액-액 불균일계에서 상이동축량의 반응속도론 해석

박 상욱・문진복・황경선

부산대학교 공과대학 화학공학과

*국방과학연구소

(1993년 9월 1일 접수, 1994년 1월 10일 채택)

Kinetics in Phase Transfer Catalysis with Heterogeneous Liquid-Liquid System

Sang-Wook Park, Jin-Bok Moon, and Kyong-Son Hwang*

Dept. of Chem., College of Eng., Pusan Nat’l Univ., Pusan 609-739, Korea

*Agency for Defense Development, Chinhae 645-600, Korea

(Received September 1, 1993, Accepted January 10, 1994)

요 약: Aliquat 336 상이동축량에 의한 n-butyl acetate의 알칼리 가수분해 반응은 액-액 불균일 반응계로 한 반응
기구를 줄1차반응 모델, 계면반응 모델 및 본체반응 모델로 나타내어 복잡한 액-액 불균일계 반응을 간단히 취급할 수 있
았다. 본산교반조를 사용하여 측정한 반응전화율로부터 줄1차반응 모델과 계면반응 모델 그리고 평면교반조로부터 본체반
응 모델로서 반응기구를 각각 설명할 수 있었으며, 각 모델로부터 구한 반응속도상수는 25°C에서 각각 3.1×10^{-4}, 7.3×
10^{-4}, 6.6m^3/kmol.s이었다.

Abstract: The reaction conversions of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate by Aliquat 336
were measured in a flat agitator and a dispersion agitator. These measured data was used to analyze the complicated
reaction mechanism of the liquid-liquid heterogeneous reaction by a phase transfer catalyst with a pseudo-first order re-
action model, a interfacial reaction model and a bulk-body reaction model. The pseudo-first order reaction model and
the interfacial reaction model could be explained by the experimental data from the dispersion agitator and the bulk-
body reaction model could be explained by those from the flat agitator and the reaction rate constants were 3.1×10^{-4},
7.3×10^{-4}, 6.6m^3/kmol.s from these models at 25°C, respectively.

1. 서 론

액체-액체, 액체-고체 또는 기체-액체-고체간의 접촉계면을 통하여 일어나는 화학반응은 굳임계 화
학반응보다 반응기구가 복잡하여 반응속도 또는 전
화율이 지조하여 서로 불용인 두 반응물을 동시에
용해할 수 있는 용제를 사용하거나, 고속 교반기를 사용하여 두 반응물을 분산시켜 강제 접촉하여 반응
속도를 증가시킬 수 있다. 그러나 재료적으로 사용되
고 있는 이들 방법은 용제 선택이 용이하지 않거나,
강제적한 접촉방법이 공업적 장치에서 바람직하지
가지에 상호 불용인 불균일성을 동시에 이동하여
유기용매에 불용인 온이온 전제제 또는 염기의
가용화 효과를 증가시킬 수 있는 상이동축량을 사용
하여 반응속도 혹은 전화율을 증가시키거나 반응조
건을 완화시킬 수 있으며, 이러한 상이동 과정에 대

230
한 연구가 현재까지 진행되고 있다[1-6]. 그러나 이들 대부분의 연구는 상이동축액의 참가에 의한 불균일 반응에서 생성물의 수용과 반응속도를 측정하는 측정에 관련한 연구뿐이고 불균일계 접촉계면을 통한 용질의 확산 과정을 고려한 물질전달기구를 화학반응기구에 적용한 동적학적 수준에서 대한 실험적 또는 이론적 연구는 충분하지 않다[7-14].

상이동축액에 의한 구획 치환반응에서 상이동축액 가 음이온 전해반응과 결합한 중간생성물 수용 액상과 유기상의 접촉계면을 통하여 작용 이동함에 따라 반응이 진행될 경우 반응기구가 복합하고 두 상의 분산상태가 수학적으로 총체적으로 정의될 수가 없기 때문에 정면교반반응을 사용하여 두 상의 접촉상태를 평면으로 한 각 성분의 화학반응을 수행한 물질전달기구의 해석이 필요하다. 반응기구와 반응속도가 수용액을 가지로 했기 때문에 정면접촉반응을 사용하여 두 상의 접촉상태를 평면으로 한 각 성분의 화학반응을 수행한 물질전달기구에 대한 반응기구와 반응속도를 고려한 필요와 같다[13]. 그러나 과학적인 전제에서 반응속도를 생각하기 위해 사용하는 고속 분산교반반응에서는 원반 접촉반응보다 중간생성물의 접촉은 무한 면적을 통한 전달속도가 증가하여 반응속도와 전달속도의 증가가 조건이 달라지게 따라 접촉반응이 의한 반응기구를 해석하여 반응속도를 측정할 필요가 있다.

2. 이 론

Aliquat 336(QZ)을 상이동 측액으로 한 n-butyl acetate(RY)의 알칼리 가수분해반응을 상이동 측액을 사용한 액-액 분산입계 반응계에 적용한 반응기구[13] (Fig. 1)에서 반응물, RY의 반응속도식은 다음과 같이 나타낼 수 있다.

\[-r = \left(\frac{d[RY]}{dt} \right) = k[RY][QX] \]

(1)

상이동 측액과 결합한 중간 생성물, QY의 기동은 복합하여 전반[13]에서도 같은 화학반응을 수행한 물질전달기구를 이중경량설로 해석하여 각 성분에 대한

\[\frac{K_1}{QZ} \xrightarrow{QY} \frac{K_2}{QY} \xrightarrow{RX} (d) \]

\[\frac{K_3}{QZ} \xrightarrow{QY} \frac{K_4}{QY} \xrightarrow{RX} (c) \]

\[\frac{K_5}{QZ} \xrightarrow{QY} \frac{K_6}{QY} \xrightarrow{RX} (b) \]

Fig. 1. Reaction mechanism for the alkaline hydrolsis of n-butyl acetate with aliquat 336.

한 환산방정식으로부터 반응속도상수를 구하였으나 다음과 같은 모델들을 사용하여 복잡한 반응과정을 총괄반응식으로 표현한 반응속도로 간략하게 나타내었다.

2.1. 준1차반응 모델

상이동축액의 분해계수와 매우 적을 경우(α₁∠1), 대부분의 Q는 유기상에 존재하여 유기상에서 존재하는 Q에 대한 물질전달주는 다음과 같다[15].

\[[Q]_p = [QX] + [QY] \]

(2)

여기서 \([Q]_p\)는 주입된 측액 농도이다.

수용액상에서 생성된 Q'X'의 유기상으로 이동되는 전달속도와 반응 (d)에서 Q'Y의 생성속도가 동일하여 유기상에 존재하는 QX와 QY의 농도비, \(\phi = [QX]/[QY]\)가 일정한 경우 식 (2)를 사용하여 반응속도 (1)를 \(\frac{d[RY]}{dt}\)의 전환율, \(x\)로 나타내어 정리하면 다음과 같다.

\[-\ln(1 - x) = \frac{kdQ_0t}{1 + \phi} \]

(3)

Fig. 1에서 (a), (b), (c) 이론반응은 순간가역반응이고, 이들 반응속도가 (d) 반응속도보다 크며, QX와 QY의 분배계수, \(a_x\)와 \(a_y\)가 1보다 클 경우(\(a_x > 1\), \(a_y > 1\))\(\phi\)는 1보다 크기 때문에(\(\phi ≈ 1\)) 식 (3)은 다음과 같이 변형된다.

\[-\ln(1 - x) = kQ_0 t \]

(4)

식 (3)은 식 (1)에서 \(\frac{d[RY]}{dt}\)의 반응의 준1차 반응로 나타낸 식과 동일하다. 식 (4)에서는 반응시간 변화에 대한 전환율로부터 반응속도상수, \(k\)을 구할 수 있다.

2.2. \(QX \)와 \(QY \)의 농도비가 일정하지 않은 경우
수용액상에서 생성된 \(Q^+X^- \)의 유기성으로 이동되는 전달속도와 반응 (d)에서 \(QY \)의 생성속도가 동일하지 않을 경우 \(\phi \)가 일정하게 유지할 수 있기 때문에 음이온, \(X^- \)와 \(Y^- \)가 축약해 결합한 \(Q^+X^- \)와 \(Q^+Y^- \)의 유기성으로 이동되는 과정을 계면반응과 본체 반응으로 나누어 생각한다.

2.2.1. 계면반응 모델
반응 (b), (c)와 유기성으로 이동되는 \(Q^+X^- \)와 \(Q^+Y^- \)가 접촉계면에서 이루어질 경우 총합반응은 다음과 같다.

\[
K \quad \overline{QX} + Y^- \quad \overline{QY} + X^-
\]
(5)

총합반응 평형상수, \(K \)는 다음과 같이 정의한다.

\[
K = \frac{[QX]}{[QY][X^-]}
\]
(6)

수용액상에 존재하는 \(X^- \)와 \(Y^- \)의 농도를 반응 전화용으로 나타내면 다음과 같다.

\[
[X^-] = [X^-]_0 - x[RY]_0
\]
(7)

\[
[Y^-] = x[RY]_0
\]
(8)

식 (2), (6), (7), (8)로부터 \(\overline{QX} \)는 다음과 같다.

\[
[QX] = \frac{K[Q]_0([X^-]_0 - x[RY]_0)}{K([X^-]_0 - x[RY]_0) + x[RY]_0}
\]
(9)

식 (9)를 사용하여 식 (1)을 적분하면 반응속도식을 전화용으로 다음과 같은 식을 얻을 수 있다.

\[
G_1(x) = k \frac{t}{x}
\]
(10)

\[
G_1(x) = k \frac{t}{b}
\]
(11)

여기서,

\[
G_1(x) = \left(\frac{4Ac}{b} - 2B \right) \left(\frac{x}{b + 2cx} \right)
\]
\[+ \frac{Bc}{c} \ln \left(\frac{b + 2cx}{b} \right)
\]
(12)

\[
G_2(x) = \frac{B}{2c} \ln \left(\frac{a + bx + cx^2}{a} \right) + \frac{1}{\sqrt{-q}} \left(A - \frac{Bb}{2cx} \right)
\]
\[\ln \left(\frac{b + \sqrt{-q}}{2cx + b - \sqrt{-q}} \right)
\]
(13)

식 (10)은 \([RY]_0\)와 \([X^-]_0\)가 동일한 경우, 식 (11)은 동일하지 않은 경우이다.
반응시간에 대한 전화율을 사용하여 식 (10) 또는 (11)로부터 반응속도상수, \(k \)를 구할 수 있다.

2.2.2. 본체반응 모델
반응 (b), (c)가 수용액상의 본체에서 이루어질 경우 반응 (b), (c)의 배계수 \(a_2, a_3 \)를 고려한 평형식을 다음과 같이 각각 정의한다.

\[
a_2 = \frac{[Q^+X^-]}{[QX]}
\]
(14)

\[
a_3 = \frac{[Q^+Y^-]}{[QY]}
\]
(15)

\[
K_2 = \frac{[Q^+X^-]}{[Q^+] [X^-]}
\]
(16)

\[
K_3 = \frac{[Q^+Y^-]}{[Q^+] [Y^-]}
\]
(17)

수용액상과 유기성상의 \(Q \)에 대한 물질수지식은 다음과 같다.

\[
[Q]_b = [QX] + [QY] + [Q^+X^-] + [Q^+Y^-]
\]
(18)

식 (14)~(18)을 사용하여 \(\overline{QX} \)에 대하여 정리하면 다음과 같다.

\[
[QX] = \frac{a_2 K_2 [Q]_0 [X^-]}{K_2 K_3 + (1+a_2) a_3 [Y^-] + (1+a_3) K_2 [X^-]}
\]
(19)

식 (9)를 사용하여 식 (1)을 적분하면 반응속도식을 전화용으로 다음과 같은 식을 얻을 수 있다.

\[
G_1(x) = k \frac{t}{x}
\]
(20)

\[
G_2(x) = k \frac{t}{b}
\]
(21)

식 (20)는 \([RY]_0\)와 \([X^-]_0\)가 동일한 경우, 식 (21)은 동일하지 않은 경우이다.
식 (20)과 (21)에서 \(G_1(x) \)와 \(G_2(x) \)는 식 (11) 또는 (12)와 같은 형태로 표현된다.

공업화학, 제 5권 제 2호, 1994
주어진 방정식을 통해, $G_1(x) = \left(4Ac - 2B \right) \left(\frac{x}{b+2cx} \right) + \frac{B}{c} \ln \left(\frac{b+2cx}{b} \right)$

\[(22) \]

$G_2(x) = \frac{B}{2c} \ln \left(\frac{a+bx+cx^2}{a} \right) + \frac{1}{\sqrt{-q}} \left(A - \frac{Bb}{2cx} \right) \ln \left(\frac{b+\sqrt{q}}{(2cx+b-\sqrt{q})} \right)$

\[(23) \]

여기서,

\[a = a_2 K_3 [Q]_0 [X] \]

\[b = -a_2 K_3 [Q]_0 ([X]_0 + [RY]) \]

\[c = a_2 K_3 [Q]_0 [RY] \]

\[A = K_3 K_0 + (1 + a_1) K_3 [X]_0 \]

\[B = (1 + a_2) K_3 [RY] - (1 + a_2) [RY]_0 \]

\[q = 4ac - b^2 \]

식 (20)과 (21)로부터 k를 구할 수 있다.

3. 실험

실험에 사용한 액체는, n-butyl acetate(Junsei Chem. Co. Ltd.), toluene(Junsei Chem. Co. Ltd.), NaOH(Tedia Co. Ltd.)는 특급사양을 사용하였으며, Aliquat 336(Aldrich Chem. Co. Ltd.)은 1.0kmol/m³ NaCl과 HCl 수용액을 종류로 여러 번 세척한 후 건조하여 사용하였다[13].

3.1. 가수분해반응 실험

n-butyl acetate 암일리 가수분해반응 실험에서 사용한 평면교반응과 분산교반응 그리고 실험법은 전보[13, 16]에서와 동일하였다. 분산교반응에서 교반속도는 유기상과 수용액이 충분히 분산되는 800rpm[16], 평면교반응에서 교반속도는 두 상의 접촉면이 육안으로 보아 흐트러지지 않는 70rpm [13]으로 고정하고 25℃에서 반응실험을 행하였다. 일정시간마다 교반중에서 채취한 유기상과 수용액의 샘플로 n-butyl acetate와 OH⁻ 이온의 농도를 기체 크로마토그래프(Shimadzu 8A, Silicon GE SE-30~20% Chromosorb W, TCD, He 유량; 20cm/m, TCD 온도: 260℃, column 온도: 80~260℃, 32℃/min)와 phenolphthalein 지시약에 대한 HCl 적정법으로 각각 측정하였다. 이들 측정농도로부터 계산한 n-butyl acetate와 NaOH 각 성분에 대한 전화율은 0.2% 이내에서 일치하였다. NaOH, n-butyl acetate, Aliquat 336 농도는 각각 0.1~2.0, 0.1~5.0, 0.02~0.2kmol/m³ 범위까지 변화시키면서 반응 시간 변화에 따라 반응전화율을 측정하였다.

3.2. 총괄평형상수

식 (6)에서 정의한 총괄평형상수 K는 식 (14)~(17)에서 정의한 a_1, a_2, K_0, K_3를 사용하여 나타낸 식 (24)로부터 구할 수 있다.

\[K = K_0 k_0 / a_2 \]

\[(24) \]

식 (24)에서 K_0와 K_3는 전보[13]에서 구한 값, 219m³/kmol과 0.0051kmol/m³을 각각 사용하였으며, a_1와 a_2 역시 전보[13]에서 언어진 다음과 같은 식 (25)와 (26)으로부터 구하였다.

\[\log \left(\frac{a_1}{0.5382} \right) = -0.243[NaOH] \]

\[(25) \]

\[\log \left(\frac{a_2}{0.0444} \right) = -0.374[NaOH] \]

\[(26) \]

여기서 [NaOH]는 수용액에 존재하는 OH⁻ 이온의 농도이다.

4. 결과 및 고찰

평면교반응과 분산교반응에서 NaOH 농도 범위를 0.1에서 2.0kmol/m³, n-butyl acetate 농도 범위, 0.1에서 5.0kmol/m³, Aliquat 336 농도 범위, 0.02에서 0.2kmol/m³까지 변화시키면서 측정한 n-butyl acetate의 반응전화율로부터 상기에서 제시한 반응모델을 비교 검토하였다.

4.1. 실험 변수 변화에 대한 반응전화율 영향

4.1.1. NaOH 농도변화

n-butyl acetate 농도, 0.5kmol/m³, Aliquat 336 농도, 0.08kmol/m³에서 NaOH 농도를 0.1에서 2.0kmol/m³까지 변화시키 측정한 반응전화율을 반응 시간에 대하여 대표적인 경우를 Fig. 2에 도시하였다. 이 그림에서 알 수 있는 바와 같이 두 교반장에서 NaOH 농도가 증가함에 따라 전화율은 증가하였으며, 분산교반장에서는 전화율이 평면교반장의 값보다 큰 값들을 나타내었다. 이는 NaOH의 농도가 증가함에 따라 Q_X의 농도가 증가하며, 분산교반장에서 유기상과 수용액의 접촉면적은 평면교반장에 비해 많아 마우 크기 때문에[16] 계면을 통한 Q_X의 전달
4.1.2. n-butyl acetate 농도변화

NaOH 농도, 1.0kmol/m³, Aliquat 336 농도, 0.08kmol/m³에서 n-butyl acetate의 농도를 0.1에서 5.0kmol/m³까지 변화시키면서 측정한 반응전화율을 대표적인 경우를 Fig. 3에 나타내었다. 이 그림에서 n-butyl acetate의 농도가 증가함에 따라 전화율은 감소하였으며, 분산조사에서 반응전화율이 평면조반조에서의 값보다 큰 값을 나타내었다. 식 (1)에서 반응속도는 유지상의 반응물 n-butyl acetate의 농도, [RY]와 상이동축매와 결합한 음이온 전중성 성분의 농도, [QX]에 각각 1차방정식이지만 식 (9)와 (19)에서와 같이 [QX]가 [RY]에 비례하므로 나타나기 때문에 Fig. 3의 경향반으로서는 n-butyl acetate 주입농도의 의존성을 정량적으로 취급할 수는 없다.

4.1.3. Aliquat 336 농도변화

NaOH 농도, 1.0kmol/m³, n-butyl acetate 농도, 0.5kmol/m³에서 Aliquat 336의 농도를 0.02에서

Fig. 2. Conversion vs. reaction time for various concentration of NaOH at [RY]₀=0.5kmol/m³, [Q]₀=0.08kmol/m³ (dark symbol: data from the plane agitator, blank symbol: data from the dispersion agitator)

속도가 증가한 것에 기인된 것으로 생각된다.

Fig. 3. Conversion vs. reaction time for various concentration of n-butyl acetate at [X⁻]₀ = 1.0kmol/m³, [Q]₀=0.08kmol/m³.

0.2kmol/m³까지 변화시키면서 측정한 반응전화율의 대표적인 경우를 Fig. 4에 나타내었다. 이 그림에서 측매의 농도가 증가함에 따라 반응전화율은 증가하였으며, 분산조반조에서의 반응전화율이 평면조반조에서의 값보다 큰 값을 나타내었다. 이는 NaOH 농도의 존중과 같이 상이동축매의 농도가 증가함에 따라
QX의 농도가 증가하여 전화율이 증가한 것으로 생각된다.

4.2. 반응기구 해석

4.2.1. 준1차반응 모델

NaOH 농도, 1.0kmol/m³, n-butyl acetate 농도, 0.5kmol/m³에서 Aliquat 336의 농도를 0.02에서 0.2 kmol/m³까지 변화시켰던 두 교반조에서 측정한 반응전화율로부터 식 (4)을 사용하여 반응시간 변화에 대해 대표적인 경우를 Fig. 5에 도시하였다. 이 그림에서 분산교반조에서 측정한 전화율에 의한 도시는 98% 이상의 상관관계로서 원점을 지나는 직선이 잘 성립하고 있음을 알 수 있으며, 평면교반조에서는 비선형에 가까운 63%의 상관관계의 직선을 얻었다. 전반수[11]에서 QX의 분해계수 α와 QY의 분해계수 α3가 1보다 큰 값을 나타내어 유기성에서의 QX와 QY의 농도비, p는 1보다 크기 때문에 식 (3)은 식 (4)와 같은 준1차 반응식으로 나타낼 수 있으며, Fig. 5의 가로축, k'는 식 (4)와 비교하여 k [Q]가 된다. 따라서 Fig. 5로부터 촉매농도 변화에 따라 구한 k'[Q]를 Fig. 6에 도시하였다. 분산교반조로부터 변수값은 95% 이상의 상관관계를 지닌 직선을 잘 설명하였으며, 이 직선의 기울기로부터 구한 반응속도상수는 3.1×10⁻⁴ m²/kmol/s이었다. 한편 평면교반조에서는 원점을 지나는 직선을 얻음

Fig. 5. \(-\ln(1-X)\) vs. reaction time for various concentration Aliquat 336 at \([X^-]_0 = 1.0\text{kmol/m³}, [\text{RY}]_0 = 0.5\text{kmol/m³}\).

Fig. 6. \(k'\) vs. \([Q]_0 = 1.0\text{kmol/m³}, [\text{RY}]_0 = 0.5\text{kmol/m³}\).

Fig. 7. G(x) vs. time at the dispersion agitator.

치하였으나, Fig. 8에서 평면교반조부터 구한 G(x)는 56%의 상관관계로서 적선에 일치하지 않았다.
이로부터 분산교반조에서는 수용액과 유기상은 격렬하게 접촉하여 반응이 접촉면에서 이루어진다고 생각할 수 있다. 분산교반조에서 측정한 전하율로부터 계면반응 모델, 식 (10) 또는 (11)을 사용하여 구한 반응속도상수는 7.3×10⁻⁷ kmol/m²s 이었다.

4.2.3. 분체반응 모델
Fig. 9와 10에 분산교반조와 평면교반조에서 측정한 반응전화율로부터 식 (20) 또는 (21)을 사용하여 구한 G(x)를 반응시간에 대하여 대표적인 경우를 도시하였으며 두 그림에서 알 수 있는 바와 같이 평면교반조에서 반응은 분체반응으로서 설명할 수 있었다. 또한 Fig. 10의 계면반응로부터 구한 반응속도상수는 6.6 kmol/m²s 이었다. 전보[13]에서 동일한 평면교반조를 사용하여 경막설로서 화학반응이 수반한 물질전달기구의 해석으로부터 구한 반응속도상수는 36 m²/kmol/s였는데 차이가 있었다. 이는 전보[13]에서 계면체면 부분에서 각 성분의 농도구배가 존재하는 이중경막설로서 반응기를 해석하고, 계면을 통하여 측정한 G(x)의 물질전달속도를 반응속도로 취급하여 반응속도상수를 구하였으며, 본 모델은 각 성분의 수용력과 수용력의 총합반응속도로 계산된 반응속도상수로 티[10]의 농도변화량으로부터 계면반응식 (20) 또는 (21)로부터 반응속도상수를 구하였더니로

기 때문에 것으로 생각된다.

5. 결론
상이동족매에 의한 액-액 분금일 반응계에서 수용액과 유기상간 접촉법에서 의도되는 계면에서의 운동의 전달현상이 화학반응기구에 미치는 영향을 보였다. Aiquat 336 상이동족매에 의한 n-butyl acetate의 압착적 가수분해반응을 평면교반조와 분산교반조에서 행하여 n-butyl acetate의 반응전

공업화학, 제5권 제2호, 1994
화율을 측정하여 순1차반응 모델, 계면반응 모델 및 본체반응 모델을 사용하여 반응기구를 해석하였다. 분산교반조를 사용하여 측정한 반응전화율로부터 순1차반응 모델과 계면반응 모델 그리고 평면교반조로부터 본체반응 모델로서 반응기구를 설명할 수 있으며, 각 모델로부터 구한 반응속도상수는 25°C에서 각각 3.1×10⁻⁴, 7.3×10⁻⁴, 6.6m³/kmol.s었다.

감 사

본 연구는 1990년도 한국과학재단 연구비 지원 (과제 번호: 90-03-00-09)으로 수행한 연구 결과의 일부입니다.

사용기호

\(G(x) \) : parameter defined by eq. (12), (13), (22) and (23)
\(k \) : second order reaction rate constant [m³/kmol.s]
\(K \) : overall equilibrium constant [–]
\(K_a, K_b \) : dissociation constant defined by eq. (16) and (17)
\(r \) : reaction rate [kmol/m³.s]
\(t \) : reaction time [s]
\(x \) : conversion [–]
[] : concentration [kmol/m³]

그리고 문자

\(a \) : distribution coefficient defined by eq. (14) and (15) [–]
\(\phi \) : concentration ratio, \(\frac{[QX]}{[QY]} \)

싱험자

--- : organic phase

하험자

\(o \) : initial

참고문헌
