ETBE(Ethyl Tert-Butyl Ether) 합성에 대한 혼합물리산 촉매의 특성

박 남국·신재훈·서성규*·임영택·김재승

전남대학교 공과대학 물질화학공학과
*여수수산대학교 환경공학과
(1993년 4월 26일 접수, 1993년 8월 31일 채택)

Characteristics of Heteropoly Acid Catalyst for the Synthesis of ETBE(Ethyl Tert-Butyl Ether)

Nam-Cook Park, Jae-Soon Shin, Seong-Gyu Seo*, Yeoung-Taek Lim, and Jae-Seung Kim

Dept. of Material Chem. Eng., Chonnam Nat’l Univ., Kwang-ju 500-757, Korea
*Dept. of Environmental Eng., Uosu Nat’l Fisheries Univ., Uosu 550-749, Korea
(Received April 26, 1993, Accepted August 31, 1993)

요 약 : 가솔린 용량가 향상제인 ETBE(ethyl tert-buty ether) 합성반응의 촉매활성과 촉매의 산특성에 대한 상관성 및 반응특성에 관한 연구를 하였다. pyridine의 흡착량과 TBA 전화율은 좋은 상관성을 보였지만, NH₃의 흡착량과 TBA 전화율은 전이금속과 complex를 형성하는 NH₃의 흡착특성 때문에, 전이금속의 경우는 선형적인 상관성을 나타내지 않았다. 담지촉매의 경우, 담지함에 따른 촉매활성과 생성물 분포는 반응률인 TBA 또는 iso-butene의 흡착특성이 중요한 역할을 하였다.

Abstract: Reaction characteristics and correlations between the acidic property and catalytic activity of heteropoly acid catalyst on ETBE synthesis as a gasoline octane enhancer were investigated. The amount of pyridine adsorbed on heteropoly acid catalyst and catalytic activity in the synthesis of ETBE showed a good correlation. But, ammonia failed to show such a correlation because of the complex formation of ammonia adsorbed and transition metal ions. In the case of supported catalyst, catalytic activity and product distribution were mainly affected by the adsorption characteristics of TBA or iso-butene.

1. 서 론

MTBE(methyl tert-butyl ether)는 기존의 용량가 향상제로 사용되어왔던 TML(tetra-methyl lead)이나 TEL(tetra-ethyl lead)에 비하여, 배기가스 중 납 화합물의 방출이 없으며 일산화탄소와 탄화수소의 배출량이 적기 때문에[1], 1979년 미국의 EPA(Environmental Protection Agency)로부터 대기오염 방지를 위한 용량가 향상제로서 공인받은 바 있다. 따라서 세계적으로 생산 증가량이 가장 큰 화학제품 중의 하나로서, 그 수요가 해마다 증가 추세에 있으며, 우리나라의 생산량도 1995년에는 27만 9천여 ton으로 증가할 것으로 예상하고 있다[2]. 한편, ETBE(ethyl tert-butyl ether)는 MTBE보다 비점이 더 높고 산소 함유량이 적기 때문에, 공기-연료비가 증가하고 연소 염이 높아 연료의 소모를 줄일 수 있으며, 중점방열
이 나이와 자온에서의 연질정화가 용이하다는 등의 여러 장점에 바탕에, 상차 MTBE를 대체할 우수한 용약가 항상제로서 평가되고 있다[3,4]. 최근 ETBE의 혼합에 관한 연구가 주목을 받고 있다. ETBE의 혼합은 MTBE 혼합분과 같은 ether의 혼합분으로, TBA(tert-butyl alcohol)와 ethanol 또는 iso-butene과 ethanol을 이용하는 방법이 가능하다. 현재까지 MTBE의 공업적 생산에 주로 사용되어왔던 강산성 이온교환수지 촉매인 Amberlyst-15 등은 영에 대한 안정성이 낮아, 반응온도가 높아질 경우 산성분질이 촉매로부터 유출되는 문제가 있으며, 액상 불균일 반응으로 10~20atm의 고압이 필요하다[5].

2. 실험

2.1. 촉매의 조제

H₂PW₁₂O₄₀ 촉매와 H₂SiW₁₂O₄₀ 촉매는 전보[6]와 동일한 방법으로 제조하였다. 또한, 금속이온 교환 헤테로폴리산 촉매는 H₂PW₁₂O₄₀ 및 H₂SiW₁₂O₄₀ 촉매 를 중류수에 묻은 수용액에 소량의 황화단자화하고자 하.cgi는 금속원자의 탄산염 또는 질산염을 첨가하여 같은 방법으로 제조하였다. 담지촉매의 경우는 40~60mesh의 이동도 갖는 SiO₂ 촉매에 담지량이 각각 5wt%, 10wt%, 20wt%가 되도록 소량량의 촉매를 항온처리에 의하여 담지시켜 조제하였으며, 담자로 사용한 SiO₂는 일본 촉매학회로부터 기증받은 참조촉매(JRC-SIO-4: 비교면적=347m²/g)를 사용하였다.

2.2. 실험장치 및 방법

헤테로폴리산 촉매의 염기성 분질 혼합률은 염기성 분질인 pyridine와 암모니아의 습온살람법에 의하여 촉환경하였다. 촉매 0.05g을 석영제의 환원관에 충전하고, 하부는 raschig ring과 quartz wool을 사용하여 촉매층을 고정하였으며, 상부는 촉매가 비산되지 않도록 quartz sand를 뿌려준다. 촉매는 펌프가스로 400°C에서 30분간 전처리 한 후, 80°C로 낙차시켜 암모니아 또는 pyridine이 포화되도록 충분한 흡착을 행하였다. 암모니아는 가스로 공급하였고, pyridine는 60°C로 유지되는 왕복조 내에 설치된 증발관을 통하여, 이 온도에서 증기압한분의 pyridine이 가스로 도입되도록 하였다. 전처리 후 물리적 촉매의 염기성 분질을 제거하기 위하여, 80°C에서 펌프로 2시간 배기한 후, 5°C/분으로 습온하여 염기성 분질의 탐착물을 TCL cell을 이용하여 촉매하였을 때는 동일한 상태를 유지하여 전보[6]와 같은 방법으로 수행하였다.

3. 결과 및 고찰

전화율(X) = (발생한 iso-butene의 분수)×(100%)

선택률(S) = 원하는 생성물의 분수 (발생한 iso-butene의 분수)×(100%)

3.1. NH₃ 탐착량과 촉매활성

촉매의 산성질을 조사하기 위하여 알칼리 금속과

전이온 결합으로 교환된 헤테로폴리산 측매의 암모니아 TPD 곡선은 Fig. 1에 나타내었다. K⁺, Cs⁺ 등의 알칼리 금속으로 교환된 측매에서는 하나의 맨捺 필크가 관찰되었다. K⁺의 경우는 220~230°C의 저온영역에서 하나의 필크가 관찰되는 반면, Cs⁺의 경우는 450°C 부근에서 관찰되었다. 그러나, H⁺ 및 Ni⁺, Co⁺, Fe⁺ 등의 전이금속 이온교환 측매에서는 저온 영역과 고온 영역에서 각각 1개의 필크가 관찰되었으며, 필크의 면적이나 필크의 온도는 교환된 금속이온의 종류에 따라 다르게 나타났다. 이러한 TPD의 필크 면적으로부터 각 측매의 암모니아 흡착량과 TBA와 ethanol로부터 ETBE의 합성에 대한 촉매활성을 비교하여 Fig. 2 및 Fig. 3에 나타내었다. Fig. 2에 나타낸 알칼리 금속의 경우는 측매의 Keggin unit의 흡착량이 0.3~2.0 분자의 범위였으며, TBA의 전화율과 암모니아의 흡착량이 어느 정도 상관관계를 보이고 있다. 그러나, Fig. 3에 나타낸 전이금속의 경우는 측매의

Fig. 2. Relationship between conversion of TBA and amount of NH₃ adsorbed on 12-tungstophosphates.

Reaction conditions: Reaction temperature=90°C, W/F=12.7g-cat·hr/g-mole, Mole ratio (ethanol/TBA)=1.0

Fig. 3. Relationship between conversion of TBA and amount of NH₃ adsorbed on 12-tungstophosphates.

Reaction conditions: The same as Fig. 2

Keggin unit당 흡착된 암모니아의 흡착량이 2.0~3.4 분자의 범위로 알칼리 금속의 경우보다 크게 나타났지만, 암모니아의 흡착량과 TBA의 전화율은 상호작용이 각기 다른 성질을 나타내지 않았다. 염기성 물질이 암모니아의 경우, 암모니아의 흡착량과 촉매활성에 대한 상관성은 이온교환 금속의 종류에 따라 다르게 관찰되었다.
3.2. Pyridine 홍착량과 총매성

염기성 물질이 암모니아에 해당한 경우, 이온교환水墨의 중류에 따라 암모니아의 홍착량과 총매성의 상관성이
이 전혀 다르게 나타나므로, 염기성 물질로서 pyridine을 택하여, 암모니아의 경우와 같은 방법으로 측정한 각 총매의 pyridine 홍착량과 ETBE의 함성에
대한 총매성은 Fig. 4에 나타내었다. 총매의 산성질
을 조사하기 위한 염기성 물질로서 이용되는 pyridine은 고체 표면상에 물리홍착뿐만 아니라 화학홍착
이 가능하며, 화학홍착은 수소의 이동에 의한 pyridine ion의 생성과 표면에 대한 pyridine의 coordinat
ated bonding에 의한 것으로 알려져 있다
[9]. 알칼리 금속의 경우는 총매의 Keggin unit당 홍
착된 pyridine의 홍착량이 2.3~7.0분자인 범위였으
며, 전이금속의 경우는 총매의 Keggin unit당 홍착된
pyridine의 홍착량이 1.8~8.9분자인 범위로 알칼리
금속의 경우보다 크게 나타났다. pyridine의 경우는
이온교환水墨에 관계없이 어느 총매에서도 홍착량의 증가에 따라 TBA의 전화율이 대체로 증가하여, pyr
idine의 홍착량과 TBA 전화율은 상관성을 보이고 있
다.

3.3. 염기성 물질의 홍착특성

염기성 물질인 암모니아와 pyridine의 TPD곡선으로
로부터 얻은 홍착량의 상관관계를 Fig. 5 및 Fig. 6에
나타내었다. Fig. 5에 나타낸 알칼리 금속의 경우는
pyridine의 홍착량 증가에 더불어 암모니아의 홍착량
이 증가되는 어느 정도의 상관관계를 보였지만, Fig.
6에 나타낸 전이금속의 경우는 상관관계를 보이지 않
았다. 총매의 Keggin unit당 홍착된 pyridine과 암모
니아의 홍착량을 보면, 각각 1.8~9.9, 0.3~3.4 분자
의 범위로 pyridine보다 더 강한 염기인 암모니아의
홍착량이 클 것으로 기대되었으나, pyridine의 홍착
량이 암모니아 홍착량보다 더 크게 나타났다.

IR에 의한 암모니아나 pyridine의 홍착상태에 대한
전보[10]의 결과를 보면, pyridine의 경우에는 총매
표면의 산정에 상당량이 헤테로올리산 총매의 특성
관찰되었다. 그러나, 암모니아의 경우는 pyridine과
같은 홍착특성외에, 특히 전이금속 이온으로 교환된

\[\text{Adsorbed amount of pyridine (molecule/K.U.)} \]
\[\text{Adsorbed amount of NH}_x \text{ (molecule/K.U.)} \]

Fig. 5. Relationship between amount of NH\(_x\) and pyridine adsorbed on 12-tungstophosphates.

\[\text{Adsorbed amount of pyridine (molecule/K.U.)} \]
\[\text{Adsorbed amount of NH}_x \text{ (molecule/K.U.)} \]

Fig. 6. Relationship between amount of NH\(_x\) and pyridine adsorbed on 12-tungstophosphates.

촉매에서는 금속과 암모니아의 complex 형성에 의한 흡수 band가 관찰된 반면, 알칼리 금속 이온과의 촉매에서는 complex 형성에 의한 흡수 band가 관찰되지 않았다. 이온과의 complex 형성에 따라 다른 흡착거동을 보였다. 따라서 Fig. 5에 나타낸 알칼리 금속이온은 촉매에서 pyridine과 암모니아의 흡착양은 서로 상관없는 것으로 생각된다. 한편, Fig. 6에 나타낸 전이금속 이온과의 촉매에서는 암모니아의 경우 금속이온과 complex 형성을 형성하는 암모니아의 흡착 특성 때문에, pyridine의 흡착양과 그 이유 Fig. 3에 나타낸 TBA의 변화를 보다 상관성이 관찰되지 않았다. 그러나 촉매의 산성뿐만 아니라 촉매 내부의 액상으로 흡착되는 pyridine의 경우에는, 촉매의 산성 정도에 따라 흡착이 관찰되기 때문에 Fig. 4에 나타낸 TBA의 변화들도 상관성을 보이고 있다. 따라서 배합공질산 촉매에 대한 산성 정도를 조사하기 위한 양성 물질로서 암모니아보다는 이온의 금속의 종류에 관계없이 인장성이 관찰된 pyridine이 더 적합함을 알 수 있었다.

3.4. 촉매의 담지효과

Fig. 7에는 SiO₂ 담지 H₂PW₁₀O₄6 촉매의 담지량에 따른 TBA와 iso-butene의 변화를 나타낸다. TBA의 변화는 담지량의 증가에 따라 촉매활성이 지속 증가하는 경향을 보여 배합공질산 촉매가 TBA의 변화에 유효한 결과 나타나고 있다.

한편, 촉매의 담지량에 따른 iso-butene의 변화를 보면, 촉매의 담지량 증가에 따라 iso-butene의 증가율 역시 증가하는 경향을 보이지만, 담지량의 증가에 따라 계속 증가하는 TBA의 변화는 다르게 일정 담지량 이상에서 iso-butene의 증가율은 더 이상 증가되지 않았다. 따라서, 일정 담지량까지는 iso-butene의 변화와 TBA의 변화를 모두 증가하는 성형적인 관계가 성립되었지만, 그 이상의 담지량에서 TBA의 변화율은 계속 증가되고 iso-butene의 변화율은 더 이상 증가되지 않는 반응특성을 보였다.

3.5. 반응물에 따른 생성물 분포

반응물의 종류에 따라 다른 반응특성이 관찰되므로, H₂SiW₁₀O₄6 촉매의 담지량에 따른 TBA와 iso-butene의 변화 및 각 생성물의 선택성을 Table 1에 나타내었다. 먼저 iso-butene의 변화를 보면, 촉매의 담지량 증가에 따라 iso-butene의 변화율이 증가하는 경향을 보이고 있다. 그러나, 담지량이 20wt %일 때는 20.7%를 나타내었고, 담지량이 10wt % 이상인 경우에는 담지량의 증가에 따라 발달된 활성증가가 관찰되지 않았다. 생성물들은 담지량에 관계없이 ETBE만이 관찰되었다.

한편, TBA의 변화율은 촉매의 담지량 증가에 따라 계속 증가하는 경향을 보여, Fig. 7에 나타낸 담지 H₂PW₁₀O₄6 촉매와 같은 거동을 보였다. 담지량의 증가에 따른 생성물의 분포를 보면, ETBE의 선택율가.

3.6. 반응특성에 관한 고찰

따라서, Fig. 7 및 Table 1에 나타낸 담장차체의 경우 담장의 증가에 따른 TBA 전화율의 증가는, 확성 성분인 총의 양이 상대적으로 증가되므로 역학 상 합수도에 따라, 반응물질 TBA의 합수율이 증가되었기 때문으로 생각된다. 한편, 반응물질 iso-butene의 경우에는 나타난 반응특성은 Okuhara 등[12]이 제시한 바와 같이 iso-butene가 해테로폴리산 총의 표면에만 합수된다고 생각하며, 반응에 이 용가능한 총의 유효 비교면적이 증가되는 담장차에 지는 계속 증가되지만, 그 이상의 담장차에서는 더 이상의 유효 비교면적 증가를 기대할 수 없으므로, 더 이상의 총매확성 증가가 관찰되지 않는 것으로 생각할 수 있다. 따라서 총에 표면에서만 반응이 일어나는 iso-butene 전화율과 결정 내부에서도 반응이 일어날 수 있는 TBA 전화율은, 유 효 비교면적이 증가되는 임정 담장차를 초과하는 경우에만 영향을 보였지만, 그 이상의 담장차에서는 반응물질의 서로 다른 순서에 선택적인 관계에서 벗어나는 것으로 해석된다.

4. 결 론
해테로폴리산 총의 산성질과 ETBE의 합성반응에 대한 결과로부터 다음과 같은 결론을 얻었다.
1. 전이전성의 경우, 금속과 complex를 형성하는 NH₃의 환합특성 때문에 NH₃의 환합량과 TBA의 전화율은 상관관계를 나타내지 않았다.
2. pyridine의 환합량과 TBA의 전화율은 이론에 반하고 금속의 종류에 관계없이 온 산성의 산정 및 이온성으로 환합 가능한 pyridine이 더 적합하다.
3. TBA와 ethanol로부터 ETBE 합성시 ETBE는 총매표면에서, iso-butene는 총 내부에서 주로 생성되기 용이하다.
4. 담장의 증가에 따라 TBA의 전화율은 증가하는 것과 같은 iso-butene의 전화율은 유 효 비교면적이 증가되는 임정 담장차지만 증가되는 응용을 보였다.

 감 사
본 연구는 RCCT(조합공학 총매기술 연구센터)의 연구비 지원에 의하여 수행된 것이다. 연구비 지급에 참여하신 센터에 감사를 드립니다.

참고문헌
