Synthesis of (2, 3-Dibromopropyl)Phenyl Octadecanoyl Phosphate and Its Application as Softening Flame Retardant

Hong-Soo Park

Dept. of Chem. Eng., College of Eng., Myong Ji University, Seoul 120-728, Korea

(Received August 6, 1992, Accepted September 26, 1992)

Abstract: (2, 3-Dibromopropyl) phenyl phosphosphate(DPP) was synthesized from 2,3-dibromopropyl alcohol and chlorophenyl phosphate. Also, (2, 3-dibromopropyl)phenyl octadecyl phosphate(DPOP) was synthesized from DPP and n-octadecyl chloride. Flame retardants, DPPF and DPOP, were prepared by blending DPP and DPOP with emulsifier, respectively. The flame retardants prepared were oil/water type emulsion flame retardants. As a result of treatments of the flame retardants on various synthetic textiles, DPPF showed only good flame retardancy, but DPOP showed both good flame retardancy and good softness.

1. 서 론

가연성 섬유류로 인한 화재가 많이 발생하기 때문에 직물의 가연성 문제는 국제적인 관심사가 되었고 [1] 이에 따라 세계각국에서 위험한 가연성 직물 사용금지법안이 제정되었으며, 현재 대부분 소비자보호법에서 찾아볼 수 있다[2].

거의 대부분의 직물은 300℃ 부근에서 범해되거나 가연성 가체생성을 발생시킨다[3]. 따라서 섬유의 난연가공은 현재 사용되고 있는 천연 및 합성섬유의 화학반응이나 화학 및 화학적 특성에 따라 주로 고분자 가공처리를 행하는 것이다.

2. 실 험

2.1. (2, 3-Dibromopropyl)phenyl phosphates의 합성

고반기, 환류냉각기, 저거울 갱배기 및 온도계를 붙인 4구 플라스크에 일부 병합된 phenyl octadecanoyl phosphate(산체) 57.8g(0.3mol)과 브렌 55ml 넣은 후 플라스크를 얼음무지에서 0~1°C 유지하도록 해놓고, 병도로 브렌 200ml와 폐던 40ml의 혼합액에 2,3-dibromopropyl alcohol(Wako) 65.4g(0.3mol)을 용해시킨 용액을 저작용 갱배기에 동하여 30분간 가열하였다. 저작용 온도를 25°C으로 옮긴 다음 같은 온도에서 5시간 계속하여 반응시켰다. 생성된 pyridine hydrochloride를 분리시키고 여려한 브렌중 500ml의 물, 600ml의 탄산나트륨 용액 및 500ml의 물의 순서로 계속하여 세척하였다.

브렌중은 무수향산나트륨으로서 건조시켜 브렌을 제거하고 탄소물은 120°C/0.03~0.05mmHg에서 처리, 정제하여 투명한 무색액상의 (2, 3-dibromopropyl)phenyl phosphates(DPP)를 얻었다.

수량량: 91.3g(81.4%)
브름 함량: Anal. Calcd: 42.78%, Found: 42.72%

[2.3 참조]

2.2. (2, 3-Dibromopropyl)phenyl octadecyl phosphate의 합성

고반기, 환류냉각기, 질소가스 도입관 및 온도계를 붙인 4구 플라스크에 DPP 74.8g(0.2mol), 물무경 100ml 및 n-octadecyl chloride(Aldrich) 60.5g(0.2mol)을 넣고 질소 분위기 하에 40°C/30mmHg에서 4시간 반응을 시켜 담황색 절정의 (2, 3-dibromopropyl)phenyl octadecyl phosphate(DPOP)를 합성하였다.

정제는 2.1과 같은 방법으로 하였다.

수량량: 94.3g(73.7%)
브럼 함량: Anal. Calcd: 25.00%, Found: 24.11%

[2.3 참조]

2.3. 브럼 함량측정 방법

개량 연소 플라스크법[22]으로 DPP내의 브럼 함량을 측정하였다. DPP 시료 6mg을 정확히 취하여 28% 과산화수소수 0.5ml와 물 5ml로 넣고 산소기체를 가득 채운 플라스크내의 백과함으로서 빠른 후 연소 생성가스를 완전히 과산화수소로 용해하여 30분간 방치한 후 diphenyl carbazone을 지시약으로 하여 0.005N Hg(NO₃)₂액으로 정량하였다.

\[
\text{Br(\%)} = \frac{\text{Hg(NO}_3)_2 \text{ 소비밀 mul factor } \times 0.3995}{\text{시료량(mg)}} \times 100
\]

2.4. 기기분석

IR 분광측은 일본 Japan Spectroscopic사의 Infrared Spectrophotometer(JASCO-810형)을 사용하여 시료는 KBr pellet로 하여 분석하였고, NMR분광분석은 용매로서 CDCl₃/TMS를 사용하여 Varian EM-360(60 MHz) NMR Spectrometer로 분석하였다.

2.5. 난연제의 제조

앞에서 합성한 DPP와 DPOP을 각각 끓여 유화시켜 유화공 난연제를 제조하였는데, DPP의 배합은 DPP 30g에 유화체 polyoxyethylene sorbitan monooleate(Nippon Oil Co., Nonion OT-221, HLBP 15.0) 2g과 polyoxyethylene castor oil(Nikkol Chemical Co., Nikkol CO-10, HLBP 6.5) 1g을 각각 가하고 물 70ml 를, DPOP의 경우는 DPOP 30g에 유화체 polyoxyethylene nonylphenol ether(Nippon Oil Co.,

2.6. 난연가공 시험
2.6.1. 아크릴설유의 배합 및 처리조건

2.5에서 제조된 DPPF와 DPOPF 10, 20, 30 wt%의 각각의 수용액을 취하고, 시료는 아크릴질물(무게 80 g/m²)을 택하여 30°C의 처리 aprox에서 1 dip, 1 nip padding하여 2분간 전처리 시 wet pick-up[23]을 80wt%로 조절하였다. 이들 처리시료는 100°C에서 5분간 건조시켜 물성측정용 시료로 사용하였다.

2.6.2. 폴리아미드계 섬유의 배합 및 처리조건

DPPF와 DPOPF를 nylon taffeta 직물(무게 90g/m²)에 다음과 같이 처리하여 그 성능을 시험하였다.

단독처리시 난연계 용액의 조성은 2.6.1과 같이 취하였다. 수지병용시의 용액의 조성은 2.6.1과 같이 취하고 수지로서 Sumitex Resin 901(Sumitomo Chemical Co., ethylene-urea계) 10wt%와 촉매물
Sumitex Accelerator ACX(Sumitomo Chemical Co., amine salt계) 0.5 wt%를 각각 배합하였다. 처리조건은 2.6.1과 같은 방법으로 wet pick-up이 60wt %가 되도록 하였다. 허브처리 조건은 90°C에서 5분간 하였으며, 열처리는 150°C에서 2분간하여 정화시킨다.

2.6.3. 폴리에스테르섬유의 배합 및 처리조건

난연제를 tetron taffeta 직물(무게 80g/m²)에 다음과 같이 처리하였다. 난연제량은 단독처리시나 수지병용처리시 모두 2.6.1과 같이 취하고 수지병용시는 수지로서 Sumitex Resin M-3(Sumitomo Chemical Co., 벌라민계) 1 wt%와 Sumitex Accelerator ACX 0.2 wt%를 각각 배합하였다.

처리조건은 2.6.2와 같은 조건으로 하였다.

2.7. 물성측정용 시료의 측정기기

Padding은 Pneumatic Heavy Padder(Uenoyma Kiko Co., 공기압착형), 건조는 열풍식 순환건조기(Lewis Corporation Co.)를 사용하였으며, 열인력은 Flat Bed Press(Toyo Seiki Seisaku-sho Ltd.)에서 하였다.

난연성 시험은 45°C Meckel Burner 법(JIS Z-2150)과 Coil 법(Kenmeyer Kishuzu Co.,)을 각각 사용하였으며, 인화강도는 Elemendorf Textile Tearing Tester(Daiei Kagaku Seiki Co.)로서 측정하였다.

3. 결과 및 고찰

3.1. DPP의 합성확인

DPP의 합성은 Scheme 1의 식으로 표시된다.

\[
\begin{align*}
\text{CH}_2-\text{CH}-\text{CH}_2-OH & \quad + \quad \text{Cl} \quad \text{Br} \\
\text{Br} \quad \text{Br} & \quad \text{HO} \quad \text{P} \quad \text{Br} \quad \text{Br} \quad \text{HO} \\
\text{CH}_2-\text{CH}-\text{CH}_2- & \quad \text{P} \quad \text{Br} \quad \text{Br} \\
\text{O} \quad \text{O} & \quad \text{O} \quad \text{O} \\
\end{align*}
\]

Scheme 1. Synthesis of DPP.

Fig. 1에 DPP의 IR 스펙트럼은 나타내는데 1270 cm⁻¹에 P=O의 산측정동[24], 2630cm⁻¹에 P-OH 산측정동[24], 1190 cm⁻¹에 P-O-C(aromatic 산측정동[24]) 및 1020 cm⁻¹에 P-O-C(aliphatic) 산측정동

\[
\begin{align*}
\text{Transmittance (%)} \\
\text{Wavenumber (cm⁻¹)} \\
\end{align*}
\]

Fig. 1. IR spectra of (a) DPP and (b) DPOP.

Fig. 2에 DPP의 NMR 스펙트럼을 나타내는데, 화학적이동과 적분비로 부터 61.8 ppm 부근에서 CH₂-Br(2H)의 흡수파이크, 83.3 ppm에서 CH₃Br
3.2. DPOP의 탄성 확인
DPOP의 탄성 과정을 Scheme 2에 나타내었다.

\[
\begin{align*}
\text{CH}_2=\text{CH}-\text{CH}_2- \text{O} & \xrightarrow{\text{P} \xrightarrow{\text{Br} \text{HO} \xrightarrow{0} (\text{CH}_2\text{CH}_3)_n\text{COCl}}} \\
\text{CH}_2=\text{CH}-\text{CH}_2- \text{O} & \xrightarrow{\text{Br} \text{Br} \text{CH}_2(\text{CH}_2)_n\text{CO} \xrightarrow{0}}
\end{align*}
\]

Scheme 2. Synthesis of DPOP.

3.4. 이크릴을 함유한 난연성
알에서 제조된 난연제 DPPF와 DPOP의 난연성 측정 결과를 Table 1에 표시하였다.

2종류의 난연제 모두 사용량도 20 wt%와 30 wt%에서 탄화질이가 5.0 이하이고 잔업과 잔류[31]이 1 초 이하로 나타나 난연제 금지에 해당되어 아크릴적용에 양호한 난연성을 나타내었다.

그러나 농도 10wt%에서는 부적합한 난연효과를

Table 1. Flame Retardancy of Acrylic Fabrics Treated with Synthesized Flame Retardant

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Concentration (%)</th>
<th>Char length(cm)</th>
<th>Afterflaminga</th>
<th>Afterglowb</th>
<th>Coil method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>—</td>
<td>BELc</td>
<td>—</td>
<td>—</td>
<td>completely burn</td>
</tr>
<tr>
<td>DPPF</td>
<td>10</td>
<td>18.2</td>
<td>22.4</td>
<td>1.0</td>
<td>partially burn</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td>DPOPF</td>
<td>10</td>
<td>20.0</td>
<td>24.9</td>
<td>2.0</td>
<td>partially burn</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.7</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.0</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
</tbody>
</table>

a Burning time of sample with spark was measured from the end time of heating flame.
b Indicates combusting state without spark from end time of heating; it was determined by observation after 1 min from the end time of heating.
c Burned entire length.

Fig. 3 is DPPF and DPOPF’s nongas evidence for the flame retardancy of acrylic fabrics.

3.5. 플리아미드계 섬유의 난연성

Nylon taffeta에 난연체 단독 혹은 수지병용처리된 결과를 Table 2에 나타내었다.

45° Meckel burner 범위에서는 Table 1과 같이 DPPF보다 DPOPF의 난연성이 좋았고 수지병용처리 시에는 단독처리시 보다 난연효과가 다소 저하되었으나 대체로 성유용 가공수지와의 상용성은 향상되었다.

Coil범위에서는 단독처리시 10wt% 농도에서는 난연체 부문연소되었고, 20wt%에서는 불에 타지 않았으나 수지병용처리는 20wt% 농도에서도 일부연소가 진행되었다.
Table 2. Flame Retardancy of Nylon Taffeta Fabrics Treated with Synthesized Flame Retardant

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Concentration (%)</th>
<th>Char length (cm)</th>
<th>Afterflaming (sec)</th>
<th>Afterglow (sec)</th>
<th>Coil method</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1<sup>a</sup></td>
<td>-</td>
<td>8.8</td>
<td>0</td>
<td>0</td>
<td>completely burn</td>
</tr>
<tr>
<td>B-2<sup>b</sup></td>
<td>-</td>
<td>BEL</td>
<td>-</td>
<td>-</td>
<td>completely burn</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.9</td>
<td>0</td>
<td>0</td>
<td>partially burn</td>
</tr>
<tr>
<td>DPPF<sup>c</sup></td>
<td>20</td>
<td>3.4</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.3</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.1</td>
<td>2</td>
<td>0</td>
<td>partially burn</td>
</tr>
<tr>
<td>DPOP<sup>d</sup></td>
<td>20</td>
<td>4.3</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.8</td>
<td>2</td>
<td>0</td>
<td>completely burn</td>
</tr>
<tr>
<td>DPPF + Resin<sup>e</sup></td>
<td>20</td>
<td>4.3</td>
<td>0</td>
<td>0</td>
<td>partially burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.5</td>
<td>2</td>
<td>0</td>
<td>completely burn</td>
</tr>
<tr>
<td>DPOP + Resin<sup>f</sup></td>
<td>20</td>
<td>4.6</td>
<td>1</td>
<td>0</td>
<td>partially burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.3</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
</tbody>
</table>

a) Original fiber not treated with flame retardant and resin.
b) Fiber treated with resin only.
c) Fiber treated flame retardant only.
d) Fiber treated with flame retardant and resin.

Fig. 4는 단독처리시의 난연제 농도에 따른 인연간도 변화를 측정한 것인데 대체로 Fig. 3과 같은 결과를 얻었다. 따라서 적성 사용농도는 약 10~20wt%였고, DPPF보다 DPOPF측이 난연성은 다소 저하되었으나 유연성은 더 우수하였다.

3.6. 풀리에스테르섬유의 난연성
Table 3은 tetron taffeta에 난연제를 단독 혹은 수지방용처리한 결과인데, 대체로 Table 2와 같은 경향을 나타내었고 단독처리 시 적성 사용농도는 10wt%였다.

Fig. 5는 난연처리된 tetron taffeta의 처리농도에 따른 인연간도 변화를 측정한 것인데 DPOP의 경우는 Fig. 3~4에서와 같이 안전한 극선을 이루었으나 DPPF는 거의 직선관계를 나타내었다. 즉 DPPF 난연제는 사용농도 증가에 따라 tetron taffeta의 유연성이 급격히 저하됨을 알 수 있었다.

3.7. 각종 활성성유간의 난연성 비교검토
섬유의 종류에 따른 열에 대한 가동을 살펴보면, 면과 레이온 및 양모는 열에 의하여 변해되고, 폴리에스테르나 나일론섬유는 변연용량이며, 아크릴섬유는 변연사용되어 변하름다고 알려져 있다[3].

활성성유의 연소가능성은 대단히 복잡하고 아직 충분히 알려져 있지 않으나, 본체성 이상으로 가열될 때에는 가연성의 저온자화합이 생성되며 그것이 공기와 혼합하여 연소하게 되는 것을 확실하다.

Liggett[33]에 의하면 가열시에 생겨나는 연소성

Table 3. Flame Retardancy of Tetron Taffeta Treated with Synthesized Flame Retardant

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Concentration (%)</th>
<th>Char length(cm)</th>
<th>Afterflaming (sec)</th>
<th>Afterglow (sec)</th>
<th>Coil method</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>-</td>
<td>7.5</td>
<td>2</td>
<td>0</td>
<td>completely burn</td>
</tr>
<tr>
<td>B-2</td>
<td>-</td>
<td>BEL</td>
<td>-</td>
<td>-</td>
<td>completely burn</td>
</tr>
<tr>
<td>DPPF</td>
<td>10</td>
<td>3.4</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.2</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td>DPOPF</td>
<td>10</td>
<td>4.2</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.4</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td>DPPF + Resin</td>
<td>10</td>
<td>4.6</td>
<td>1</td>
<td>0</td>
<td>partially burn</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.3</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.0</td>
<td>0</td>
<td>0</td>
<td>non-burn</td>
</tr>
<tr>
<td>DPOP + Resin</td>
<td>10</td>
<td>4.9</td>
<td>2</td>
<td>0</td>
<td>partially burn</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.5</td>
<td>1</td>
<td>0</td>
<td>non—burn</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.3</td>
<td>0</td>
<td>0</td>
<td>non—burn</td>
</tr>
</tbody>
</table>

Fig. 5. Relation between the concentration of treating solution and the tear strength of treated tetron taffeta.

물질은 섬유의 종류에 따라 달라져, 아크릴성유를 연소시키면 알코올·탄화수소·케톤·시설화수소산·ladder polymer가, 나이론성유는 CO·CO2·물·에탄올·C1~C6의 탄화수소·cyclpentanone이, 폴리에스테르성유는 CO·CO2·H2·디에틸에테르 및 아세트알데히드가 각각 생성된다고 밝혔다.

특히 나이론이나 폴리에스테르성유와 달리 아크릴성유는 가열하면 가열된 부분에 침소의 가로상 화합물이라고 생각되는 ladder polymer가 생성됨으로써 불꽃의 심각성을 더욱 대비화되고 더불어 화변성물질이 생기기 쉬워져 연소를 약하게한다고 알려져 있다[33].

본 연구에서의 3종류의 화성성유에 대한 난연성 실험결과 적정 사용농도는 아크릴성유를 20wt%, nylon taffeta 10~20wt% 및 tetron taffeta 10wt% 섭도에서 3종류의 화성유 중 아크릴성유에 대한 난연 효과가 가장 저하되었는데, 이러한 현상은 위에서 말한 아크릴성유가 터프에 비해 연소가 평균적으로 동일한 것으로 생각된다.

그러나 본 실험이에서는 제조된 난연제 DPPF와 DPOP는 3종류의 화성성유에 모두 난연1급을 나타내어 화성성유용 범용난연제로서 사용가능하며, 특히 DPOP은 유연성을 검증한 난연제임이 입증되었다.

4. 결론

(2,3-Dibromopropyl)phenyl phosphate(DPP)와 (2,3-dibromopropyl)phenyl octadecyl phosphate [DPOP] 함성을 거쳐 난연제 DPPF와 DPOP를 제조한 후, 각종 형성성유에 난연처리하여 난연성을 측
정해본 결과 다음과 같은 결론을 얻었다.
1. DPPF와 DOPPF는 유화형 난연제로서 유화성
2~3종류로서 유화시켰으며, 적정 o/w 유화의 범위
는 HLB값 11~14이었다.
2. 난연화공시 각종작물에 대한 적정 사용량으로는
아크릴작물 20wt%, 풍요 taffeta 10~20wt% 및
ttetron taffeta 10wt%선 이상이었다.
3. DPPF와 DOPPF를 비교해 볼 때 방염성은
DPPF, 유연성은 DOPPF주로 뛰어났고, DOPPF는 유
연성을 겸비한 난연제였다.

참고 문헌

1. Textile Flammability and Consumer Safety, gi8
Occasional Publication No. 45, Ruchlikzon—Zur-
5. W. S. Tolgyesi and J. F. Krasny, Text. Res. J.,
37, 298(1967).
6. T. D. Miles and A. C. Delasanta, Text. Res. J.,
38, 273(1968).
8. S. W. Ko and W. S. Ha, J. Korean Fiber Soc., 14,
9. A. Granzow, R. G. Ferrillo, and A. Wilson, J.
10. G. Avondo, C. Vovelle, and R. Delbourgo,
(1980).
12. E. S. Lee, K. G. Song, and S. W. Ko, J. Korean
13. E. S. Lee, K. G. Song, and S. W. Ko, J. Korean
763,631(1956).
16. H. S. Park, Y. G. Kim, and J. S. Bea, J. Korean
17. H. Enders and G. Pusch, Amer. Dyest. Rept., 48,
25(1960).
(1958).
(1979).
20. J. J. Willard and R. E. Wondra, Text. Res. J., 40,
22. M. Kinoshita and K. Hozumi, Jap. Analyst., 14,
352(1965).
24. L. J. Bellamy, “The Infra-red Spectra of Com-
plex Molecules”, 4th ed., 311, Methuen and Co.
339(1943).
A184, 3(1945).
Retardants”, 1st ed., 169, John Wiley and Sons
32. Y. I. Mok. HWAHAK KONGHAK, 15, 211
(1968).