Preparation and Characterization of Polypropylene Nanocomposites Containing Polystyrene-grafted Alumina Nanoparticles

Chan-Hee Jung, Jae-Hak Choi, Youn-Mook Lim, Joon-Pyo Jeun, Phil-Hyun Kang, and Young Chang Nho†

Radiation Application Research Division, Advanced Radiation Technology Institute-Jeongeup, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Korea

Received June 28, 2006; Accepted August 30, 2006

Abstract: After surface modification of γ-Al₂O₃ nanoparticles with a silane coupling agent, styrene was graft-copolymerized onto γ-Al₂O₃ nanoparticles using a simultaneous γ-ray irradiation technique. The influence of the irradiation dose and the grafting kinetics were investigated in detail. Polypropylene nanocomposites were fabricated by blending polypropylene, polystyrene-grafted γ-Al₂O₃ (γ-Al₂O₃-g-PS), and a small amount of 1,4-butandiol dimethacrylate (1,4-BDDA) as a crosslinker, followed by e-beam irradiation. The polystyrene-grafted γ-Al₂O₃ and polypropylene nanocomposites were characterized by TGA, FT-IR spectroscopy, SEM, and UTM analyses. The polystyrene graft yield onto γ-Al₂O₃ increased with the absorbed dose. The graft yield was higher at 50 vol% of the styrene solution than at 70 vol%. The nanocomposite fabricated with 5 phr of γ-Al₂O₃-g-PS and 3 phr of 1,4-BDDA showed the highest tensile strength. The homogeneous dispersion of γ-Al₂O₃-g-PS into the polypropylene matrix and the crosslinking through e-beam irradiation improved the mechanical properties of the nanocomposites.

Keywords: polypropylene, nanocomposite, nanoparticle, irradiation

Introduction

Traditional polymer nanocomposites have improved mechanical properties, such as toughness, as a result of the incorporation of inorganic particulate fillers [1-2]. However, high filler loadings (up to 20 % by volume) are required for such an enhancement of performance, leading to a loss of the easy processability of the polymers. Consequently, polymer-based nanocomposites are attracting considerable attention because of the unique properties that result from their nano-scale microstructures [3,4]. They are much lighter in weight, more transparent, and easier to process than conventional inorganic particulate-reinforced polymers, in addition to displaying improved mechanical properties [5-8]. However, the homogeneous distribution of inorganic nanoparticles into the polymer matrix is required to obtain the desired polymer-based nanocomposites [9-13] because agglomeration of inorganic nanoparticles caused by immiscibility between the inorganic nanoparticles and the polymer matrix leads to a reduction, rather than an improvement, of the material’s properties.

To improve the mechanical properties through uniform dispersion of inorganic nanoparticles into the matrix, we synthesized polystyrene-grafted γ-Al₂O₃ through a high-energy irradiation method after surface modification of nano-γ-Al₂O₃. The polypropylene nanocomposites were fabricated by blending surface-modified γ-Al₂O₃ nanoparticles and crosslinking agents, followed by e-beam irradiation. Their characterization is described.

Experimental

Materials
Polypropylene (PP; B310; MW: 523,000; Honam Petrochemical Co., Ltd.) was employed as a polymer matrix. Micropolished γ-Al₂O₃, possessing an average diameter of 50 nm, was purchased from Buehler.

† To whom all correspondence should be addressed.
(e-mail: ycnho@kaeri.re.kr)
Preparation and Characterization of Polypropylene Nanocomposites Containing Polystyrene-grafted Alumina Nanoparticles

Table 1. Graft Polymerizations onto TMSPM-modified Al₂O₃

<table>
<thead>
<tr>
<th>Styrene Concentration (vol%)</th>
<th>Total Dose (kGy)</th>
<th>Dose Rate (kGy/h)</th>
<th>Graft Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.5</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>2.5</td>
<td>4.8</td>
</tr>
<tr>
<td>50</td>
<td>7.5</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>2.5</td>
<td>8.1</td>
</tr>
<tr>
<td>70</td>
<td>2.5</td>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>2.5</td>
<td>4.4</td>
</tr>
<tr>
<td>70</td>
<td>7.5</td>
<td>2.5</td>
<td>6.2</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>2.5</td>
<td>7.1</td>
</tr>
</tbody>
</table>

^aMethanol used as solvent. ^bWeight of grafting polymer/weight of TMSPM-treated γ-Al₂O₃ measured by TGA.

Scheme 1. Surface modification of alumina particles: (a) silylation with TMSPM and (b) graft polymerization with styrene.

Company. 3-(Trimethoxysilyl)propyl methacrylate (TMSPM), xylene, methanol, and styrene were purchased from Aldrich Chemical Company and used as received. 1,4-Butanediol dimethacrylate (1,4-BDDA) and trimethylolpropane triacrylate (TMPTA) were supplied by the Aldrich Chemical Company and used as crosslinking agents without further purification.

Graft Polymerization onto γ-Al₂O₃ Nanoparticles

Prior to a silylation, γ-Al₂O₃ nanoparticles (10 g) were dried in a vacuum oven (195 °C) for 24 h and then dispersed in 250 mL of dry xylene with the aid of an ultrasonic probe. The nanoparticle/xylene mixture was added to a 500-mL round-bottom flask containing a stirrer a bar, and then a 10 % v/v TMSPM/xylene solution was added with stirring. The mixture was heated under reflux for 20 h under a nitrogen atmosphere. The mixture was cooled, filtered, and then dried in a vacuum oven at room temperature for 24 h. The dried TMSPM-modified γ-Al₂O₃ (0.5 g) was immersed into various concentrations of styrene in methanol. The resulting solutions were flushed for 15 min with nitrogen and then irradiated using γ-rays from a ⁶⁰Co source at a dose rate of 2.5 kGy/h at room temperature. The resulting polystyrene-grafted γ-Al₂O₃ (γ-Al₂O₃–g-PS) was washed thoroughly with hot benzene in a Soxhlet extractor to remove any residual monomer and homopolymer. The γ-Al₂O₃-γ-PS was dried in a vacuum oven at 80 °C for 24 h. The overall synthetic scheme is shown in Scheme 1. The weight loss of the grafting polymer was calculated using a TA thermogravimeter.
Preparation and Characterization of Polypropylene Nanocomposites

Polypropylene nanocomposites were fabricated by blending polypropylene pellets, γ-Al₂O₃-g-PS, and crosslinking agents using a lab-scale Brabender instrument, followed by e-beam irradiation. E-beam irradiation of the mixed samples was performed in the EB-tech using an ELV-4 electron beam accelerator with an energy of 1.0 MeV. The integral irradiation dose levels were conducted at 4 kGy. The stress-strain properties of the prepared nanocomposite were determined using an Instron model 4411 testing machine according to ASTM D 638. The test procedure was performed at a crosshead speed of 50 mm/min at room temperature. The dispersion of γ-Al₂O₃-g-PS in the nanocomposites was investigated using a scanning electron microscope (SEM; XL30S FEG, Philips Co.).

Results and Discussion

Graft Polymerization onto γ-Al₂O₃ Nanoparticles

The FT-IR spectra of neat γ-Al₂O₃, TMSPM-modified γ-Al₂O₃, and γ-Al₂O₃-g-PS are shown in Figure 1. After surface modification with TMSPM, a carbonyl peak at 1730 cm⁻¹ and an aliphatic C-H band at 2950 cm⁻¹ appeared in TMSPM. After graft polymerization, aromatic C-H bands (at 3010, 1600, and 1475 cm⁻¹) resulting from the polystyrene were newly generated. The surface modification was also confirmed by performing a floating test on water. The surface-modified γ-Al₂O₃ nanoparticles did not wet because the hydrophilic surface of the alumina particles had become hydrophobic. Quantitative results of the graft polymerization on γ-Al₂O₃ are given in Table 1. The graft yield increased upon increasing the irradiation doses. The graft yield was higher at a 50 vol% monomer concentration than at 70 vol%. The highest graft yield was obtained when 50 vol% of styrene was irradiated at 10 kGy. In addition, neat γ-Al₂O₃, TMSPM-treated γ-Al₂O₃, and Al₂O₃-g-PS were characterized using an SEM.

Characterization of Polypropylene Nanocomposites

The tensile strengths of nanocomposites prepared with different crosslinking agents and 5 phr of TMSPM-treated γ-Al₂O₃ are shown in Figure 2. The tensile strengths of pure PP and 4 kGy-irradiated PP were 2.74 and 2.78 kgf/mm², respectively. Both the 1,4-BDDA- and TMPTA-crosslinked nanocomposites displayed similar tendencies. The tensile strengths were enhanced upon increasing the content of the crosslinking agents up to 3 phr, but they gradually decreased at contents of crosslinking agents over 3 phr. At higher concentration more than 3 phr the monomers may lead to the production of homopolymers, rather than reaction with PP, because so much monomer surrounds the radicals.
Preparation and Characterization of Polypropylene Nanocomposites Containing Polystyrene-grafted Alumina Nanoparticles

The tensile strengths of the prepared nanocomposites (Figure 3) increased upon increasing the \(\gamma\text{-Al}_2\text{O}_3\text{-g-PS} \) content up to 5 phr. The nanocomposite containing 5 phr of \(\gamma\text{-Al}_2\text{O}_3\text{-g-PS} \) exhibited the highest tensile strength.

The SEM micrographs of the fracture surfaces of the composites are shown in Figure 4. \(\gamma\text{-Al}_2\text{O}_3\text{-g-PS} \) formed comparatively smaller agglomerates than did the untreated \(\gamma\text{-Al}_2\text{O}_3 \) or TMSPM-treated \(\gamma\text{-Al}_2\text{O}_3 \). The reason for this phenomenon is that the polystyrene chain grafted onto the \(\gamma\text{-Al}_2\text{O}_3 \) interfered with the agglomeration of the nanoparticles. This result is in agreement with the results of the tensile strength measurements above.

Conclusions

In this study, we performed surface modification of neat \(\gamma\text{-Al}_2\text{O}_3 \) with TMSPM. The graft polymerization of styrene onto TMSPM-modified \(\gamma\text{-Al}_2\text{O}_3 \) was performed using the simultaneous irradiation polymerization technique under various conditions. We found that the graft yields increased upon increasing the absorbed dose; the graft yield at 50 vol% of monomer was higher than that at 70 vol%. The highest graft yield was obtained when 50 vol% of styrene was irradiated at 10 kGy. The nanocomposite fabricated with 5 phr of \(\gamma\text{-Al}_2\text{O}_3\text{-g-PS} \) and 3 phr of 1,4-BDDA showed the highest tensile strength. The homogeneous dispersion of \(\gamma\text{-Al}_2\text{O}_3\text{-g-PS} \) into the polypropylene matrix and the crosslinking by e-beam irradiation improved the mechanical properties of the nanocomposites.

Additional studies are underway to incorporate various polymergrafted \(\gamma\text{-Al}_2\text{O}_3 \) samples into polymer matrixes for the preparation of nanocomposites with improved mechanical properties.

References

