로 만들어진 heatable gas cell 속에 wafer를 장착한
후 pyridine을 흡착시킨 후 250℃에서 1시간 달기시
킨 후에 얻었다. 사용된 기기는 Mattson model GL
6030E FTIR spectrometer이다. 촉매의 열적성질은
PL-STA model 1500H 열분석기를 사용하였으며 시
로의 양은 30～50mg 이였으며 승온속도는 분당 10
℃였다. X-선 회절 pattern은 Jeol Model JDX-
8030 회절기로 800cps 30kV에서 NiKα filter와 구리
target을 사용하여 얻었다. 암모니아의 순온탈락실
형은 550℃에서 2시간 He 기체로 전처리한 후 80℃
에서 암모니아를 흡착시켜 수행하였다. 승온속도는
600℃까지 10℃/min였다.

에릴린 이향화의 촉매활성은 전 부피가 44ml인 폐
쇄반응기에 의하여 측정하였다. 촉매 0.2g을 반응관
에 넣은 후 여러 온도에서 1시간 진공한 후 반응 온
도 20℃, 에릴린의 초기 압력 30 torr에서 반응을
수행하였다. 반응 만치 후 초기 5분간에 강소한 에릴
린의 양(mol/5min-g)을 촉매활성의 정도로 하였다. 반
응생성물은 실온에서 VZ-7를 용접된 column에 장
치된 gas chromatography로 분석하였다.

3. 결과 및 고찰

3.1. X-선 회절

제조된 촉매의 결정구조를 알아보기 위하여 X-선
회절 pattern을 얻어 조사하여 보았다. 대표적으로
소성온도에 따른 X-선 회절 pattern을 Fig. 1 및
Fig. 2에 각각 나타내었다. Fig. 1에서 보는 바와 같
이 14-NiO-ZrO2/15-WO3의 경우에는 소성온도 500
℃까지는 무정형으로 존재하였으며 600℃에서 te-
tragonal phase의 ZrO2가 나타났으며 소성온도가 높
을수록 ZrO2의 intensity는 증가하였다. 그러나 cubic
phase의 NiO는 700℃ 소성온도에서 28° 및 37°,
43° 및 63.1°에서 관찰되었으며 orthorhombic phase의
WO3는 600℃의 소성온도에서 28° 및 23.1°, 23.7° 및
24.1°에서 관찰되었다.

Fig. 2의 25-NiO-ZrO2/15-WO3 경우에는 Fig. 1
과는 달리 600℃까지 무정형으로 존재하였으며 te-
tragonal phase의 ZrO2는 Fig. 1의 경우보다 100℃
높은 700℃에서 관찰되었다. 즉, NiO의 함량이 많을
수록 ZrO2의 무정형에서 tetragonal phase로 전이되
는 온도가 더 높게 나타났다. 이것은 NiO 함량이 많
으면 많은수록 ZrO2의 표면과의 많은 상호작용으로
ZrO2의 성질을 억제시키기 때문이다[20]. 순수한
ZrO2의 무정형에서 tetragonal phase로의 전이온
도는 350℃으로 보고되어 있다[20]. 그러나 cubic
phase의 NiO 및 orthorhombic phase의WO3는 소성

온도 700℃에서부터 관찰되었다.

3.2. 열적 성질

X-선 회절 pattern에서 관찰된 바와 같이 측약의 구조는 소성온도에 따라 다르다. 측약 구체의 열적 성질을 더 명확하게 알아보기 위하여 이들의 열적 분석을 수행하여 그 결과는 Fig. 3에 나타내었다. 순수한 ZrO₂ 경우에는 흔들 DSC곡선이 100℃ 부근에 나타나는데 이는 흔적 및 수화된 물의 발착에 의한 것이며, 430℃의 에너지 발열 peak는 무정형 ZrO₂에서 tetragonal 구조의 ZrO₂로 되는 상전이에 의한 것이며 [21]. 그러나 ZrO₂에 25wt%의 NiO가 참가한 25-NiO-ZrO₂ 경우에는 물의 발착에 의한 peak외에 230~330℃ 부근에 추가로 흔적 peak가 나타났는데 이는 Ni(OH)₂의 분해에 의한 것이다. Ni(OH)₂의 분해는 230℃에서 시작된다고 알려져 있다[22].

- Fig. 3에서 보는 바와 같이 NiO 및 WO₃가 참가한 시료의 경우에는 ZrO₂의 무정형에서 tetragonal phase로 상전이 되는 온도가 순수한 ZrO₂에 비하여 더 높은 온도에서 관찰되었다. 즉 순수한 ZrO₂의 경우에서는 430℃에서 관찰되었으나 25-NiO-ZrO₂의 경우에는 593℃에서 관찰되었으며 25-NiO-ZrO₂/15-WO₃의 경우에는 664℃에서 관찰되었다. 이것은 ZrO₂와 NiO 혹은 WO₃의 상호작용으로 ZrO₂의 상전이를 역제시키기 때문이다. 따라서 NiO 및 WO₃의 함량이 높으면 낮은 수수 ZrO₂의 상전이 온도가 더 높은 온도에서 관찰될 수 있다. ZrO₂와 CrO₃ 혹은 V₂O₃의 상호작용으로 인한 유사한 결과가 Sohn 등에 의하여 보고되어 있다[20, 23]. WO₃가 참가한 시료에서도 계속해서 물의 발착에 의한 흔적 peak외에 압모니아의 발착에 의한 흔적 peak가 150℃ 부근에 나타났다. 그리고 450℃ 부근에 발열 peak가 관찰되는데 이는 ZrO₂ 표면에 존재하는 ammonium metatungstate가 분해되어 결정형의 WO₃가 생성됨에 기인한다.

3.3. 측약의 표면성질

제조된 측약의 표면성질 즉 표면적, 산의 세기, 산의 종류, 및 NH₃의 습윤 발착곡선을 조사하여 보았 다. 700℃에서 소성된 NiO 함량이 다른 측약의 표면

촉매의 산의 세기를 pK$_a$값이 다른 Hammett 지시 약을 사용하여 지시약의 색깔의 변화를 관찰하여 조사하였다[24]. NiO의 함량이 많은 촉매의 경우에는 촉매 표면에 흡착된 지시약의 색깔의 변화를 관찰할 수 없으므로 본 연구에서는 NiO 함량이 2.5wt%인 촉매를 사용하였다. Table 2에서 기호는 지시약의 염기형의 색깔이 공액산염의 색깔로 변색되었음을 뜻한다. 순수한 ZrO$_2$는 H$_2$O = +1.5인 benzenediazophenylamine을 변색시켰으나 NiO-ZrO$_2$는 H$_2$O = -3.0 인 dicinnamalacetone을 변색시켰으며 이는 순수한 ZrO$_2$보다 더 높은 산성이 형성되었음을 의미한다. 그리고 ZrO$_2$/WO$_3$ 및 NiO-ZrO$_2$/WO$_3$는 H$_2$O = -14.5인 2,4-dinitrofluorobenzene를 변색시켜 산의 세기가 급격하게 증가한 것을 알 수 있다. 100% 황산 (H$_2$O = -11.93)보다 더 강한 산을 초강산이라 부르며 [25], 따라서 ZrO$_2$/WO$_3$ 및 NiO-ZrO$_2$/WO$_3$는 고체 초강산이다. 이와 같은 초강산 생성은 황산으로 처리된 ZrO$_2$/WO$_3$ 촉매의 경우와 유사하게 [19], ZrO$_2$ 표면에 결합된 WO$_3$의 W=O inductive effect에 기인한다[26]. NiO-ZrO$_2$/WO$_3$ 촉매의 IR spectra를 얻어 관찰한 결과 1011cm$^{-1}$에 W=O 신호진동에 의한 band가 나타남을 확인하였다.

Fig. 4는 700℃에서 소성된 촉매에 흡착된 염분에 의한 TPD 분석을 온도의 함수로 나타낸 것이다. Fig. 4에서 알 수 있듯이 각 TPD 분석은 매우 넓은

![Fig. 3. DSC curves of catalyst precursors.](image)

적용 Table 1에 수록하였다. 표면적은 ZrO$_2$에 NiO를 첨가하면 증가하다가 25wt%의 NiO에서는 최대의 값을 나타내었으며 그후로는 감소하였다. 그러나 Table 1에서 보는 바와 같이 순수한 ZrO$_2$의 표면적이 52m2/g로 아주 작은 비교 NiO 및 WO$_3$가 첨가된 촉매의 표면적이 72m2/g 이상으로 크게 나타남을 알 수 있다. 그 중에서도 NiO 함량이 25wt%이고 WO$_3$ 함량이 15wt%인 25-NiO-ZrO$_2$/15-WO$_3$ 촉매의

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface Area(m2/g)</th>
<th>Catalyst</th>
<th>Surface Area(m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO$_2$</td>
<td>52</td>
<td>25-NiO-ZrO$_2$/10-WO$_3$</td>
<td>106</td>
</tr>
<tr>
<td>25-NiO-ZrO$_2$</td>
<td>94</td>
<td>25-NiO-ZrO$_2$/15-WO$_3$</td>
<td>114</td>
</tr>
<tr>
<td>ZrO$_2$/15-WO$_3$</td>
<td>112</td>
<td>25-NiO-ZrO$_2$/20-WO$_3$</td>
<td>86</td>
</tr>
<tr>
<td>2.5-NiO-ZrO$_2$/15-WO$_3$</td>
<td>88</td>
<td>32-NiO-ZrO$_2$/15-WO$_3$</td>
<td>86</td>
</tr>
<tr>
<td>25-NiO-ZrO$_2$/5-WO$_3$</td>
<td>91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Temperature-programmed desorption profiles of ammonia from (a) ZrO_2(700) (b) 25-NiO-ZrO_2(700) (c) 25-NiO-ZrO_2/10-WO_3(700) (d) 25-NiO-ZrO_2/20-WO_3(700) (e) 25-NiO-ZrO_2/15-WO_3(600) (f) 25-NiO-ZrO_2/15-WO_3(700), and (g) 25-NiO-ZrO_2/15-WO_3(800). Numbers in parentheses are calcination temperatures(℃).

Fig. 5. Infrared spectra of pyridine adsorbed on 25-NiO-ZrO_2/15-WO_3 (a) background of 25-NiO-ZrO_2/15-WO_3. (b) and (c) pyridine adsorbed on 25-NiO-ZrO_2/15-WO_3. Gas phase was evacuated at 250℃(b) and 300℃(c) for 1h after adsorption.

Fig. 5에 25-NiO-ZrO_2/15-WO_3상에 흡착된 pyridine의 적외선 spectra를 나타내었다. 1543cm⁻¹에서 Brönsted산에 흡착된 pyridine의 peak가 나타났으며 1445cm⁻¹에 Lewis산에 흡착된 pyridine의 peak가 나타났다. Pyridine을 흡착시킨 후 250℃ 및 300℃에서 진공한 후의 IR spectrum을 비교하여 보면 온도가 높음수록 pyridine이 많이 탈착되어 peak 강도가 감소할 수 있고 다른 변화는 없었다. NiO의 함량이 다른 촉매상에서도 유사하게 두 종류의 산에 흡착된 pyridine의 peak가 나타났다. 따라서NiO-ZrO_2/WO_3 촉매는 Brönsted산과 Lewis산 모두를 가지고 있음을 알 수 있다.
3.4. 애틸렌 이량화 촉매활성

700℃ 및 800℃ 조건에서 25-NiO-ZrO₂/15-WO₃ 촉매 0.2g을 500℃에서 1.5시간 진공한 후 반응온도 20℃에서 초기압력 300mmHg의 애틸렌기 반응시켰을 때의 압력감소곡선은 Fig. 6에 나타내었다. 700℃에서 조성된 촉매가 가장 활성이 높음을 알 수 있다. 애틸렌은 이량화하여 선택적으로 n-butene가 생성되었으며 gas chromatography로 생성물을 분석하여 본 결과 반응초기에는 1-butene, cis-butene 및 trans-butene를 비하여 우세하게 존재하였다. 그러나 반응시간이 경과함에 따라 1-butene의 양은 감소하고 2-butene의 양은 증가하였다. 이것은 애틸렌 이량화반응의 초기생성물 1-butene이고 생성된 1-butene가 다시 이량화하여 2-butene로 되기 때문 이다[17, 19].

700℃에서 조성된 NiO-ZrO₂/15-WO₃ 촉매계의 반응온도 20℃에서의 애틸렌의 이량화활성을 NiO 함량의 함수로 Fig. 7에 나타내었다. 여기서 촉매는 반응 전에 500℃에서 1시간 진공 되었으며 촉매활성은 반응 초기 5분까지의 애틸렌의 감소량으로 나타내었다.

Fig. 7. Variations of catalytic activity for ethylene dimerization with NiO content and evacuation temperature: (●) 25-NiO-ZrO₂/15-WO₃ having different NiO content and evacuated at 500℃ and (○) 25-NiO-ZrO₂/15-WO₃ evacuated at different temperature.

NiO의 함량이 25wt.%이고 WO₃의 함량이 15wt.%일 때 최대의 촉매활성을 보여 주었다. 이것은 NiO의 함량이 25wt.%일 때 촉매의 표면적이 최대이고 따라서 활성점이 증가하였고 또한 Fig. 4에서 본 바와 같이 WO₃의 함량이 15wt.%일 때 산의 세기가 가장 많아 증가하였기 때문으로 생각된다. Table 1에 수록된 바와 같이 BET 표면적은 NiO의 함량이 25wt.%일 때 최대었다.

진공 온도에 따른 25-NiO-ZrO₂/15-WO₃의 촉매활성의 변화를 보면, Fig. 7에서 보는 바와 같이 450℃에서 1.5시간 진공하였을 때 가장 높은 활성을 나타내었다. 진공 온도에 따른 25-NiO-ZrO₂/15-WO₃ 표면적의 변화를 조사하여 본 결과 진공 온도 300~700℃ 범위에서 표면적은 크게 변화되지 않았고 108
로 나타났다. 그러나 표면적을 고려하면 25-NiO-ZrO₂/WO₃ 층매가 NiO-SiO₂ 층매보다 활성이 높다고 측정할 수 있다.

700°C에서 소성된 25-NiO-ZrO₂/WO₃ 층매의 WO₃의 함량에 따른 촉매활성을 측정하여 Fig. 8에 나타내었다. WO₃의 함량이 15wt%일 때 최대의 활성을 보여주었다. 에틸렌 이량화반응의 활성성은 저온자가의 나-wife와 산염으로 구성되어 있음을 알려져 있 다[6, 19, 28]. 따라서 25-NiO-ZrO₂/15-WO₃의 층매가 에틸렌 이량화반응에 최대 활성을 보이는 것은 산의 양 및 산의 세끼가 밀집한 관계가 있는 것 같다. Fig. 4의 TPD 측면에서 알 수 있듯이 25-NiO-ZrO₂/15-WO₃ 층매가 WO₃의 함량이 다른 25-NiO-ZrO₂/10-WO₃ 및 25-NiO-ZrO₂/20-WO₃ 층매와 산의 양이 많은 범위 내 500°C 이상에서 활발화되는 암모니아의 양, 즉 산의 세끼가 가장 센 산염의 양도 가장 많다는 것을 알 수 있다.

특기할 만한 것은 Fig. 8에서 보는 바와 같이 WO₃가 첨가되지 않은 NiO-ZrO₂ 층매는 에틸렌 이량화반응에 촉매활성을 나타내지 않았으나 WO₃가 첨가된 NiO-ZrO₂/WO₃ 층매는 높은 활성을 나타낸다는 것이다. Table 2에서 NiO-ZrO₂의 산의 세끼는 H₃₋₋₋_-

학 림

“이 논문은 1995년도 한국학술진흥재단의 공모과제 연계에 의하여 연구되었음”

References

