Acetic Acid Production Using Xylose and Corn Steep Liquor by
thermoaceticum Strain

Jun Seok Kim*, Hyunjoon Kim*, Kyeong Keun Oh, and Young Soo Kim†

Department of Industrial Chemistry, Dankook University, Cheonan 330-714, Korea
*Department of Chemical Engineering, Kyonggi University, Suwon 442-760, Korea
Received October 22, 2002; Accepted November 8, 2002

Abstract: Acetic acid production from xylose by Clostridium thermoaceticum (ATCC 49707) requires adaptation of the strain to xylose medium. It preferentially consumes xylose over glucose using a mixture of glucose and xylose as a carbon source. The initial concentration of xylose in the medium affects the final concentration and the yield of acetic acid. Batch fermentation of 20 g/L of xylose with 5 g/L of yeast extract (YE) as a nitrogen source results a maximum acetate concentration of 15.2 g/L and yield of 0.76 g acid/g xylose. Corn steep liquor (CSL) is a good substitute for yeast extract and results in similar fermentation profiles. The organism consumes fructose, xylose and glucose when from a mixture of sugars in batch fermentation. Arabinose, mannose and galactose are consumed only slightly. This organism loses viability upon fed-batch operation even with supplementation of all the required nutrients. In fed-batch fermentation with CSL supplementation, D-xylulose (an intermediate in the xylose metabolic pathway) accumulates in large quantities.

Keywords: xylose, corn steep liquor, clostridium thermoaceticum, acetic acid

Introduction

Acetic acid is an important feedstock for many chemicals including vinyl acetate polymer, cellulose acetate, terephthalic acid/dimethyl terephthalate, acetic acid esters/acetic anhydride and calcium magnesium acetate. At present these products are made from petroleum-derived acetic acid [1]. Fermentation is potentially a cost-effective alternative for acetic acid production. Production of acetic acid via fermentation using renewable biomass feedstock has been studied extensively since late 1970s [2-4]. The cellulose and hemicellulose in lignocellulosic biomass are the two most abundant renewable sources of carbon for fermentation to industrially useful chemicals. Efficient utilization of these constituents is vital to the development of economically viable biocconversion processes [5]. Homoacetate anaerobic organisms such as Clostridium thermoaceticum convert glucose and xylose to acetic acid with a theoretical weight yield of 100% [6-8].

‡ To whom all correspondence should be addressed.
e-mail: ysookim@dankook.ac.kr

Fermentation of glucose to acetic acid by the modified Clostridium thermoaceticum strain (ATCC 49707) has been extensively studied [11,12]. However, its ability to ferment xylose into acetic acid is not known. In this paper, we report on the characteristics of acetic acid production by this organism using xylose as the carbon source.

Experimental

Materials and Methods

Microorganism and Growth Media
A modified/mutant strain of Clostridium thermoaceticum registered as ATCC 49707 [13] and renamed Moorella thermoacetica was used in this study. The culture was grown in Difco Reinforced Clostridial medium at 59°C. It was maintained in the active state by transferring it alternately between this medium and the medium containing 3% sodium acetate. To acclimatize this strain to using xylose as a principal sugar source, it was transferred to the fermentation medium described below
for 48 h for three generations alternating with growth in Clostridial broth. This adapted strain was stored at 4°C for future fermentation runs using xylose as the principal sugar source.

Fermentation Medium

The fermentation medium, similar to that used by Ljungdahl and coworkers [2] contained in g/L: (NH₄)₂SO₄ (1.0); MgSO₄ · 7H₂O (0.25); Fe(NH₄)₂(SO₄)₂ · 6H₂O (0.04); NiCl₂ · 6H₂O (0.00024); ZnSO₄ · 7H₂O (0.00029); Na₂SeO₃ (0.000017); cysteine · HCl · H₂O (0.25); yeast extract (5.0) or corn steep liquor (variable); KH₂PO₄ (7.5); K₂HPO₄ (4.4); NaOH (0.415); NaHCO₃ (5.0); Xylose (variable) with resazurin to detect trace amounts of oxygen.

The medium was prepared in five parts and sterilized separately at 121°C for 20 min:
1. Xylose
2. Yeast Extract or Corn steep liquor
3. Cysteine · HCl
4. Mineral solution with resazurin
5. Buffer (KH₂PO₄, K₂HPO₄, NaOH, NaHCO₃)

Fermentation

All fermentation experiments were conducted in a New Brunswick Bioflo model C-30 bioreactor at a temperature of 59°C with a working volume of 400 mL of the fermentation medium described above. Anaerobic environment was achieved by sparging filtered CO₂ until the oxygen indicator resazurin changed from pink to colorless and then was maintained by supplying CO₂ in the headspace of the reactor. The pH was maintained at 6.7-6.9 with 8 N NaOH so that there would be no appreciable change in working liquid volume. Fermentation was initiated by transferring 7 mL of 24 h xylose adapted inoculum to the reactor medium. Xylose concentration and the amount of corn steep liquor added were varied in batch and fed batch experiments. The yield of acetic acid to xylose was based on the xylose consumption.

Analytical Methods

The fermentation samples were analyzed for sugar and acetic acid by HPLC (Water Associates) equipped with a RI detector. BioRad's HPX-87H column was used at 65°C with 0.005 M H₂SO₄ as mobile phase at a flow rate of 0.6 mL/min. For mixed sugars, the substrate profiles were analyzed using BioRad HPX-87-P column operated at 85°C with deionized water as mobile phase and flow rate set at 0.55 mL/min.

The cell density of the fermentation media was measured by a Turbidimeter (Hach Model 2100N) [17]. The Nephelometric Turbidity Units (NTU) data was calibrated with four different Formazin standards prior to use.

Results and Discussion

The original strain of *Clostridium thermoaceticum* ATCC 49707 was maintained through growth in medium with glucose as the only carbon source. Upon transfer to a medium containing a mixture of glucose and xylose, it consumed xylose first before consuming glucose. However, xylose uptake was very slow. With subsequent transfers in xylose medium, the rate of utilization increased. This culture was stored at 4°C and used in all fermentation experiments.

Profiles in Xylose fermentation

Figure 1 shows typical batch fermentation profiles of cell growth, xylose utilization and acetic acid production through fermentation at pH 6.9 and 59°C by *Moorella thermoacetica* (ATCC 49707). A lag phase was observed for the first 20 h after which an exponential growth phase occurred for about 60 h as depicted in Figure 2. Almost all of the xylose consumption and acetic acid production occurred during the log phase indicating a growth-associated acid production. Cell numbers decreased after the log phase of growth indicating that there was an autolytic decay of cells.

Batch fermentation experiments were conducted over a range of initial xylose concentrations to find the optimal initial sugar concentration for acetic acid production. The data indicated that a concentration of 15 g/L resulted in a maximum yield of acetic acid at 0.84 (g acetic acid/g xylose consumed). The maximum concentration of product was 15.2 g/L which occurred with a 20 g/L xylose concentration with a yield of 76%. With increases in xylose concentration, the amount of unconsumed
Acetic Acid Fermentation

![Graph 1: Effect of initial xylose loading on the acetic acid yield. Fermentation conditions: 59°C, pH 6.8](image1)

![Graph 2: Effect of concentration of CSL on xylose utilization. Fermentation conditions: 59°C, pH 6.8](image2)

xylose in the medium increased which decreased the yield. The effects of initial xylose are summarized in Table 1 and Figure 2 Subsequent fermentation experiments were conducted using an initial xylose concentration of 15-20 g/L.

Effect of Corn Steep Liquor as a Nitrogen Source

One obstacle to the successfully commercializing this bioconversion process is the high cost of nutrients, such as yeast extract, required by this strain. Corn steep liquor [9] has been identified as an inexpensive nitrogen-rich nutrient sources [4,10].

Corn steep liquor (CSL), a by-product of wet milling of corn, is a rich source of amino acids, minerals and vitamins. It also contains other nitrogen compounds useful for microbial growth [14]. CSL has been used as a medium for industrial production of penicillin [15]. Using this nutrient source, instead of yeast extract, can reduce the fermentation cost significantly. Several experiments were performed to estimate the amount of CSL that would be required to obtain a yield of acetic acid comparable to that obtained using yeast extract. The results in Figure 3 show that the fermentation profile with CSL is similar to that with yeast extract. When the concentration of CSL was 25 g/L and initial xylose loading was 20 g/L, the final concentration and yield of acetic acid were 16.57 g/L and 0.84 (g acetic acid/g xylose consumed) respectively. The profiles with varying CSL also are presented in Table 1.

Consumption of a Mixture of Sugars

In a medium containing a mixture of glucose, xylose, galactose, fructose, arabinose and mannose, this strain consumes fructose first and then xylose, as shown in Figure 4. However, the rate of fructose consumption was faster than that of xylose consumption. Glucose was the third sugar to be utilized as a carbon source. When xylose, fructose and glucose were completely consumed, the organism appeared to utilize arabinose, mannose and galactose in that order, but at an extremely slow rate.

Table 1. Batch Fermentation of Xylose Into Acetic Acid by Clostridium thermoaceticum ATCC 49707 at 59°C, pH 6.8

<table>
<thead>
<tr>
<th>initial loading (g/L)</th>
<th>Xylose % consumed (%)</th>
<th>Acetic acid productivity (g/L/h)</th>
<th>yield (g/g)</th>
<th>YE (g/L)</th>
<th>CSL (g/L)</th>
<th>Fermentation time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0</td>
<td>95</td>
<td>12.78</td>
<td>0.84</td>
<td>5</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>20.0</td>
<td>100</td>
<td>15.13</td>
<td>0.76</td>
<td>5</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>29.2</td>
<td>84</td>
<td>14.16</td>
<td>0.57</td>
<td>5</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>19.4</td>
<td>90</td>
<td>10.00</td>
<td>0.56</td>
<td>-</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>19.4</td>
<td>98</td>
<td>14.94</td>
<td>0.79</td>
<td>-</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>19.4</td>
<td>100</td>
<td>16.57</td>
<td>0.85</td>
<td>-</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

YE : Yeast Extract, CSL : Corn Steep Liquor
Table 2. Fed-batch Fermentation of Xylose Into Acetic Acid by *Clostridium thermoaceticum* ATCC 49707 at 59°C, pH 6.8.

<table>
<thead>
<tr>
<th>Volume (mL)</th>
<th>Xylose</th>
<th>Acetic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>final</td>
<td>initial</td>
</tr>
<tr>
<td>400</td>
<td>405</td>
<td>18.9</td>
</tr>
<tr>
<td>400</td>
<td>420</td>
<td>18.0</td>
</tr>
<tr>
<td>400</td>
<td>460</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Figure 4. Batch fermentation of a mixture of sugars into acetic acid. Fermentation conditions: 57°C, pH 6.8.

Figure 5. Fermentation profile under the fed batch mode of operation. Fermentation conditions: 59°C, pH 6.8. experiment 3: total addition of 32 g of xylose, 16 g of CSL and trace salts.

Fed-batch Operation

Considering that the yield is higher at low sugar and high nitrogen source, a fed-batch mode of operation was perceived as a way to enhance yield by maintaining the optimal conditions in the reactor. Therefore three sets of experiments were performed where the xylose concentration was maintained at 15-20 g/L level. The results are given in Table 2 and Figure 5.

In experiment 1, adding 8 g of xylose led slightly increased cell viability after the initial log phase. After 126 h of fermentation, however, there was no further uptake of xylose. In experiment 2, the same trend was observed despite adding 8 g of CSL to the 400 mL medium. It is suspected that cell death could have resulted due to the lack of mineral supplementation. In experiment 3, mineral solution and cysteine · HCl were therefore added in addition to 8 g of CSL and 6 g of xylose. This strategy worked only up to 95 h fermentation and a slight improvement over the previous set of experiments where growth ceased after 80 h was obtained. The organism produced acetic acid at the same rate as in the initial log phase of growth. However, further addition of sugar or nutrients did not increase the growth rate, sugar consumption, and acid yield. The organism could not be revitalized after the initial 80-90 h period. Accumulation of an intermediate product was also detected in experiment 3. This substance was identified to be D-xylulose by using a pure standard in HPLC. It is an intermediate in the xylose metabolism of most bacterial systems formed by the action of xylose isomerase on xylose.

Conclusions

This strain of *Clostridium* needs to be acclimatized to a xylose environment to obtain high yields of acetic acid. It preferentially consumes xylose over glucose when grown in a medium containing a mixture of glucose and xylose. To maintain viability for xylose fermentation, it is necessary to grow the organism in xylose and glucose medium alternately. In a 20 g/L xylose medium containing 5 g/L of yeast extract, fermentation to acetic acid occurs within 80 h resulting in final acetate concentration of 15.2 g/L and yield of 0.76. Corn steep liquor is efficiently used by this strain as its nitrogen source. With an initial CSL loading of 25 g/L and 20 g/L xylose, 0.86 yield, and 6.6 g/L of final acetic acid
concentration are attained. Replacing yeast extract with CSL can significantly reduce production cost. The organism consumes arabinose, mannose and galactose only when each of these is present with xylose in the medium. In a batch fermentation of a mixture of sugars, the extent of consumption of mannose, arabinose and galactose is less than 20% in 130 h. Fed batch operation does not result in increased yield of acetic acid. This is the reason why the organism lost viability after a certain period, and was not revived by adding of extra nutrients or trace elements. This proves to be a major drawback for acetate production from this strain using xylose as a carbon source. Accumulation of D-xylulose is detected in fed batch fermentation of xylose with CSL as a nitrogen source.

Acknowledgment

This research was Financially supported by Dankook University in 2000.

References