요 약: 키토산에 수용성의 비닐계 모노머인 polylethylene glycol monomethacrylate(PEGM)와 dimethylaminoethyl methacrylate(DMAEMA)를 그래프트중합시켜 키토산 변성유도체를 합성하였다. 글루타르알데하이드를 사용하여 이 유도체 들의 가교막을 제조한 후, 그 열적 안정성과 기계적 물성을 검토하였다. 각 그래프트 중합체의 초기분해온도는 키토산에 비해 낮았으나, 가교막의 경우에는 보다 증가된 수치를 보였다. 기계적 물성은 각 모노머에 대한 그래프트율이 증가할수록 결정성 감소로 인해 낮아지는 경향을 나타내었고, 가교밀도의 증가에 따라서는 상향되었다. 한편, 중합체 가교막의 함수율은 그래프트율이 증가할수록 가교도가 낮을수록 증가하였다. 포도당용으로 리보플라빈과 시아노코발마인을 사용한 두가수 친정성에서 그 정도가 점차로 함수율에 의존함으로써 모노머의 그래프트율과 가교도를 조절하여 함수율의 변화를 통해 이들 맥의 용질투과능을 제어할 수 있음을 알았다. 그리고, 이들 친수성 고분자 맥을 통한 용질의 운송은 고분자와의 상호작용 없이 맥내에 존재하고 있는 물의 영역을 통해 이루어지고 있음을 확인하였다.

Abstract: Polyethylene glycol monomethacrylate(PEGM) and dimethyl aminoethyl methacrylate(DMAEMA) were grafted onto chitosan. After crosslinked membranes were prepared using glutaraldehyde with respective graft copolymers produced above, their thermal stability and mechanical properties were investigated. Their initial degradation temperature became higher than that of chitosan and their mechanical properties were improved as the degree of crosslinking increased and they did not become good as the percentage of grafting increased. But water content increased as the percentage of grafting increased and as the degree of crosslinking decreased. For permeability using riboflavin and cyanocobalamine, as model drugs, their solute permeability was able to be controlled through the variation of their water content because the permeation depended entirely upon that. And it was verified that solute permeated through the water region contained in hydrophilic polymer membrane where no interaction between the polymer chains took place.

1. 서 론

천연고분자인 키토닌(poly[β-(1→4)-2-acetamido-
\[\text{2-deoxy-D-glucose}])은 케나 새우 등의 감각류와
곤충류의 각막에서 얻어져서 자연계에 셀룰로오스 다
음으로 많은 양이 존재하고 있다. 키토닌의 탈아세틸화
물인 키토산(poly[β-(1→4)-2-amino-2-deoxy-D-glucose])은 분자내에 아미가 존재하고 있어 친수성 을 나타내며, 물에서 탈수체인 hydrogel이 된다. 일반적으로 hydrogel은 그 물리적 특성이 생체조직과 유사하고, 코팅제, 젤, 밴드, 다공성 스킨 등 여러 형태의 변화가 용이하여, 약물전달제나 인공관지, 콜레관도, 인공피부 등 여러 분야의 의료용 재료로서 이용하고 그 가능성을 대한 연구가 활발히 이루어 져왔다. 특히, 키토산 및 변성 키토산은 무독성, 생체 적합성, 생명체에 유해해 이와 같은 hydrogel로서의 사용에 보다 큰 이점을 가지고 있다[1-3].

본 실험에서는 친수성 비닐계 모노매인 polyethyl ene glycol monomethacrylate(이하 PEGM)와 dimethylaminoethyl methacrylate(이하 DMAEMA) 를 게시체로서 ceric ammonium nitrate(이하 CAN)을 사용하여 각각 키토산에 그라프트시켜 키토 산 자체의 hydrogel 특성에 친수력을 더욱 향상시킨 변성 융합체를 합성한 후, 그 가교막의 융합투과능을 살펴보았다. 실험에 사용된 두 모노매는 고분자에 도입되었을 때 친수성, 대전방지성 및 우수한 유연성 을 부여하는 것으로 알려져 있다. 조산 수용액과 글 루타르알데히드를 사용하여 이 융합체들에 대한 가교막을 제조한 후, 그라프트를 가교막 농도에 따른 기계적 물성과 열적 안정성, 흡수율을 측정하였다.

모델 약물로 리보플라빈(Vitamin B2)과 시아노코 발아민(Vitamin B-12)을 사용하여 이들 가교막에서의 융합투과성을 조사하여 그라프트가 가교막 투과 도에 미치는 영향과 이때 융합체에 따른 영향도 조 사하였다. 그리고 그 투과과정과 맥의 흡수율과의 상 관관계에 대해서도 검토하여 hydrogel로서의 융합 가능성을 검토하였다.

2. 실험

2.1. 시약

본 실험에 사용된 키토산은 Tokyo Kasei사 제품 (달아세말화도 76%)를 사용하였고, 그라프트중합에 모노매로 사용한 PEGM와 DMAEMA는 아래와 같은 구조를 가진 각각 Nippon oil & Fats사와 Kyoei사의 제품 시약 1급을 그대로 사용하였다. 개 시체로 사용한 CAN은 GFS Chemical사의 시약 1급을, 투과시험에 사용한 리보플라빈과 시아노코발아민은 각각 Junsei사와 Sigma사 제품 시약 1급을 그대로 사용하였으며 가교제인 글루타르알데히드는 Junsei사 제품을 사용하였다.

<table>
<thead>
<tr>
<th>PEGM</th>
<th>CH₃</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃=C—CO(CH₂CH₂O)₉—H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DMAEMA</th>
<th>CH₃</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃=C—COCH₂CH₂N(CH₃)₂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2. 그라프트종합체의 제조

각 모노매에 대한 그라프트종합체를 결합시켜 같이 제조[12, 13]하였다(Fig. 1). 즉, 키토산을 10wt. %

| Chitosan 2g |
| Acetic Acid 200ml |

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Temp.(40℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiator(CAN)</td>
<td>Time(2~3hr)</td>
</tr>
<tr>
<td>Acetone</td>
<td>Precipitation</td>
</tr>
<tr>
<td>Filtering</td>
<td>Drying</td>
</tr>
<tr>
<td>Methanol</td>
<td>Soxhlet extraction(48hr)</td>
</tr>
<tr>
<td>Drying</td>
<td>(vacuum oven, 70℃, 24hr)</td>
</tr>
</tbody>
</table>

Modified Chitosan

![Fig. 1. Preparation of modified chitosan.](image-url)
초산 수용액에 녹여 1wt.% 키토탄수용액을 제조한다. 이 용액에 일정량의 모노막을 넣은 후, 40℃까지 습온시켜 개시체인 CAN용액을 넣고 종합하였다. 반응 혼합물을 아래에서 부은 후, 생성된 침전물을 여과하 여 70℃에서 24시간 강압건조하고 건갈량을 측정하였다. 그리고 건조된 종합체를 Soxhlet장치에서 메탄올로 24시간 동안 부반응으로 생성된 호모폴리머를 추출하고, 다시 70℃에서 24시간 강압건조하여 질량을 측정하여 다음과 같은 식으로 그라프트율을 계산하였다[14].

$$\text{Percentage of Grafting} = \frac{\text{Weight of monomer grafted}}{\text{Weight of chitosan charged}} \times 100$$

2.3. 그래프트증합체막의 제조

제조한 각 그래프트종합체를 10wt.% 초산수용액에 녹여 0.5wt.% 용액으로 만든 후 여과해서 불용물 을 제거했다. 여과된 용액에 1, 2.5, 3.5, 5×10⁻³몰당 량비의 골루타마이데하이드를 첨가하여 액상가스신진 후 유효판에 casting하여 35℃에서 24시간 건조시켰다. 건조된 막을 0.1N 수산화나트륨 수용액에 24시간 침지시켜 중화시키고, 중류수로 중성이 될 때까지 세척한 다음 수용시까지 받아온수에 침지시켜 두었다 (Fig. 2)[15].

![Fig. 2. Preparation of modified chitosan membranes.](image)

한편, 그라프트 종합체막과의 비교를 위해 동일한 방법으로 키토탄막을 제조하였다.

2.4. 기기 및 분석

2.4.1. 그래프트종합체의 확인

키토탄에 대한 각 모노막의 그라프트 여부를 확인하기 위하여 적외선분광기(FT-IR, Nicolet 5-DX)를 사용하였다. 각 모노막의 그래프트종합체와 가교체에 따라 제조한 종합체막의 열적안정성을 열중량분석법 (TGA, Du Pont Model 951)을 이용하여 조사하였으며, 이때의 습온속도는 10℃/min이었다. 그리고, 전자현미경(SEM, Joel Model JSM-35CF)를 사용하여 종합체막의 표면과 단면구조를 확인하였다.

2.4.2. 향수율 및 기계적 물성 측정

키토탄 및 각 종합체의 가교막을 중류수에 침지시키고 폐향에 이를 때까지 폐향시킨 다음, 표면의 수분을 제거한 후 무게를 측정하였다. 다시 이들 막을 일정무게에 이를 때까지 강압건조로 관찰시켜 그 무게를 측정하고, 아래 식을 이용하여 향수율을 구하였다. 이때 Ws는 습중시, Wd는 건조시 막의 무게이다.

$$\text{향수율} = \frac{(W_s - W_d)}{W_s} \times 100$$

종합체막의 기계적 물성은 인장강도측정기(Instron Model 4201)를 사용하였다. 건조상태와 습윤상태에서 각각의 샘플을 길이 4cm, 폭 0.5cm 크기로 잘라 압장속도 10mm/min, 파지거리 2cm 조건에서 측정하였다.

2.4.3. 투과도 측정

Two-chamber diffusion cell[12]를 사용하여 실온에서 투과실험을 행하였다. 각각 35ml의 부피를 갖는 투과 셀 사이에 막을 고정시킨 후, 막 주위의 농도분극과 boundary resistance를 막기 위해 자석교반기로 고정하면서, 투과 셀의 한쪽에는 임차동도의 비타민 수용액을, 다른 한 셀에는 중류수를 넣고 일정시간이 지난 후 투과된 양의 농도를 측정하였다. 투과된 양의 정량은 UV흡광분석기(Shimazu Model 2101PC)를 사용하였으며, 투과량은 444nm에서, 시안노코발라인은 360nm에서 각각 정량하였다. 용질의 투과계수(P)는 다음 식에 의해 구하였다 [16].

공업화학, 제 6 권 제 3 호, 1995
\[P = \frac{-d}{A(1/V_i + 1/V_o)} \ln \left(1 + \frac{V_i}{V_o} \right) \frac{C_i}{C_o} \frac{V_o}{V_i} \]

여기에 \(d \), \(A \), \(V_i \), \(V_o \), \(C_o \), \(C_i \)는 각각 막두께, 합면적이, receptor 용액의 부피, donor 용액의 부피, donor 용액의 초기농도 및 일정시간이 경과된 후의 농도를 나타낸다.

2.4.4. 분배계수 측정
일정크기의 막을 리보플라빈수용액에 72시간 침지 후 농도를 측정한다. 용질이 수차례 빠진 막을 얻어온 수에 넣고 72시간 발라치킨 후 이때의 농도를 측정하고, 다음 식에 의해 분배계수(\(K_d \))를 구하였다.
\[K_d = \frac{V_o}{V_i} \frac{C_o}{C_i} \]

여기서 \(V_o \), \(V_i \)는 각각 비타민 수용액의 부피, 폐열된 막의 부피를, 그리고 \(C_o \), \(C_i \)는 폐열액에 용질이 수차례 발라친 후의 용액농도를 나타낸다.

3. 결과 및 고찰

3.1. 그라프트종합체의 확인
적외선분광기를 사용하여 키토산에 대한 PEGM과 DMAEMA의 그라프트 반응여부를 확인하였다(Fig. 3, 4). Fig. 3은 PEGM-g-chitosan에 대한 흡수спект럼으로서, PEGM이 그라프트된 후에 에스테르기기

가 키토산에 도입되어 1735cm\(^{-1}\) 부근에 C=O 신축

진동에 귀속되는 흡수를 관찰할 수 있었고, 또한 그

라프트들의 증가에 따라 peak의 강도가 증가함을 확

인하였다. 그리고 1070cm\(^{-1}\) 부근의 키토산의 에테르

결합에 따른 C-O 신축이, 1120cm\(^{-1}\) 근처에서 C-O

신축을 가지는 PE의 도입으로 인해 그 peak가 더

커지면서 1120cm\(^{-1}\)으로 이동하는 것을 볼 수 있었

다. Fig. 4의 DMAEMA-g-chitosan의 경우에도, 그

라프트가 진행됨에 따라 1740cm\(^{-1}\)부근에 C=O의 신

축진동에 귀속되는 흡수가 관찰할 수 있었으나, DMAEMA의 모노머와 개시제의 양을 조절하여 제조한 각 그라프트 종합체의 그라프트율을 나타내었다.

3.2. 그라프트종합체의 구조 확인

전차한정장을 사용하여 키토산 및 각 그라프트종합
체의 가교막에 대한 표면 및 단면을 조사한 결과를

![Fig. 3. IR spectra of (a) chitosan, (b) PE-1, (c) PE-3, (d) poly(PEGM).]

Fig. 5는 나타내었다. 실험에 사용된 이들 말은 대칭

성물 보이는 균일한 구조를 갖는 것으로 생각되었으

며, Fig. 5의 결과를 통해 그라프트에 관계없이 표면

과 단면에서 이와 같은 nonporous한 모습을 관찰할

수 있었다.

3.3. 열적 안정성

그라프트 종합체가 가교된 종합체에 대한 TGA 분석 결과를 Fig. 6, 7에 나타내었다. 키토산이 272°C 근처에서 초기분해온도를 나타내는 반면, 그라프트 종합체는 각각 221°C(PE-1)와 263°C(DM-1)부근의

분해온도를 나타내 기존 키토산과 비해 낮은온도를 보임으

로써, 각 모노머의 그라프트 종합에 따라 그 열적 안

정성을 감소하게 될음을 알았다. 이것은 키토산의 기본

단위인 pyranose 고리를 끊어 개방을 하면서 그라

프트 종합반응이 진행되기 때문인 것으로 생각된다.

그리고 그라프트율이 상대적으로 큰 PEGM의 그라

프로중합체의 초기분해온도가 DMAEMA의 경우에 비해 크게 낮아진 것을 볼 수 있었다. 한편, 중합체 가교막의 경우에는 고분자 시술과 시술 사이에 결합 점이 도입됨으로써 키토산에 비해 다소 증가된 열적 안정성을 나타내었다.

3.4. 기계적 물성

Table 2에 중합체 가교막에 대한 기계적 물성을 나타내었다. 여기서 sample 영의 처음 수치는 그래프의 점으로 표시한 것이다. 각 모노머에 대한 그래프는 증가할수록 전조상태와 습윤상태에서 모두 키토산에 비해 인장강도와 신장률이 감소하였다. 이것은 중합반응이 일어날 때 따라 pyranose 고리의 개방으로 결정성이 감소하고, 아크릴류의 모노머 자체의 성질이 관련하기 때문에 생각된다. 한편 가교체의 능도를 증가 시키면 더욱 조밀한 3차원 구조가 얻어짐으로써 다소 증가된 인장강도를 보였고, 반면 신장률은 감소하였다.

Table 1. Preparation of Modified Chitosans

<table>
<thead>
<tr>
<th>Sample</th>
<th>Chitosan</th>
<th>Monomer</th>
<th>CAN</th>
<th>Graft %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE-1</td>
<td>2g</td>
<td>PEGM-350 42.25g</td>
<td>8ml</td>
<td>160%</td>
</tr>
<tr>
<td>PE-2</td>
<td>25g</td>
<td>PEGM-350 42.25g</td>
<td>8ml</td>
<td>450%</td>
</tr>
<tr>
<td>PE-3</td>
<td>25g</td>
<td>PEGM-350 42.25g</td>
<td>8ml</td>
<td>720%</td>
</tr>
<tr>
<td>DM-1</td>
<td>25g</td>
<td>DMAEMA 5g</td>
<td>6ml</td>
<td>23%</td>
</tr>
<tr>
<td>DM-2</td>
<td>25g</td>
<td>DMAEMA 5g</td>
<td>6ml</td>
<td>28%</td>
</tr>
<tr>
<td>DM-3</td>
<td>25g</td>
<td>DMAEMA 10g</td>
<td>6ml</td>
<td>35%</td>
</tr>
</tbody>
</table>

Table 2. Mechanical Properties of Various Membranes in Dry and Wet States

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tensile Strength (Kg/mm²)</th>
<th>Elongation at Break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Wet</td>
</tr>
<tr>
<td>Chitosan</td>
<td>10.710</td>
<td>8.79</td>
</tr>
<tr>
<td>PE-1-1</td>
<td>84.30</td>
<td>5.91</td>
</tr>
<tr>
<td>PE-1-2</td>
<td>89.28</td>
<td>6.35</td>
</tr>
<tr>
<td>PE-1-3</td>
<td>92.29</td>
<td>6.89</td>
</tr>
<tr>
<td>PE-1-4</td>
<td>97.54</td>
<td>7.89</td>
</tr>
<tr>
<td>PE-2-1</td>
<td>70.37</td>
<td>4.01</td>
</tr>
<tr>
<td>PE-3-1</td>
<td>48.98</td>
<td>3.82</td>
</tr>
<tr>
<td>DM-1-1</td>
<td>77.85</td>
<td>4.39</td>
</tr>
<tr>
<td>DM-1-2</td>
<td>87.27</td>
<td>5.88</td>
</tr>
<tr>
<td>DM-1-3</td>
<td>93.19</td>
<td>6.23</td>
</tr>
<tr>
<td>DM-1-4</td>
<td>102.10</td>
<td>8.84</td>
</tr>
<tr>
<td>DM-2-1</td>
<td>56.42</td>
<td>3.99</td>
</tr>
<tr>
<td>DM-3-1</td>
<td>31.75</td>
<td>2.73</td>
</tr>
</tbody>
</table>

3.5. 함수율

3.5.1. 그래프를에 따른 함수율

제조한 각 중합체막에 대한 함수율은 Fig. 8, 9에 각각 나타내었다. 키토산에 대해 접착 성능이 모노머인 PEGM과 DMAEMA의 그래프는 증가할수록 막의 함수율도 비례적으로 증가하며, 이는 키토산에 침수성 성분이 부가됨으로써 생긴 결과로 생각된다. 또한, DMAEMA에 비해서 그래프는 높은 PEGM의 그래프중합체 막이 상대적으로 큰 함수율을 나타내고 있다.

3.5.2. 가교도에 따른 함수율

평형상태에서의 함수율은 가교밀도, 은도, 응력의 물질, 고분자-응력간 상호작용 등에 좌우되며, 조건이 일정할 경우 함수율은 가교도가 증가함에 따라

공업화학, 제6권 제3호, 1995
Fig. 5. Scanning electron microscopy of (a) chitosan, (b) PE, (c) DM.

감소하게 된다[17, 18]. Fig. 10은 각 그라프트종합액
막의 가로넓이에 따른 함수율을 나타낸 것으로 가고
제의 양이 많아질수록 고분자사슬의 가로밀도 증가로
인해 각 종합액막들의 함수율은 감소하였다. 이로써
카토산에 대한 각 수용성 모노머의 그라프트를 조
절하거나 가로넓음을 변화시킴으로써 막의 함수율을

제어할 수 있었다.

3.6. 분배계수

Table 3에 PEGM-g-chitosan의 가로막에 대해 그리프트 및 가교도에 따른 분배계수 결과를 정리하였다. 여러 상태에서 분배계수는 큰 차이없이 0.35에 극소하고 있으며 이로써, 고분자 내에 용해하는 용질의 양은 적다는 것을 알 수 있었다. 그리고, 그리프트율이나 가교도에 따라 별 차이가 없는 것을 볼 수 있는데, 이는 hydrogel 고분자와 용질간의 상호 작용이 작기 때문인 것으로 생각된다.

3.7. 투과도

3.7.1. 시간에 따른 투과용질의 총적량 변화

투과성과를 통해 통과한 용질의 양을 시간별로 그

축적량을 기록한 결과를 Fig. 11, 12에 보였다. 대체적으로 투과시작 후 60분 정도가 지나면 정상상태에 도달하고 있다. 키토산에 비해 그리프트 중합체의 경우가 투과하는 용질의 양이 많아졌으며, 그리프트율
Fig. 10. The water content of PEGM-g-chitosan membranes, vs. mole equivalent ratio of crosslinking agent.

Table 3. Distribution Coefficient for PEGM-g-chitosan Membranes

<table>
<thead>
<tr>
<th>Graft</th>
<th>Crosslinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan</td>
<td>0.37</td>
</tr>
<tr>
<td>PE-1</td>
<td>PE-3-1</td>
</tr>
<tr>
<td>PE-2</td>
<td>PE-3-2.5</td>
</tr>
<tr>
<td>PE-3</td>
<td>PE-3-3.5</td>
</tr>
<tr>
<td></td>
<td>PE-3-5</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
</tr>
</tbody>
</table>

Fig. 11. Variation of cumulative amount of vitamin B-2, vitamin B-12 in permeate with time to various PEGM-g-chitosan membranes.

3. 7. 2. 표면효과

정상상태에서는 용질의 농도가 껍질 따라 비례적으로 변화한다. 분배계수가 농도에 무관할 경우, 껍질 통한 용질의 유량 (J)은 다음과 같이 나타낼 수 있다.

$$J = \frac{1}{A} \times \frac{dM}{dt} = \frac{P}{h} \times (C_a - C_c)$$

여기서 M, A, P, h, C_a, C_c는 각각 투과된 용질의 총량, 껍질 면적, 투과도, 껍질 두께, 그리고 donor와 receptor 표면의 용질의 농도를 의미한다.

Fig. 12. Variation of cumulative amount of vitamin B-2 in permeate with time, for PEGM-g-chitosan (160%) membranes with various degrees of crosslinking.

만약 boundary layer effect가 존재하면, 정상상태에서의 용질의 유량은 다음과 같이 변한다.
Fig. 13. Relationship between the reciprocal of steady-state flux and membrane thickness.

Fig. 14. Logarithm of permeability of PEGM-g-chitosan membranes vs. graft percent of the membranes.

\[
\frac{1}{J} = \frac{1}{P} \mu \times (h+P \times P_s)
\]

Rb는 boundary layer resistance를, \(\mu \)는 C_d-C를 나타낸다. 막의 양 표면에서 boundary layer가 성장하는 경우 Fig. 13에서와 같이 유량과 막 두께와의 관계로서 알아볼 수 있다.

Fig. 15. Logarithm of permeability of DMAEMA-g-chitosan membranes vs. graft percent of the membranes.

이러한 Boundary layer effect가 존재할 경우 두께에 따른 유량은 (+)의 경향을 갖게 된다. Fig. 13에서 보듯이 유량의 역수와 두께가 서로 일치비례하되면서 원점부근을 지나고 있어, boundary layer effect는 무시할 만하다는 것을 알 수 있었다.

3.7.3. 그래프트에 따른 투과도

키토산에 대한 두 수용성 모노머의 그래프트에 따른 용질투과능을 리보플라빈과 시아노코바란인을 사용하여 조사하였으며, 그 결과를 Fig. 14, 15에 각각 나타내었다. 모노머에 관계없이 그래프트율이 증가함수록 각 용질에 대한 투과도가 키토산에 비해 향상되고 있으며, 이것은 함유율이 그래프트율에 따라 증가하는 것과 같은 결과이다. 따라서, 함유율과 투과도가 서로 비례하고 있음을 알 수 있었다. 한편, 각 종합제에서 리보플라빈에 비해 시아노코바란인의 투과도가 상대적으로 낮은 것을 볼 수 있다. Sawayanagi 등[19]에 따르면, 키토산 박에 대한 약물의 투과속도는 분자부피가 커질수록 감소하면서 선형비례한다고 하였다. 두 모노머와의 그래프트 반응으로 변성시킨 본 실험결과에서도 분자부피가 리보플라빈보다 큰 시아노코바란인의 투과도가 떨어지는 것으로 보아, 그라프트화가 용질크기에 따른 투과속도에 별
다른 영향을 미치지 않는다는 것을 알 수 있었다.

3.7.4. 가교도에 따른 투과도

각 종합체막에 대해 가교도에 따른 리보폴라비나
시아노코발아민의 투과성능을 Fig. 16에 각각 나타내
있다. 두 경우 모두 가교밀도가 증가함에 따라 투과
도는 감소하였다.

일반적으로 가교도를 시키면 용질의 투과도는 저하하
는데, 이러한 감소는 확산계수의 저하, 결합점 도입
으로 인한 결합성 과정 또는 가교에 따른 화학적 특
성 변형 등 여러 원인들 합쳐질 수 있다. 특히 이와 같이
용질의 투과가 막 내의 물을 통해 이루어지기 때문에,
가교밀도가 증가함수록 막의 흡수력 저하를 유발하여
이것이 직접적으로 투과도 감소로 이어지고 있음을 보여
준다. 따라서 키토산에 대한 각 모노머
의 그라프로울을 조절하거나 가교밀도를 변화시켜 막
의 함수율을 제어함으로써 본 변성 키토산 막에 대한
용질투과도를 조절할 수 있었다.

3.7.5. 투과도와 함수율의 상관관계

Fig. 17에 각 종합체막의 용질에 따른 투과계수의
log 값과 함수율 사이의 관계를 나타내었다. 고분자
막에서 용질의 투과에 대한 자유부피어론[20]에 의
하면, 용질의 수용은 'hole'에서 'hole'로 용질분자가
이동함으로써 이루어지며, Yasuda 등[20, 21]은, 실질
적 인 자유부피를 허용시켜서 있기 때문에, 이 영
역을 통해 용질투과가 일어날 수 있는 hydrogel/solute
계에서의 투과계수에 대한 log P와 함수율의 역수
가 선형비례하게 된다는 것을 보고하였다. 따라서,
리보폴라비나 시아노코발아민 두 용질에 대해 log P
와 함수율의 역수가 비례관계를 보임으로써 이들 그
라프로울종합체막에서의 용질의 투과는 막 내에 존재하
고 있는 물의 영역을 통해 이루어지고 있음을 확인할
수 있었으며, 또한 여러 작들에 대해, 같은 약물일 경
우 같은 기울기의 적산상에 존재하는 것을 통해, 가
교나 그라프로울이 용질투과형태에 큰 영향을 미치지
않고 있음을 알 수 있었다.

4. 결 론

키토산에 수용성 모노머인 PEG와 DMAEMA를
그라프로울 종합시키면 그 염색 안정성과 기체의 불성
은 낮아지지만, 클루타르알데히드로 가교시킨 막의
경우에서는 키토산에 비해 향상되었다. 또한, 키토산에
이들 두 모노머에 대한 그라프로울이 커질수록 친수성
성분의 증가로 인해 막의 함수율도 높아진 반면,
가교밀도가 증가함에 따라서는 감소되었다. 즉, 그라

프트라카고교를 시험으로써 함수율로 측정되는 이들 친수성 고분자 막의 수화의 조절이 가능하였고, 루과 용밀로 리보풀라미노아미노산을 사용하여 이들 친수성 막의 투과도를 검토한 결과, 함수율에 격으로 의존하는 것을 확인하였으며, 이는 곧 수용성 모노머의 크랙트로드와 가공방법 변화를 통한 함수율의 조절로 용밀의 투과도를 제어할 수 있음을 알았다. 한편, 투과계수의 log P와 함수율의 역수가 선형 비례하는 것으로 보아 투과대상의 용질은 막 내에 존재하고 있는 물의 영역을 통해서 운송되고 있음을 알 수 있었다.

감 사

이 연구는 1993년도 한국과학재단 특성기초연구비 지원에 의한 결과임을 감사드립니다(과제번호: 91-03 00-09).

참고문헌