Separation and Purification of 2,6-dimethylnaphthalene in the Light Cycle Oil (II)

Su Jin Kim, Sang Chai Kim*, and Junjiro Kawasaki**

Division Chemical Eng., Korea Research Institute of Chemical Technology, Taejon 305-606, Korea
*Dept. of Environmental Engineering and Education, Mokpo Nat'l Univ., Muan, 534-729, Korea
**Dept. of Chem. Eng., Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152, Japan

(Received March 12, 1996, Accepted August 23, 1996)

Abstract: Purification of 2,6-dimethylnaphthalene (2,6-DMA) from the distillate containing a mixture of dimethylnaphthalene (DMNA) isomers of very high concentration was investigated by crystallization-recrystallization combination as a after-treatment for separation and purification of 2,6-DMA in the light cycle oil (LCO). The separation of individual isomers of DMNA was studied by crystallization with the distillate as a feed. 2,6-DMA, 2,7-dimethylnaphthalene (2,7-DMA) and 2,3-dimethylnaphthalene (2,3-DMA) were concentrated to crystal, and it was found that separation between a group of 2,6-, 2,7-, 2,3-DMA isomers and a group of the other DMNA isomers was possible. However, it was not possible to separate 2,6-, 2,7- and 2,3-DMA from one another. To select the most suitable recrystallization solvent for purification of 2,6-DMA, several conventional solvents, which have been employed commercially as recrystallization solvents for high purity performance, were tested, through measurement of solubility of 2, 6- and 2,7-DMA. The solvent used were hexane, iso-propyl ether, ethyl acetate and ethanol. From the solubility
results for 2,6- and 2,7-DMNA, ethanol seemed to be the most suitable solvent for purification of 2,6-DMNA. Finally, with crystal recovered by crystallization as a feed and ethanol as a solvent, recrystallization experiments were conducted under various conditions. Purification of 2,6-DMNA was easily done with increasing operating temperature and solvent to feed ratio. These results show that the crystallization-recrystallization combination is an effective one for separation of individual isomers of DMNA.

1. 서 론

석유의 에너지 용도의 비율을 낮춰 자전체 용도로 전환시킬 필요성이 높아지고 있는 석유공업의 현실을 감안할 때, 지금까지 증류에 혼합되어 에너지 용도로 사용되고 있는 경축분해경유(Light Cycle Oil: LCO)로부터 2,6-dimethylnaphthalene(엔지니어링 폴라스틱, 고분자 액정보 기초 원료, 이후 2,6-DMNA로 약기)과 같은 유용성분의 분리, 정제가 가능하면 그 의미는 대단히 크다.

수 백성분으로 구성되어진 LCO 중에는 2,6-DMNA가 약 0.8 wt% 함유되어 있지만, 2,6-DMNA의 비율에 근접한 성분이 많아 증류에 의한 분리는 곤란하므로 LCO 중에 약 0.8 wt% 함유된 2,6-DMNA의 분리, 정제를 위해서는 증류, 추출 등의 방법에 의해 LCO 중에 약 5 wt% 정도 함유된 dimethylnaphthalene(이후 DMNA로 약기) 이성체 혼합물을 능축하여, 이 능축액으로부터 목적이 보류하는 2,6-DMNA를 분리, 정제하는 다단계 처리가 필요할 것으로 생각된다. LCO 중의 방향속분리는 역막제[1]과 추출법[2, 3]에 의해 검토가 보고되어 있으며, DMNA 이성체

<table>
<thead>
<tr>
<th>Component</th>
<th>b.p.[°C]</th>
<th>m.p.[°C]</th>
<th>c.d.[°A]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6-DMNA</td>
<td>262.0</td>
<td>112.0</td>
<td>5.80</td>
</tr>
<tr>
<td>2,7-DMNA</td>
<td>262.3</td>
<td>98.0</td>
<td>5.80</td>
</tr>
<tr>
<td>1,7-DMNA</td>
<td>262.7</td>
<td>-14.0</td>
<td>6.55</td>
</tr>
<tr>
<td>1,3-DMNA</td>
<td>264.8</td>
<td>-4.2</td>
<td>6.55</td>
</tr>
<tr>
<td>1,6-DMNA</td>
<td>265.7</td>
<td>-16.0</td>
<td>6.20</td>
</tr>
<tr>
<td>1,4-DMNA</td>
<td>265.0</td>
<td>6.0</td>
<td>7.20</td>
</tr>
<tr>
<td>2,3-DMNA</td>
<td>269.2</td>
<td>105.0</td>
<td>5.80</td>
</tr>
<tr>
<td>1,5-DMNA</td>
<td>269.1</td>
<td>82.0</td>
<td>6.20</td>
</tr>
<tr>
<td>1,2-DMNA</td>
<td>271.4</td>
<td>-3.5</td>
<td>6.20</td>
</tr>
<tr>
<td>1,8-DMNA</td>
<td>270.0</td>
<td>65.0</td>
<td>6.55</td>
</tr>
</tbody>
</table>

*): boiling point, b): melting point, c): critical dimensions of molecules, d): dimethylnaphthalene
2. 실험

2.1. 장치 및 방법

실험장치의 계약도를 Fig. 1에 나타냈다. 실험장치로는 내경 3.8 cm의 pyrex제 glass 전구관을 사용 했다. 정착장치 본체의 외부에 설치한 jacket내부 온도조절기로부터 냉각한 냉매(에탄올)을 순환하는 장치내의 온도를 일정하게 유지시켰다. 정착장치 본체내부의 온도측정에는 동 콘스탄탄 열전위를 사용했으며, 본체 외부에 설치한 jacket 외부는 glass wool로 보온했다. 또한, 진조공기로 glass filter 하부를 가압하여 filter로부터 액체가 세어나오는 것을 방지하였으며, 여과용으로서의 역할을 위하여 aspirator에 의해 응주여과를 할 수 있도록 하였다. 장치내의 노출방자와 일관된으로서 무결성을 유지하기 위해 여과기와 차단하였다.

Fig. 2에 실험방법을 나타냈다. 장치내 온도가 일정하게 유지된 후, 건조공기로 glass filter하부를 가압하여 filter로부터의 액체가 세어나오는 것을 방지하며, 소정량의 원료(정착작소) 혹은 용매에 소정 양의 원료를 녹인 용매(체결정착작소)을 장치내에 투입했다. 2시간 동안 정착하여 고-액 분리를 행한 후, aspirator로 응주여과하여 여과를 하였다. 섭의 결정은 결정에 부착된 여과액 제거를 위하여 미리 정착온도로 냉각시켜 냉은 세정용매를 사용하여 결정을 세정한 후, 아세톤으로 용해시켜 분리하였다. 결정 및 여과의 조성은, 각각의 분리와 사용된 아세 톤 및 세정용매를 분석한 후, 핵산에 녹여 결정했 다. 분석에는 불소 이온화 검출기(Flame Ionization detector: FID)가 장착된 2종류의 gas chromatograph (무정작소회사 GC-8A capillary column ULBON

<table>
<thead>
<tr>
<th>Feed or Feed + Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallization</td>
</tr>
<tr>
<td>Recrystallization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Feed: distillate*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washing solvent: ethanol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>operating time, [h]</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature, [°C]</td>
<td>44.5~12</td>
</tr>
<tr>
<td>mass of feed, [kg]</td>
<td>1.0×10³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recrystallization System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed 1: pure 2,6- or 2,7-dimethylnaphthalene</td>
</tr>
<tr>
<td>II: crystal recovered by crystallization of distillate</td>
</tr>
<tr>
<td>Solvent: hexane, isopropyl ether, ethyl acetate, ethanol</td>
</tr>
<tr>
<td>Washing solvent: ethanol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mass ratio of solvent and feed, S/F[-]</th>
<th>5.0~15.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>operating time, [h]</td>
<td>2.0</td>
</tr>
<tr>
<td>operating temperature, [°C]</td>
<td>50.0~10.0</td>
</tr>
<tr>
<td>mass of feed, [kg]</td>
<td>(2.5~7.5)×10⁻⁴</td>
</tr>
</tbody>
</table>

*: distillate containing a mixture of DMNA isomers of high concentration recovered from LCO by extraction-distillation combination[17]

HR-1, GC-8A capillary column PLC를 사용했다.

2.2. 물질계 및 조건

Table 2에 각 조각에 사용된 물질계와 실험조건을

Table 3. Composition of Feed* for Crystallization

<table>
<thead>
<tr>
<th>Component</th>
<th>mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>0.0</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>0.00853</td>
</tr>
<tr>
<td>1-Methylnaphthalene</td>
<td>0.01244</td>
</tr>
<tr>
<td>a mixture of 9 isomers of DMNA</td>
<td>0.58694</td>
</tr>
<tr>
<td>a: 2,6- and 2,7-DMDA mixture</td>
<td>0.16802</td>
</tr>
<tr>
<td>b: 1,7-, 1,3- and 1,6- DMDA mixture</td>
<td>0.29302</td>
</tr>
<tr>
<td>c: 1,4-, 2,3- and 1,5- DMDA mixture</td>
<td>0.08264</td>
</tr>
<tr>
<td>d: 1,2-DMDA</td>
<td>0.04326</td>
</tr>
</tbody>
</table>

*: distillate[17]

나타났다. 정석의 원료로서는 추출-중류의 조합에 의해 LCO로부터 회수한 DMNA이성체 혼합물의농축액을 사용했다[17]. Table 3에 정량된 탄화수소 성분의 조성을 나타냈다. 농축액중에는, 항유량이 매우 적어 정량이 고려한 1,8-dimethylnaphthalene(이후 1,8-DMDA로 약기)를 제외한 9종류의 DMNA 이성체가 함계로 약 60 wt% 함유되어 있었으며, 2, 6-과 2,7-DMDA의 함계농도는 17 wt% 정도였다.

제조설의 원료로서는 순수한 2,6-, 2,7-DMDA (화학공법: 각각의 순도 99.5% 이상)와 표기의 정석조각에서 회수한 결정을, 제조설의 용매로서는 Hx, Ipe, Ea, Et를 사용하였다. 또한 각 조각으로부터 식출된 결정의 세정용매에서로 Et를 사용하였다.

조작시간을 일정하게 유지시켜, 조작온도, 용매/원료 질량비를 변화시켰다.

3. 결과 및 고찰

3.1. 적정석

수용성 각 조각에서 얻어진 성분(혹은, 혼합물) i의 수용 Y은 다음과의 식으로서 정의하여 산출했다.

\[Y_i = \frac{(C \cdot y_i)}{(F_0 \cdot y_{i,0})} \] (1)

여기서 C, F0는 각 각 조각에서 얻어진 결정의 질량, 각 조각에 사용된 용액의 초기질량률, 그리고 \(y_{i,0}\)는 각 각 조각에서 얻어진 결정중의 성분 i의 질량분율, 각 조각에 사용된 용액중의 성분 i의 초기질량분율을 나타낸다.

선택도 각 조각에서 얻어진 선택도 \(\beta_i\)는 다음과의 식으로 정의하였다.

\[\beta_i = \frac{(y_i/x_i)}{(y_{i,0}/x_{i,0})} \] (2)

여기서 i, j는 각 각 일의 성분(혹은, 혼합물), 기준이 되는 성분(혹은, 혼합물), 그리고 \(x_{i,0}\), \(x_{j,0}\)는 각 각 조각에서 회수된 결정중의 성분 i, j의 질량분율을 나타낸다.

3.2. 정석

본 결과에서는, 유출액의 회분정석을 통해 고온정 DMNA 이성체의 결정중의농축을 검토했다.

Fig. 3-(a), (b)에 식출된 결정중의 성분(혹은, 혼합물) i의 농도와 혼합물 j(i=2,6-과 2,7-DMDA 혼합물)를 기준으로, 식(2)에 의해 산출한 성분(혹은, 혼합물) i의 선택도에 미치는 정석온도의 영향을 각 각 나타냈다. 본 연구의 정석온도 범위내에서는, 각 성분(혹은, 혼합물)의 결정중의농도에 대한 정석온도의 영향은 찾아볼 수 없었으나, 고온정 성분의 조합인 2,6-과 2,7-DMDA혼합물만이 결정중에 농축되어, 그 농도는 원료중의 2,6-과 2,7-DMDA혼합물
의 농도에 비해 약 4배 이상 높았다. 이는 반대로, DMNA 중에서 저용량 성분의 포함인 1,7-dimethylnaphthalene(이후 1,7-DMNA로 약기), 1,3-dimethylnaphthalene(이후 1,3-DMNA로 약기)과 1,6-dimethylnaphthalene(이후 1,6-DMNA로 약기) 혼합
물은 원료중에서는 가장 높은 농도를 나타냈음에도 불구하고, 결정중의 농도는 대체히 낮았다. 2,6-과 2, 7-DMNA 혼합물을 기준으로한 각 성분(혹은 혼합물)의 선택도는 0.3 이상을 나타내어, 정석에 의해 2,6-과 2,7-DMNA 혼합물과 1,2-dimethylnaphthalene(이후 1,2-DMNA로 약기) 및 그 밖의 DMNA 혼합물과의 분리가 가능할 것으로 보인다. DMNA 각
이성체의 용도를 반영하여(1,7-, 1,3-과 1,6-DMNA 혼합물), (1,2-DMNA), (1,4-dimethylnaphthalene
(이후 1,4-DMNA로 약기), 2,3-DMNA와 1,5-
dimethylnaphthalene(이후 1,5-DMNA로 약기) 혼
합물의 순으로 2,6-과 2,7-DMNA 혼합물의 분리가 용이했다.

정석조작에 의한 DMNA 이성체 성분간 분리의 검
토를 위해서는, 10종류의 DMNA 이성체가 전부 분
석 가능한 gas chromatograph의 사용이 요구된다.
따라서, capillary column PLC을 사용하여 -44.5℃
의 정석에 의해 최수원 결정을 분석한 결과를 Fig. 4
에, 정량된 탄화수소 성분의 조성을 Table 4에 각각
나타났다. Table 4에는 정석조작에 의한 각 성분간
분리의 검토를 위하여 정석원료의 조성을 참가했다.
원료와 결정중의 2,6-, 2,7-과 2,3-DMNA의 농도의
비교를 통해, 정석에 의한 이들 3이성체간의 분리는
균일하다는 것을 알 수 있었다. 결정중의 2,6-, 2,7-
1,6-DMNA의 분리로

Table 4. Composition for Feed* of Crystallization
and Crystal Recovered by Crystallization at -44.5℃

<table>
<thead>
<tr>
<th>Component</th>
<th>mass fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feed</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>0.00853</td>
</tr>
<tr>
<td>1-Methylnaphthalen</td>
<td>0.01244</td>
</tr>
<tr>
<td>2,6-DMNA</td>
<td>0.09000</td>
</tr>
<tr>
<td>2,3-DMNA</td>
<td>0.4370</td>
</tr>
<tr>
<td>2,7-DMNA</td>
<td>0.07800</td>
</tr>
<tr>
<td>1,5-DMNA</td>
<td>0.01870</td>
</tr>
<tr>
<td>2,8-DMNA</td>
<td>-</td>
</tr>
<tr>
<td>1,4-DMNA</td>
<td>0.02020</td>
</tr>
<tr>
<td>1,2-DMNA</td>
<td>0.04330</td>
</tr>
<tr>
<td>1,3-DMNA</td>
<td>0.10430</td>
</tr>
<tr>
<td>1,7-DMNA</td>
<td>0.08340</td>
</tr>
<tr>
<td>1,6-DMNA</td>
<td>0.09530</td>
</tr>
</tbody>
</table>

*: distillate[17]
Fig. 5. Solvent comparison. T = −30 °C, H_{26}: solubility of 2,6-dimethylnaphthalene, H_{27}: solubility of 2,7-dimethylnaphthalene, Et: ethanol, lpe: iso-propyl ether, Ea: ethyl acetate, Hx: hexane.

예측된다. 한편, 2,6-DMNA는 H_{26}/H_{x} > 1인 경우에
는 액체로, 반대로 H_{26}/H_{x} < 1인 경우에는 결정체로
농축된다. 2,6-DMNA의 정체에 있어서는 2,6-DMNA
이 결정 혹은 액체중 어느쪽에 농축되든지 상관없으
므로, H_{26}/H_{x}값이 가장 작은 용액 혹은 가장 큰 용
액에 적합하다. 따라서, H_{26}/H_{x}가 가장 작은 Et의 1
/(H_{26}/H_{x})과 H_{26}/H_{x}가 가장 큰 Ea의 H_{26}/H_{x}를 비
교한 결과, Et를 사용한 경우의 값이 Ea를 사용한
경우의 것보다 컸다. 이로부터, 본 연구에 사용된
4종류의 재결정 용매중에서는 Et가 2,6-와 2,7-
DMNA의 분리에 가장 적합한 용액으로 생각되었다.
또한, Et를 용매로 사용한 재결정에서는 2,6-DMNA
가 결정중에 농축된다는 것을 알 수 있다.

3.3.2. 정석조작에서 회수된 고체의 재결정

본 결과에서는 Et를 재결정 용매로, 상기의 정석조작
에서 회수된 결정을 원료로 사용하여 회수 재결정 실험을 행해 2,6-DMNA의 정체에 대한 실험조건의 영
향을 탐색하였다.

Fig. 6-(a), (b)에 석출된 결정중에 함유된 각 성
분의 농도와 2,6-DMNA를 기준 성분으로한 각 성분
의 선택도에 미치는 조작온도의 영향을 각각 나타내
다. 조작온도가 상승함에 따라 재결정중의 2,6-
DMNA의 농도는 증가하였으나, 2,7- 및 2,3-DMNA
의 농도는 감소하였다. 2,6-DMNA를 기준성분으로
한 2,7- 및 2,3-DMNA의 선택도는 조작온도에 관계
없이 거의 일정한 값을 나타냈다. 즉, 각 성분간 본
리에 있어서는 2,7-DMNA에 비하여 2,3-DMNA가
2,6-DMNA와 유의하게 분리가 이루어질 수 있
다. 그린이 생략했지만, 각 성분의 수율은 조작온
도 상승에 따른 용매의 증가로 인하여 감소되는 재
결정조작의 일반적인 경향을 나타냈다. 또한, 각 성분
의 수율로 부터 Et에 대한 각 성분의 용매도는 H_{26}>
H_{27}>H_{x}의 순을 충분히 예측할 수 있었다.

Fig. 7-(a), (b)에 석출된 결정중에 함유된 각 성
분의 농도와 2,6-DMNA를 기준 성분으로한 각 성분
의 선택도에 미치는 조작온도의 영향을 각각 나타내
다. 조작온도가 상승함에 따라서 재결정중의 2,6-
DMNA의 농도는 증가하였으나, 2,7- 및 2,3-DMNA
의 농도는 감소하였다. 2,6-DMNA를 기준성분으로
한 2,7- 및 2,3-DMNA의 선택도는 조작온도에 관계
없이 거의 일정한 값을 나타냈다. 즉, 각 성분간 본

공업화학, 제 7 권 제 5 호, 1996
Fig. 7. Effects of solvent/feed ratio, (a) for concentration of component i in crystal, (b) for selectivity of component i in reference to 2,6-dimethylnaphthalene. T = -10°C, feed: crystal recovered by crystallization at T = -44.5°C (keys are shown in Fig. 6).

Fig. 8. Gas chromatogram of crystal recovered by recrystallization. S/F = 15, T = -10°C, feed: crystal recovered by crystallization at T = -44.5°C.

Fig. 9. Concentration and yield of 2,6-dimethylnaphthalene obtained by each operation. LCO: light cycle oil, Extrac.: extraction, Distil.: distillation, Crys.: crystallization, Recrys.: recrystallization.

3.4. 각 조작에서 얻어진 2,6-dimethylnaphthalene의 농도 및 수율의 변화

LCO중에 함유된 2,6-DMDA의 분리에는 수 많은 분리순서가 있다고 생각되어거나, 지금까지 본 연구
는 LCO의 구성성분과 DMIA의 물성을 고려하여 추출
- 분리-정식- 재정식의 조합으로 LCO 중에 함유된
2,6-DMDA의 분리, 정제를 검토했다. 본 결과에서는,
각 조작에서 얻어진 2,6-DMDA의 농도 및 LCO 중
에 함유된 2,6-DMDA의 양을 기준으로한 수율의 변
화를 검토했다. 그 결과를 Fig. 9에 나타냈다. 추출조
작에 의한 2,6-DMDA의 농도변화는 거의 없었으나,
이후의 증류, 정식, 재정식조작을 진행함에 따라서 2,6-DMDA의 농도는 급격히 상승하여, LCO중에 0.8
wt% 함유된 2,6-DMDA가 재정경후의 결정중에는
87 wt%까지 함유되어 있었다. 한편, LCO를 기준으
로한 2,6-DMDA의 수율은 조작을 진행함에 따라서
감소되어 재정정조작 후에는 10 %이었다. 그러
나, 수율의 향상은 최적실험조건에 의한 원전 및 탑
식장치를 적용한 다단계조에 의해 가능할 것으로 생
각된다. 이로부터, 2,6-DMDA의 농도와 LCO를 기
준으로한 수율만을 고려한 평가에 불과하나, 본 연구
에서 적용한 추출-증류-정식- 재정식의 조합은
LCO중에 함유된 2,6-DMDA의 분리에 대한 유효한
분리조합의 하나임이 입증되었다. 금후, 실험과 계산
자료를 더욱 축적한 후, 경제성(용매 회수성, 생산속
4. 결 론

정식–제결정의 조합에 의해 고농도의 dimethyl-naphthalene가 혼합물을 합성한 유출액으로부터 2,6–dimethyl-naphthalene의 정체를 검토한 결과, 다 음의 결론을 얻었다.

유출액을 사용한 정식조작으로, 2,6–, 2,7–과 2,3–dimethyl-naphthalene의 3성분과 그 밖의 dimethyl-naphthalene비정체 성분간의 분리는 가능하였으나, 2,6–, 2,7–과 2,3–dimethyl-naphthalene의 3성분간의 분리는 곤란했다.

Hexane, iso-propyl ether, ethyl acetate, ethanol을 재결정 용매로 사용하여 2,6–, 2,7–과 2,3–dimethyl-naphthalene의 용해도를 측정한 결과, 2,6–dimethyl-naphthalene의 정체에는 ethanol이 가장 적합한 용매 이었다.

Ethanol을 용매로, 정식에서 회수된 고체를 원료로 사용한 재결정조작에 의해 2,6–, 2,7–과 2,3–dimethyl-naphthalene의 3성분간 분리가 가능했다. 조작은 도의 상승 및 용매/원료 급량비가 증가함에 따라서, 2,6–dimethyl-naphthalene과 2,7– 및 2,3–dimethyl-naphthalene간의 분리가 용이하게 되어, 석출된 결정 중의 2,6–dimethyl-naphthalene의 농도는 증가되었다.

감 사

접촉분해유를 제공하여 주신 이데미즈 흥산 주식 회사에 감사드립니다.

사용기호

<table>
<thead>
<tr>
<th>공정</th>
<th>유량</th>
<th>[단위]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>mass of crystal</td>
<td>[kg]</td>
</tr>
<tr>
<td>F</td>
<td>mass of feed</td>
<td>[kg]</td>
</tr>
<tr>
<td>H</td>
<td>solubility</td>
<td>[kg/kg]</td>
</tr>
<tr>
<td>S</td>
<td>volume of solvent</td>
<td>[m³]</td>
</tr>
</tbody>
</table>

T : operating temperature [℃]

x : mass fraction in filtrate [-]

Y : yield defined by Eq. (1) [-]

y : mass fraction in feed or crystal [-]

β : selectivity [-]

참고 문헌

5. 특허공 57-55691, 帝人.
6. 特許公 55–447351, 三井石油化學.
7. 特許公 52–2905, 三菱化成.
8. 特開昭 50–100040, 帝人.
10. 特許公 52–43825, 三菱化學.
11. 特願公 49–27578, 帝人.
15. 特開昭 50–108247, 帝人.
16. 特許公 51–24505, 帝人.