A Study on the Prediction of the Octane Number of Gasolines from the Carbon Type Structural Compositions by 13C-Nuclear Magnetic Resonance Spectroscopy

Ju-Hwan Choi*, Yong-Jin Chun**, Ung-Su Choi, Young-Sang Choi*, and Oh-Kwan Kwon

Tribology Lab., KIST, Seoul 136-791, Korea
*Dept. of Chemistry, Korea Univ., Seoul 136-701, Korea
**Dept. of Chem. Eng., Korea Univ., Seoul 136-701, Korea
(Received May 31, 1993, Accepted August 6, 1993)

Abstract: The research and motor octane numbers (RON & MON, respectively) of a gasoline are dynamic measures of its quality of performance as a fuel. ASTM standard engine test methods (RON: ASTM D-2699, MON: ASTM D-2700) have been used for determining the octane numbers (RON,MON) of gasolines. But these methods have been widely criticized because their repeatability and reproducibility of the test method are very poor. In addition to these objections, the cost and operation time involved in measuring by the standard method led to searches for "non-engine" methods (Gas Chromatographic method, Nuclear Magnetic Resonance Spectroscopic method). In this study, we determined the carbon type structural compositions of the gasolines by 13C-NMR spectroscopy and predicted the octane number (RON & MON) with good accuracy. We presented an assessment of the effects of molecular structural composition on octane numbers.

753
1. 서 론

화학조성이 용량가와 같은 질화특성에 주된 영향을 미친다는 사실은 이미 오래 전부터 잘 알려져 왔으며 앞으로의 다양한 연구의 패턴에 대한 분자구조의 영향에 관한 논문에서도 잘 설명이 되고 있다[8]. 이들 용량가에 영향을 미치는 화학구조적 변수들로서는 아래와 같은 것이 있다[5].

1.1. 이소파라핀

파라핀 탄화수소의 구조속에 있는 알킬기 사슬의 가지는 정도가 용량가 사이에 밀접한 관계가 존재한다는 사실은 이미 오래 전부터 잘 알려져 왔다. 이 가지는 정도의 양이 측정값을 "Isoparaffin Index" 라 하며 이는 파라핀에 있는 CH₂CH₃비율을 의미한다. 2, 2, 4-trimethylpentane에 대해서 이 값은 5.0이며 n-heptane에 대해서는 0.4이다. 이는 파라핀 혹은 파라핀 혼합물에 대한 CH₂CH₃비율을 핵심이 공정 분광법에 의해서 실험적으로 결정될 수 있다. 가솔린 중의 파라핀에 대한 CH₂CH₃비율은 5.0과 0.4 사이이며 이 값들은 각각 2, 2, 4-trimethylpentane와 n-heptane에 대한 비율에 따른다. 'C-NMR에 의해 실험적으로 측정된 CH₂CH₃비율은 용량가를 예측하기 위한 주된 인자로서 기여하며 중요한 역할을 한다.

1.2. 방향족 성분

가솔린의 용량가 평가는 일차적으로 그것의 Isoparaffin Index와 방향족 성분 양에 기인한다. 방향족 성분량이 증가함으로써 용량가 평가가 요구되는 수준으로 향상시킬 수 있다. 그러나 화학적인 요인 때문에 이들의 혼합에는 한계가 있다. 방향족 성분은 그 둘 개개의 용량 평가치들이 전체적으로 110 RON과 100 MON 정도로 높게 평가된다. 그러므로 이 방향족 성분 양에 대한 영향은 두번째로 중요한 기여자이다.

1.3. 남성분

가솔린 용량가를 높히기 위해 tetramethyl lead(TML)나 tetraethyl lead(TEL) 형태의 알킬납이 가솔린에 들어가는데 이들은 점화단 및 그로 정도 첨가되어 용량가를 5~15 정도까지 증가시키기 때문에 1920년도 초반에 이 남성분 양은 세번째로 중요한 인자로 작용한다.

1.4. 황성분

대 부분의 가솔린 속에서 발견되는 약 0.02wt.%의 평균 황성분 양은 알킬납 첨가제의 효과를 감소시킨다.

1.5. 다른 가능한 변수들

밀도와 Reid 증기압도는 중요한 변수들로서 고려되지 않는다. 밀도는 용량가에 분명한 관계를 보이지 않고서 무시시켜 변화한다. Reid 증기압도는 보편적으로 가솔린과 연료용 가솔린에 대해서 보편적으로 인정된다. 용량가에 대한 다른 가능한 기여인자는 올레핀이다. 올레핀은 용량가에 대한 올레핀의 영향은 확실히 없다. 몇몇 올레핀들은 높은 용량가(90)를 나타내는 반면에 다른 것은 극히 낮은 용량가(20)를 갖는다. 즉 그들 사이에 넓은 범위를 갖는다. 석 자질 탄화수소 유형(파라핀, 방향족, 올레핀) 중 올레핀 농도는 보통 상대적으로 낮다(<= 10%). 그러므로 올레핀의 농도와 그 영향은 무시된다.

본 연구에서는 탄소 구조 간의 구조에 대하여 'H-NMR 에 비해서 보다 직접적인 정보를 제공해 주며, 'H-NMR로는 검출되지 않는 4차 탄소원자 혹은 치환된 방향족 고리의 탄소원자까지도 검출할 수 있는 'C-NMR 분광법에 의해 가솔린 내의 탄소의 유형별 구조적 조성을 직접 간접적으로 기준 선형 회귀분석(7) 결과를 이용하여 가솔린의 용량가를 예측하였으며 그 분자구조가 용량가에 미치는 영향을 고찰해 보았다.
2. 실험

2.1. 시약

본 실험에 사용한 가솔린 및 가소용(가솔린-알코올 혼합연료)은 국내에서 생산 되었고 있는 유, 무연 가솔린 10가지로 구입하여 사용하였으며, 가소용은 무연가솔린에 10 vol.%의 에틸알코올을 혼합한 것을 사용하였다. 13C-NMR 실험에 사용한 용매인 CDCl$_3$는 Aldrich제 13C-NMR용을 사용하였다.

2.2. 시료제조

가솔린은 약 50 vol.%의 농도로 CDCl$_3$로 희석하였으며 마세제인 Cr(AcAc)$_2$를 35mg 첨가하였다 [9].

2.3. 기기 및 조건

13C-NMR 스펙트럼은 Bruker AM 200 FT NMR 용을 사용하여 50.3MHz, pulse delay time 1초의 조건에서 얻었으며 NOE를 제거하기 위해 Inverse Gated Decoupling Program을 사용하였다.

가솔린 일반 물성실험은 ASTM 표준법에 준하여 실시하였으며 납성은 원자흡착량법(ASMT D-3237)으로 정량하였으며, 황성은 X-선 흐광법 (ASTM D-4294)으로 정량하여 wt.%로 0.004wt.%의 낮은 농도로 얻어졌다. 방향성 측정은 FIA 시험방법 (ASTM D-1319)에 의해 결정하였다.

3. 결과 및 고찰

Fig. 1은 본 실험에서 사용한 대표적인 무연가솔린과 가소용에 대한 13C-NMR 비교 스펙트럼으로, 이들 13C-NMR spectra로부터 Table 1에 나타낸 13C-NMR spectra의 각 피아크들의 허석 [10, 11]에 따라서 이들의 Isoparaffin Index를 구하기 위한 다음과 같다.

$$ \text{Isoparaffin Index} = \frac{\text{CH}_2 \text{ peak 면적의 합}}{\text{CH}_4 \text{ peak 면적의 합}} $$

무연가솔린의 Isoparaffin Index =

$$ \frac{(1)+(5)+(6)}{(2)+(3)+(4)} = \frac{35.31}{34.59} = 1.021 $$

(이 결과 좌표축 숫자들은 Fig. 1에 있는 각 peaks를 나타낸다.)

가소용의 Isoparaffin Index = \frac{16.954}{15.222} = 1.114

이 Isoparaffin Index값들과 아래 Table 2에서의 다른 변수값들을 옥탄기를 구하기 위한 식 (1)과 (2)에 대입하여 계산하면 각각 94.7과 95.5의 옥탄기를 나타내며 표준전진 시험방법에 의해 측정된 값은 94와 95였다. 여기서 가소용의 Isoparaffin Index는 무연가솔린의 그것보다 큰 값을 갖는다. 그리고 다른 변수값들이 같으므로 가소용의 옥탄기는 무연가솔린의 옥탄기가보다 높은 값을 갖게 된다.

Table 2에 Isoparaffin Index뿐만 아니라 가솔린의 옥탄기에 주된 기여 하는 4가지 인자들의 대체로 측정값들도 제시되어 있다. M. E. Myers 등은 이 4 가지 인자들의 측정값들을로부터 아래와 같은 식을 이용하여 옥탄기를 계산하였다.

$$ \text{RON} = (A) + (B) \text{(Isoparaffin Index)} + (C) \text{(Aromatic Content)} + (D) \text{(Lead Content)} + (E) \text{(Sulfur Content)} $$

$$ \text{MON} = (F) + (G) \text{(Isoparaffin Index)} + (H) \text{(Aromatic Content)} + (I) \text{(Lead Content)} + (J) \text{(Sulfur Content)} $$

위 2개의 식에 포함된 10개의 계수들은 M. E. Myers 등에 의해 실험 회귀식을 통하여 구한 값들로서 Table 3에 나타내었으며 이들에 대한 세부적인 도출과정은 이전의 문헌에 수록되어 있다 [5].

Table 2에 나타난 본립 결과값들과 식 (1)과 (2)를 이용 계산한 결과인 예측된 가솔린 옥탄기(RON, MON)와 표준전진 시험방법에 의해 측정된 옥탄값들은 Table 4에 나타내었다. Fig. 2는 이들 값을 그
Table 1. Range of 13C-NMR Chemical Shift Assigned to Various Bonding Type Carbon on 13C-NMR Spectra of Hydrocarbons

<table>
<thead>
<tr>
<th>Shift Range (ppm from TMS)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.0–170.0</td>
<td>Aromatic carbon atoms substituted by -OH, ether, -CO, C atoms in carbonyls, and substituted C-2 carbon in pyridine, etc.</td>
</tr>
<tr>
<td>137.0–150.0</td>
<td>$C_{ar, a}$ alkyl-substituted(methyl group excluded) aromatic carbons.</td>
</tr>
<tr>
<td>132.0–137.0</td>
<td>$C_{ar, o}$ carbons at the junction of an aromatic and a naphthenic ring.</td>
</tr>
<tr>
<td>129.0–130.0</td>
<td>C_{ar, CH_3} methyl-substituted aromatic carbons.</td>
</tr>
<tr>
<td>128.5–136.0</td>
<td>$C_{ar, u}$ carbons at the junction of two aromatic rings.</td>
</tr>
<tr>
<td>123.5–126.0</td>
<td>$C_{ar, a, u}$ carbons at the junction of three aromatic rings.</td>
</tr>
<tr>
<td>118.0–130.5</td>
<td>$C_{ar, H}$ aromatic protonated carbons.</td>
</tr>
<tr>
<td>9.0–60.0</td>
<td>Paraffinic including cycloparaffinic and carbons of methyl and alkyl substitution on aromatic rings.</td>
</tr>
<tr>
<td>11.4</td>
<td>CH_2CH_3</td>
</tr>
<tr>
<td>14.1</td>
<td>Terminal methyl carbon $\text{CH}_3\text{-(CH}_2\text{)_n}$ (n ≥ 3)</td>
</tr>
<tr>
<td>22.7</td>
<td>First methylene carbon in long alkyl groups $\text{CH}_2\text{CH}_2\text{-(CH}_2\text{)_n}$ (n ≥ 2)</td>
</tr>
<tr>
<td>19.5</td>
<td>Internal methyl carbon $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3$</td>
</tr>
<tr>
<td>29.7</td>
<td>Third or further methylene carbon in long alkyl groups $\text{CH}_3\text{CH}_2\text{CH}_2\text{-(CH}_2\text{)_n}$</td>
</tr>
<tr>
<td>32.0</td>
<td>Second methylene carbon in long alkyl groups $\text{CH}_3\text{CH}_2\text{CH}_2\text{-(CH}_2\text{)_n}$ (n ≥ 2)</td>
</tr>
</tbody>
</table>

![Chemical Structure](image)

37.2–37.5	$\alpha-C(n = 0), \text{CH}(n ≥ 2)$
34	$\alpha-C(n ≥ 1)$
30.1	$\gamma-C$
27	$\beta-C$

래프로 도시해 놓은 것이며 두 값들이 매우 잘 일치함을 알 수 있다.

Fig. 3은 13C-NMR에 의해 구해진 가솔린의 Isoparaffin Index값들을 예측된 용량등에 대하여 도시해 놓은 것이다.

Table 2와 4 그리고 Fig. 2와 3에서 나타난 결과들은 다음과 같이 몇 가지로 요약해 볼 수 있다.

이것은 B1과 A2가 방향족 성분을 많이 포함하고 있기 때문이다.

둘째, 무연 가솔린인 B2와 E2의 경우 납 및 황성분은 동일하고 방향족 성분은 서로 비슷한데도 E2가 B2에 비해서 용량가가 낮은 것은 Isoparaffin Index 값이 낮기 때문이므로, 이로부터 Isoparaffin Index값의 영향이 방향족 성분의 영향보다 크다는 사실을 알 수 있었다. A2와 B2의 경우 납 및 황성분의 양은 동일하고 A2가 B2에 비해서 방향족 성분 양이 큰 값을 갖는데도 용량가가 낮은 것은 Isoparaffin Index 값이 낮기 때문으로 사료된다. D1과 D2에서 방향족
Table 2. Variables Affecting Octane Numbers of Gasolines

<table>
<thead>
<tr>
<th>Kind of Gasolines Variable</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoparaffin Index</td>
<td>0.979</td>
<td>1.021</td>
<td>1.114</td>
<td>0.945</td>
<td>1.177</td>
</tr>
<tr>
<td>Aromatic Content vol.%</td>
<td>21.8</td>
<td>51.8</td>
<td>51.8</td>
<td>39.5</td>
<td>43.5</td>
</tr>
<tr>
<td>Lead Content Te. m/ℓ</td>
<td>0.19</td>
<td>0.19</td>
<td>0.26</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>Lead g/ℓ</td>
<td>0.201</td>
<td>0.001</td>
<td>0.001</td>
<td>0.201</td>
<td>0.001</td>
</tr>
<tr>
<td>Lead g/gal</td>
<td>0.761</td>
<td>0.0038</td>
<td>0.0038</td>
<td>0.761</td>
<td>0.0038</td>
</tr>
<tr>
<td>Sulfur Content wt.%</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Ref.: *A, B, C, D, E samples are the commercial gasolines of 5 refinery plants.
1. Leaded Gasoline
2. Unleaded Gasoline
3. Gasohol (Unleaded Gasoline + 10% EtOH)

Table 3. Coefficients and Standard Deviations for RON and MON[5]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>RON</td>
<td>80.2</td>
<td>8.90</td>
<td>0.107</td>
<td>2.93</td>
<td>-13.4</td>
</tr>
<tr>
<td></td>
<td>(1.1)</td>
<td>(0.69)</td>
<td>(0.030)</td>
<td>(0.17)</td>
<td>(5.8)</td>
</tr>
<tr>
<td>MON</td>
<td>70.8</td>
<td>10.0</td>
<td>0.101</td>
<td>3.27</td>
<td>-11.1</td>
</tr>
<tr>
<td></td>
<td>(1.1)</td>
<td>(0.67)</td>
<td>(0.029)</td>
<td>(0.16)</td>
<td>(5.5)</td>
</tr>
</tbody>
</table>

![Fig. 2. Predicted octane numbers (RON & MON) vs. values obtained by engine test.](image)

성분 양과 낱성분 그리고 황성분에 있어 모두 D1이 D2보다 높은 양을 포함하는 데도 D1이 D2보다 낮은 용량을 갖는 것으로 역시 Isoparaffin Index가 D1이 D2보다 높은 값을 나타내기 때문이다.

또한, C1과 C2에서 C2가 C1 보다 Isoparaffin Index와 방향측 성분 양이 높은 값을 갖는 데 비하여 낮은 용량을 나타내고 있다. 이것은 C1에 포함된 낱성분의 양이 C2에 비하여 매우 높아서 위 2가지 인자의 영향을 상쇄시킬 수 있기 때문이다.

그러나 우연 가속된 경우, 낱성분과 황성분의 양은 동일한데도 용량에 있어서 큰 차이를 보이는 것은

이상의 결과 육탄가에 영향을 주는 4가지 요인들 중 서론에서 언급한 바와 같이 남성분의 양이 매우 큰 경우를 제외하고는 Isoparaffin Index와 방향측 정부이 육탄가에 주된 영향을 미치는 인자들로 판단된다.

Fig. 3에서 Isoparaffin Index값이 증가함에 따라 육탄가가 증가하는 경향을 보인다. 이것은 가솔린의 분자구조적 조성에서 가지화의 정도가 클수록 육탄가가 증가한다는 사실을 나타낸다.

4. 결 본

가솔린과 같은 복합한 탄화수소 혼합물의 화학조성은 H-NMR보다 직접적으로 정확한 탄소 물질 구조에 대한 정보를 제공해 주는 13C-NMR에 의해 그 탄소 유형별로 구하여 그로부터 육탄가를 예측한 결과 표준 압정시험 측정값과 잘 일치하였으며 육탄가에 대한 분자구조적 영향으로서는 가지화의 정도가 나타내는 Isoparaffin Index값이 클수록 육탄가는 증가하였다.

남성분을 함유한 육탄가 화학계 (TEL, TML 등)의 사용 규제, 방향측 탄가의 규제 등 환경문제를 야기시키는 물질들에 대한 규제 등을 감안하여 향후 가솔린의 육탄가 함량을 위한 바람직한 방안으로서 본 연구결과 가솔린의 육탄가 함량에 가장 주된 요인으로 작용하는 Isoparaffin Index를 증가시키는 것이 가장 좋은 방법으로 판단되며 정유공정에서의 별도의 육탄가성분제의 점가 없이 최대의 Isoparaffin Index 값을 갖는 가솔린 생산을 위한 최적 정제공정 조업조건 확립에 대한 연구가 진행되어야 한다고 생각된다.

참고문헌

8. 최주환, 전용진, 최영수, 최영상, 권오관, 한국공업화학회지 제34권(1993).
9. T. H. DeFries, D. Indritz, and R. V. Kastrup,