가스분산반응기에의 \(\text{SO}_2 \) 흡수 특성

최병선・박승수・김영환

한국전력공사 기술연구원
(1994년 5월 6일 접수, 1994년 7월 1일 제책)

Absorption Characteristics of Sulfur Dioxide in Jet Bubbling Reactor

Byung-Sun Choi, Seung-Soo Park, and Yung-whan Kim

Korea Electric Power Corporation Research Center, Taejon 305-380, Korea
(Received May 6, 1994, Accepted July 1, 1994)

요약: 가스분산반응기(ジェットバブルリガク)에서의 가스분산관의 최적 설계조건과 \(\text{SO}_2 \) 제거효율에 미치는 운전변수들의 영향을 검토하였다. 효과적인 가-액 접촉을 위한 가스분산관의 설계에 있어서 가장 중요한 인자는 Reynolds number로서 Reynolds number를 12,000 이상으로 하고 가스분산관과 가스분산구멍에서의 Reynolds number가 동일하게 되도록 가스분산관을 설계하는 것이 가스분산관 설계의 최적조건임으로 판단된다. \(\Delta P \), \(\text{pH} \), 유입 \(\text{SO}_2 \)농도, 석화작업 일자크기 등 공정의 운전변수 중에서 \(\text{SO}_2 \) 제거효율에 가장 큰 영향을 미치는 변수는 \(\Delta P \)였으며 \(\text{pH} \) 4.0에서 90% 이상의 \(\text{SO}_2 \) 제거효율을 얻기 위해서는 \(\Delta P \)를 230mmAq 이상으로 유지시키야 하였다. 실험 결과 3.0 정도의 낮은 \(\text{pH} \) 하에서도 높은 \(\text{SO}_2 \) 제거효율을 얻을 수 있으며 이러한 이유는 강제산화에 의해 흡수액내의 \(\text{HSO}_3^- \)이온이 \(\text{SO}_2^- \)이온으로 거의 완전히 화학가 일이나 흡수액 내의 \(\text{SO}_2 \) 평형분압이 매우 높은 상태로 유지되었기 때문으로 생각된다. 또한 흡수액의 \(\text{pH} \) 5.0 이상의 조건에서는 \(\text{SO}_2 \) 흡수에 사용된 석화작업의 일자크기에 관계없이 모두 99.5% 이상의 높은 석화작업 이용률을 나타내었다.

Abstract: The optimum design conditions of gas sparger pipe and the effects of operating variables on \(\text{SO}_2 \) removal efficiency have been examined in Jet Bubbling Reactor. Geometry of gas sparger pipe of Jet Bubbling Reactor is a very important factor to obtain a effective gas-liquid contact. Test results revealed that Reynolds numbers at sparger and slot have to be kept greater than 12,000 identically at a given gas velocity. \(\text{SO}_2 \) removal efficiency was a function of \(\Delta P \), \(\text{pH} \), inlet \(\text{SO}_2 \) concentration and particle size of limestone and was more sensitive to the change of \(\Delta P \) than to the changes of others. The \(\Delta P \) of at least 230mmAq must be maintained to achieve the above 90% \(\text{SO}_2 \) removal at \(\text{pH} \) of 4.0 which is considered as adequate operating \(\text{pH} \). Higher \(\text{SO}_2 \) removal efficiency was obtained even at lower \(\text{pH} \) ranges, which resulted from the complete oxidation of the absorbed \(\text{SO}_2 \) to sulfates by adding air and consequently from the reduction of \(\text{SO}_2 \) equilibrium partial pressure in the gas-liquid interface. The 99.5% of the limestone utilization was attained in \(\text{pH} \) range from 3.0 to 5.0 with regardless to the particle size of limestone employed.

1. 서론

국민적인 관심이 고조되고 있는 대기오염현상은 이 제한 국가민의 문제를 초월하여 국제적인 문제로 이슈화되고 있다. 아황산가스, 질소산화물 등의 산성 대기오염물질은 특정지역의 대기오염을 심화시킬 뿐

836
가스분사반응기에서의 SO₂ 혼수 특성

실험에 사용한 반응기는 교반식과 Oxidation air distributor가 부착된 직경 60cm, 높이 250cm의 원통형 반응기로 내부 관찰을 위해 아크릴로 제작하였으며, Sparger pipe의 직경은 10cm, 개수는 3개로 고정하였다. 따라서 반응기의 단면적에 대한 Sparger pipe의 단면적의 합의 비율은 1/12이다. 또한 긴장 개방된 Sparger pipe의 하단부로부터 20cm 위의 지점에 Gas 분사에 필요한 Slot을 통과하였으며, Sparger 구조변경 실험을 위하여 Slot의 직경과 개수를 각각 다중할 수 있는 7가지 형태의 Sparger(총 21개)를 탈착이 용이하도록 나사식으로 제작하였다. Table 1은 실험에 사용한 Sparger의 구조를 나타낸 것으로 여기에서 \(\Sigma S/Ss \)는 Sparger의 단면적에 대한 Slot 단면적의 합의 비율을 나타낸다.

2.2. SO₂ 혼수 실험

본 실험에서는 Flue gas 대신 Air를 사용하였으며, Air inlet line에 SO₂ gas를 주입하여 SO₂ gas의 농도를 조정하였다. Oxidation air는 Compressor를

<table>
<thead>
<tr>
<th>Sparger</th>
<th>Dia. (cm)</th>
<th>Slot dia.</th>
<th>Number of slot</th>
<th>(\Sigma S/Ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.0</td>
<td>11.0</td>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>10.0</td>
<td>11.0</td>
<td>1.4</td>
<td>8</td>
</tr>
<tr>
<td>C-1</td>
<td>10.0</td>
<td>11.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>C-2</td>
<td>10.0</td>
<td>11.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>10.0</td>
<td>11.0</td>
<td>1.4</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>10.0</td>
<td>11.0</td>
<td>1.4</td>
<td>15</td>
</tr>
</tbody>
</table>

만 아니라 대기오염으로 인한 범자구적인 생태계 파괴는 인식과 간호의 분명한으로 작용하여 국제적인 문제로의 대두가 예상되고 있으므로 선진 각국에서는 이미 대기오염 방지기술에 많은 노력을 기울이고 있다. 우리 나라에서도 급격한 산업활동의 증가와 에너지 소비의 증가에 따라 야황산가스, 질소산화물 등의 대기오염물질의 대기오염도 산업화와 환경정부의 지정공동 시행 기간을 두고 있으며, 1997년까지 3단계의 업계급 배출허용기준을 입법, 고가하게 되었다. 그후 지구의 환경보전을 위해-yellowing 범지 구간의 환경규제 강화와 현재 입법, 예고된 우리 정부의 환경미경지정을 지속 준수하고, 환경보전에 기여하기 위해서는 배출량을 맞추는 기술의 초기 정착과 배출량, 배출시설의 설치가 요구되고 있는 현실이나 현재 국내의 기술 수준은 극히 초보적인 단계에 머무르고 있다.

화석연료 연소식 발생하는 야황산가스 배출을 저감하기 위한 배출량 요소는 일부 성과가서에서 이에 대응, 확립되어 많은 배출량배설자가 설치, 운용되고 있으며[1-3] 그 중에서도 특히 야황산가스가 포함된 배기가스를 석화식 또는 소형화 순환장치 접촉식이나 야황산가스를 제거하고 부산물로 석회를 생성시키는 순차 석회식-석회수법이 주류를 이루고 있다. 또한 최근에는 공정의 단순화를 위해 발광장치에 있어나는 모든 화학반응을 하나의 반응기 내에서 이루어지도록 하는 강제산화방식을 제작하는 공정[4, 5]들이 들어나고 있다. 순차 석회식-석화수법은 물질간 탄환면에서 분해로 액산분산방식(Liquid dispersion)과 가스분산방식(Gas dispersion)으로 대행할 수 있으며 액산분산방식으로는 홀수계 슬러리기 배기가스에 빠르는 spray tower가 대표적이고 가스분산방식에는 홀수계 슬러리액 배기가스를 직접 분사하는 Perforated(sieve) tray와 Jet bubbling reactor 등이 대표적이며 이들 반응들은 각각의 장·단점을 가지고 있다.

본 연구에서는 공정이 비교적 단순한 가스분사 반응기(Jet bubbling reactor)[6-8]를 실험 대상 Model로 선정하여 장치의 핵심부분인 Gas sparger의 구조를 최적화하고 이를 이용한 야황산가스 혼수실험을 통해 반응기 설계를 위한 기초자료를 얻고자 하였다.

2. 실험

2.1. Sparger 구조 선정 실험
이용하여 반응기 하부의 Air distributor(Orifice size 및 개수=0.8mm x 75EA)를 통해 납량의 5~10배로 주입하였다. \(\Delta P \) 반응기 입구와 출구의 차압)는 Level controller를 이용하여 Overflow weir의 높이를 조절함으로써 일정치로 유지하였고, Overflow되는 Liquid는 반응기 내의 Gypsum slurry 농도가 일정 농도를 유지할 때까지 Limestone slurry tank으로 순환시켰으며, 일정 농도에 도달된 이후에는 반응기 하부의 Draw off pump을 이용하여 일정 속도로 배출하였다. 홍수 반응액의 pH는 Limestone slurry의 Feed rate를 조절함으로써 일정치를 유지하였으며, Froth zone의 Liquid를 Reaction zone으로 순환시키며 연속적으로 추정하였다. 실험조건은 아래와 같으며 Fig. 1의 실험에 사용한 장치의 개요도를 나타내었다.

\[\Delta P : 200 \sim 350 \text{mm} \text{Hg} \]
\[\text{pH} : 3.0 \sim 4.5 \]
Gas flow rate : 150~300Nm³/hr
Oxidation air flow rate : 100Nl/min.

사용된 CaCO₃ : Precipitated Calcium Carbonate

۳. 결과 및 고찰

3.1. Sparger구조 선정 실험

\[\Sigma \text{SO}_4/\text{Ss} \text{의 값이 동일한 경우에도 Slot의 직경과 개수가 달라지면 Slot Reynolds number도 달라지게 되며 Slot Reynolds number가 달라지면 분산되는 Gas의 분산상태 및 흐름특성 또한 달라지게 되므로} \]

\[\Sigma \text{SO}_4/\text{Ss} \text{는 직접적인 설계변수가 될 수 없음을 것으로 판단된다. 또한 Slot과 Sparger의 Reynolds number의 차이가 큰 Sparger type일수록 Froth zone의 안정성 및 Liquid flow pattern이 급격하게 나빠지는 현상이 발생하였다.} \]

일반적으로 Bubble column에서 Gas sparger의 Orifice Reynolds number가 10,000~50,000의 범위

![Fig. 1. Schematic flow diagram.](image)
이면 Jet gas가 형성되고 Orifice Reynolds number의 변화에 따라 분산되는 Gas의 분산상태 및 Bubble의 각등과 특성이 크게 달라지는 것으로 알려져 있다. Submergence depth 150〜300mm, Gas flow rate 150〜300 Nm³/hr의 범위 내에서 가장 안정하고 효율적인 Froth zone과 Liquid flow pattern을 형성한 Sparger는 Type A와 Type C-3이었으며 이 Sparger들은 Reynolds number가 Slot과 동일하다는 특징을 가지고 있다. 따라서 Slot의 Reynolds number를 약 12,000 이상으로 하고 Slot과 Sparger의 Reynolds number가 동일하게 되도록 Sparger를 설계하는 것이 Sparger 설계의 최적 조건으로 판단된다. 다만 Slot 및 Sparger의 Reynolds number가 동일한 Type A와 Type C-3를 비교해 보면 $\Sigma sO/Ss$ 값이 큰 Type C-3가 Type A보다 같은 조건 하에서 ΔP가 작으면서 Blower의 동력소비 절감을 고려해 볼 때 Type C-3가 합리적이일 수 있다. 따라서 SO₂ 흡수 실험에서는 Type C-3의 Sparger를 선택하여 실험을 수행하였다. Table 2에 Sparger type C-3에 대하여 Gas flow rate의 변화에 따른 Slot과 Sparger의 Reynolds number을 나타내었다.

3.2. SO₂ 흡수 실험

이 공정의 가장 큰 특성은 탈환공정에서 일어나는 모든 화학반응 즉 SO₂의 흡수, 산화, 증화, Gypsum의 결정화 및 결정성장반응이 하나의 반응기 내에서 연속적으로 이루어지는 점이다. 일반적으로 흡수액의 pH가 5〜7 범위에서 운영되는 별도 산화반응식의 습식 석화석-석고공정에서는 SO₂가 물에 흡수되어 H₂O의 Hydrolysis에 의해 생성된 H⁺에 분산한 SO₂⁺나 CO₂⁺ 등 이온형 이온의 Buffer가 존재해 연속적인 SO₂흡수가 가능하지만, 이 공정은 흡수된 SO₂를 SO₃₂⁻로 강화산화하여 흡수액 내의 SO₂정형분 압을 낮춘 상태로 유지시킴으로써 낮은 pH 하에서도 연속적인 SO₂흡수가 가능하다. 반응기 내에서 일어 나는 화학반응은 다음과 같이 나타낼 수 있다.

\[
SO_2(g) \leftrightarrow SO_2(a) \quad (1)
\]
\[
SO_2(aq) + H_2O \rightarrow H_2SO_3(aq) \quad (2)
\]
\[
H_2SO_3(aq) \leftrightarrow HSO_3^- + H^+ \quad (3)
\]
\[
O_2(g) \rightarrow O_2(a) \quad (4)
\]
\[
HSO_3^- + 1/2O_2(a) \leftrightarrow SO_3^{2-} + H^+ \quad (5)
\]
\[
CaCO_3(s) \leftrightarrow CaCO_3(aq) \quad (6)
\]
\[
CaCO_3(aq) + 2H^+ \rightarrow Ca^{2+} + CO_2 + H_2O \quad (7)
\]
\[
Ca^{2+} + SO_3^{2-} + 2H_2O \leftrightarrow CaSO_4 \cdot 2H_2O \quad (8)
\]
\[
CaSO_4 \cdot 2H_2O \rightarrow Crystal Growth \quad (9)
\]

이들 반응 중 Froth zone에서는 (1)과 (6)의 반응이, Reaction zone에서는 (4)와 (9)의 반응이 속도 결정단계인 것으로 생각된다.

Fig. 2에 3은 pH에 따른 SO₂ 제거효율을 나타낸 것이다. 흡수액의 pH가 증가함수록 SO₂ 제거효율은 약간 증가하는 경향을 나타내고 있으나 pH 3.8 이상에서는 SO₂ 제거효율이 거의 일정하게 유지되었으며 낮은 pH영역에서도 비교적 높은 제거효율이 얻어졌다. 이렇게 낮은 pH영역에서도 높은 SO₂ 제거효율을 얻어진 이유는 강제산화에 의해 HSO₃⁻이온이 SO₃⁻로 완전하게 산화됨으로써 흡수액 내의 SO₂정형분 압을 매우 낮게 유지되었기 때문으로 생각된다. 또한 구간 SO₂농도가 높은 경우(1800ppm)가 낮은

<table>
<thead>
<tr>
<th>Sparger Type</th>
<th>$\Sigma sO/Ss$</th>
<th>Gas flow rate (Nm³/hr)</th>
<th>Slot Velocity (m/s)</th>
<th>Reynolds Number</th>
<th>Slot</th>
<th>Sparger</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-3</td>
<td>0.20</td>
<td>150</td>
<td>8.9</td>
<td>12,700</td>
<td>12,700</td>
<td></td>
</tr>
<tr>
<td>(20μ×5)</td>
<td>200</td>
<td>11.8</td>
<td>17,000</td>
<td>17,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>14.7</td>
<td>21,200</td>
<td>21,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>17.7</td>
<td>25,500</td>
<td>25,500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Relationship Between Slot Velocity and Reynolds Number

Fig. 2. Effect of pH on SO₂ removal efficiency at different inlet SO₂ concentration.

경우(1000ppm)보다 pH 변화에 관계없이 SO₂ 제거 효율이 약 2% 정도 낮게 나타났다. 이러한 이유는 반응기 입구 SO₂농도가 증가함에 따라 흡수액 내에서의 SO₂ 평형분리가 다소 증가하기 때문으로 추측 된다. Spray Type의 제어식 습식 산화식-석고공정에서는 일반적으로 SO₂ 제거효율이 pH 변화에 대한화 민감하게 영향을 받는 것으로 알려져 있지만, 실험결과 본 공정에서는 SO₂ 제거효율이 pH 변화에 따라 민감하게 영향을 받지 않는 것으로 판단되며, 반응기 내부의 재질부식 등의 문제를 고려하여 pH 약 4.0 정도에서 운전하는 것이 바람직할 것으로 생각된다.

△P(반응기 입구와 출구의 압력차)의 증가는 Sparger의 침수깊이(Liquid depth) 증가를 의미하므로 거스유속이 일정한 경우에는 △P가 증가할수록 기액 접촉면적과 접촉시간이 증가하게 된다. 따라서 △P가 증가하면 SO₂ 제거효율도 증가하게 된다. 그러나 높은 SO₂ 제거효율을 얻기 위해서 Sparger의 침수깊이 즉 △P를 지나치게 높게 유지하는 것은 운전 동력비용의 증가를 초래하므로 요구되는 SO₂ 제거효율에 대응하는 최소한의 △P로 장치를 운전하는 것이 바람직하다.

Fig. 4는 반응기 내의 흡수액의 pH값을 일정하게 (pH=4.0) 유지한 상태에서 압력손실과 SO₂ 제거효율의 관계를 나타내고 있다. 실험결과에 따르면 pH 4.0 정도에서 90% 이상의 SO₂ 제거효율을 얻기 위해서는 P를 적어도 230mmAg 이상으로 유지시켜야 할 것으로 판단된다. 또한 본 공정에서 SO₂ 제거효율은 pH보다 P의 변화에 보다 높은 영향을 받고 있으며 이러한 특징은 반응기 내에서의 화학반응과 장치의 특성에 기인하는 것으로서 가스분사방식의 가장 두드러진 특징 중 하나인 것으로 생각된다.

Table 3은 Gas flow rate 변화에 따른 SO₂ Removal efficiency의 나타낸 것으로 Gas flow rate에 따른 SO₂ Removal efficiency가 변화하는 안정되지 않는다는. 이러한 이유는 Gas flow rate의 감소에 따라 △P를 일정하게 유지하려면 Submergence depth가 증가해야 하기 때문에 Gas flow rate를 변화시키도 Froth zone의 높이 즉, 기액 접촉면적은 일정하게 유지되지 않게 때문인 것으로 생각된다.

Fig. 5는 반응기 입구의 SO₂농도 1,000ppm, △P 250mmAg 조건에서 중화제로써 Precipitated Calcium Carbonate(PCC : 침강양산산감推广应用)와 200mesh
가스분사반응기에서의 SO₂ 농도 특성

Fig. 5. Effect of particle size of CaCO₃ on SO₂ removal efficiency.

Fig. 6. Relationship between pH and limestone utilization.

95%의 중질탄산칼슘(Ground limestone)을 사용하였을 경우의 pH에 대한 SO₂ 제거효율을 나타낸 것이고, Fig. 6은 pH 변화에 따른 석회석 이용률을 도시한 것이다. Fig. 5로부터 전 pH 범위 내에서 90% 이상의 SO₂ 제거효율이 얻어졌으며, pH 변화에 관계없이 사용한 CaCO₃의 종류에 따라서 약 2.4% 정도의 효율 차이를 나타내었다. 이러한 이유는 CaCO₃의

응해속도 차이에 기인하는 것으로 생각된다.
Limestone의 응해속도는 다음의식으로 나타낼 수 있다.

\[R = k \cdot A \cdot [H^+] \]

여기에서 R=limeimestone 응해속도
\(k = \)응해속도상수
\(A = \)limeestone 입자 표면적
\([H^+] = \)수소이온농도

따라서 Limestone의 응해속도는 주로 Limestone의 입자표면적과 H⁺ 이온의 농도 즉, pH에 의해 영향을 받는다. 실험에 사용한 PCC와 Ground limestone의 Particle size 차이가 약 10배 정도인 점을 감안하면 2.4%의 제거효율 차이는 그다지 크다고는

할 수 없다. 또한 Fig. 6에 의해 하층액의 pH 약 5.0 이상에서는 SO₃, 홍수에 사용된 CaCO₃의 임자크기에 관계없이 모두 99% 이상의 농은 석회석 이용율을 나타내었다. 따라서 Limestone의 용해속도는 임자크면적보다는 H⁺ 이온의 농도 즉, 반응액의 pH에 더 큰 영향을 받는 것으로 보이며 본 공정의 적정 운전 조건인 pH 4.0 정도에서는 미반응 석회석으로 인한 부산물 Gypsum의 순도 저하현상은 발생하지 않는다. 그러므로 비교적 낮은 pH에서 운전되는 본 공정에서는 홍수 반응제인 석회석(CaCO₃)의 가격을 고려하여 ~200mesh 95% 정도의 Ground limestone(중절 탄산칼슘)을 사용하는 것이 타당한 것으로 생각된다.

본 공정의 실험에서 얻어진 부산물은 IR와 XRD분석을 통해 Gypsum임을 확인하였다.

Fig. 7은 Solid phase residence time 20시간과 40시간에서 얻어진 부산물 석회의 SEM분석결과를 나타낸 것으로서 채취기간의 증가에 따라 생성되는 석회결정의 크기도 증가하였다. 따라서 석회의 Settling rate 즉 Filterability를 증가시키기 위해서는 생성된 석회가 일정시간 이상의 채취기간을 통해 충분한 결정성장반응이 일어날 수 있도록 반응기 내의 석회농도를 비교적 높게 유지하는 것이 바람직할 것으로 판단된다.

4. 결 론

이상과 같은 Jet bubbling 공정을 이용한 SO₃ 홍수처리를 통해 얻은 결과를 요약하면 다음과 같다.

Jet Bubbling 공정의 핵심부분인 Gas Sparger의 설계에 있어서 가장 중요한 인자는 Reynolds number로서 Reynolds number 12,000 이상으로 하고 Sparger와 Slot Reynolds number가 일정하게 되도록 Sparger 설계하는 것이 Sparger 설계의 최적조건인 것으로 판단된다.

본 공정의 가장 중요한 운전변수는 홍수액의 pH와 ΔP로서 3.0 정도의 낮은 pH하에서도 높은 SO₃ 제거효율이 얻어졌으며 pH 3.8 이상에서는 SO₃ 제거효율이 거의 일정하게 유지되었다. 낮은 pH 범위에서 서도 높은 SO₃ 제거효율이 얻어지는 이유는 강재산화에 의해 홍수액 내의 HSO₃⁻ 이온이 SO₃²⁻ 이온으로 거의 완전한 산화가 일어나 홍수액 내의 SO₃ 풍압이 매우 낮은 상태로 유지되기 때문으로 생각된다.

본 공정에서 SO₃ 제거효율은 pH 변화보다는 ΔP의 변화에 의해 훨씬 더 의존적이었으며 90% 이상의 SO₃ 제거효율을 얻기 위해서는 ΔP를 230mmHg 이상으로 유지시켜야 할 것으로 판단된다. 또한 홍수액의 pH 5.0 이하의 조건에서는 SO₃ 홍수에 사용된 석회석의 임자크기에 관계없이 모두 99.5% 이상의 농은 석회석 이용율을 나타내었다.

감 사

본 연구는 국가 선도기술개발사업으로 수행된 연구 결과 중 일부임

참고문헌