A Lexicographic Search Algorithm for Synthesis of Four Reaction Clusters for Water Decomposition

Soo Hyoung Choi

School of Chemical Engineering and Technology, Chonbuk National University, 664-14, 1 Ga, Duckjin-dong, Duckjin-gu, Jeonju, Jeonbuk 561-756, Korea
(Received 3 October 2003; accepted 25 November 2003)

Abstract – Most of the studies on water decomposition currently deal with clusters composed of three or less reactions, but four or five reaction clusters are also being experimented. A method is proposed in this paper, which expands the previously proposed lexicographic search algorithm so that clusters composed of four reactions can be sought in spite of combinatorial explosion. As a case study, this method is applied to a set of thermodynamically feasible reactions, and shows that it can generate a lot of candidate clusters that are feasible at relatively low temperatures. If the proposed search algorithm is applied to a set of reactions whose operability is confirmed, it is expected to be able to synthesize efficient reaction clusters for water decomposition.

Key words: Lexicographic Search, Reaction Cluster, Water Decomposition, Combinatorial Explosion

1. 서 론

에너지 및 환경문제가 크게 대두되고 있는 현재 절정 에너지원이 될 수 있는 수소를 얻기 위한 방법으로 물을 그 주원소로 분해 하려는 노력을 열분埃及, 전기분埃及, 방축에 분해, 생물학적 분해, 열화학 식에

물 등 여러 가지 방법으로 시도되고 있다. 공극적인 목표인 물 분해 반응은 다음과 같다.

\[2 \text{H}_2\text{O} \rightarrow 2 \text{H}_2 + \text{O}_2\]

이 방정식은 생활에서의 물론 고전에서도 일으키기 쉽다. 따라서 물을 직접 분해하는 것보다는 우회적 반응경로를 이용하는 것이 유리하다. 이를 위하여 지금까지 다양한 반응 클러스터들이 제안되었으며 그 중 일부를 소개하면 다음과 같다.

- Redox Cycle
 \[\text{Fe}_3\text{O}_4 \rightarrow 3\text{FeO} + \text{1/2O}_2\] (reduction)
 \[\text{H}_2\text{O} + 3\text{FeO} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2\] (oxidation)

- General Atomics (GA) Cycle (1976)
 \[2\text{H}_2\text{O} + \text{SO}_2 + \text{H}_2 \rightarrow 2\text{H}_2\text{SO}_4 + 2\text{H}_2\] (120°C)
 \[\text{H}_2\text{SO}_4 \rightarrow 2\text{H}_2\text{O} + 2\text{SO}_2 + 2\text{H}_2\text{O} (850°C)

 \[2\text{Fe}_3\text{P}_2\text{O}_7 + 3\text{I}_2 + 2\text{H}_2\text{O} \rightarrow 6\text{FePO}_4 + 6\text{H}_2\] (photochemical)
 \[6\text{HI} \rightarrow 3\text{H}_2 + 3\text{I}_2\] (thermochemical)
 \[6\text{FePO}_4 + 3\text{H}_2\text{O} \rightarrow 2\text{Fe}_3\text{P}_2\text{O}_7 + 6\text{H}_2\text{PO}_4 + 3/2\text{O}_2\] (electrochemical)

그러나 현재까지 결실 있는 공정이 개발되는 모양이다. 주 이유는 클러스터 내 생성물의 수 있어 낫나 분리가 어렵다는 것이다. 따라서

†To whom correspondence should be addressed.
E-mail: soochoi@chonbuk.ac.kr
서 보다 흥미로운 반응 클러스터가 요구되며 이를 찾아낼때 도움을 줄 수 있는 사전식 탐색 알고리즘(1-3)을 제안한 바 있다. 그러나 이전 연구에
서는 각 클러스터에 속한 반응식을 세로 계산하였으며 그 결과 만든
온도범위에서는 가능한 후보들이 매우 적게 발생되었고, 최근 물
리학 연구보고서(4)에 의하면 매 또는 다른 매의 반응식을 구성된 클
러스터들의 설명되며 이들 중 Oregon State 연구소에서 개발한
온도에서 클러스터가 주목 받고 있다.

• UT-3 Cycle (1990)
 Br₅+2CaO→CaBr₃+1/2 O₂ (600 °C)
 3 FeBr₃→H₂O→Fe₂O₃+46 HBr+H₂O (600 °C)
 CaBr₂+H₂O→CaO+2 HBr (750 °C)
 Fe₂O₃+8 HBr→Br₂+3 FeCl₃+4 H₂O (300 °C)

본 논문에서는 이처럼 매 개의 반응물로 이루어진 다 분 반응 클러
스터를 합성하는 알고리즘이 제안하고 이를 이용하여 원자보다 훨씬 많
은 후보들을 생성할 수 있다는 것을 보고자 한다.

2. 제안된 방법

기존의 사전식 탐색 알고리즘(3)에 클러스터 다항 반응계수 3에서 4로
확장하여 가장 큰 결합도는 조합 가능한 경우의 수가 복잡하게
증가한다는 것이고, 기존 알고리즘은 목표반응식의 반응식을 포함하는 반
응식 집합과 반응식을 포함하는 반응식 집합을 조합한다. 만약 이 알고
리즘에 조합 가능한 모든 반응식을 세 번째 집합으로 추가한다고 가정시
간은 대략 이 집합의 원소 수가 2배 감소하기 어려워진다. 본 연구에
서는 이를 반응 포화 반응물의 수가 적을 경우도 생성할 수 있다.

(1) 조합 가능한 반응물은 계수기와 사용해서 나타낸 것에 정리한
(2) 결합관계 둘개수를 넣지 않고 반응식을 모두 모아 그 결합을 W라 한다.
(3) 반응물로 하는 반응식을 모두 모아 그 결합을 1라 한다.
(4) 소수를 생성하는 반응식들을 모두 모아 그 결합을 R라 한다.

Table 1. Species in the database

<table>
<thead>
<tr>
<th>Species</th>
<th>Al</th>
<th>Al₂O₃</th>
<th>Al₂SiO₅</th>
<th>Al₄C₃</th>
<th>AlCl₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSO₄</td>
<td>Fe₃</td>
<td>Fe₂O₃</td>
<td>Fe(CO)₅</td>
<td>FeO₂</td>
<td>H₂O</td>
</tr>
<tr>
<td>K₂B₂O₄</td>
<td>K₂CO₃</td>
<td>K₂O</td>
<td>K₂O₂</td>
<td>KB₄H₂</td>
<td>K₂O</td>
</tr>
<tr>
<td>KOH</td>
<td>Mg</td>
<td>Li</td>
<td>LiCl₂</td>
<td>LiO</td>
<td>Li₂SiO₃</td>
</tr>
<tr>
<td>LiOH</td>
<td>MgO</td>
<td>Na</td>
<td>NaClO₃</td>
<td>Na₂O</td>
<td>Na₂O₂</td>
</tr>
<tr>
<td>MgO</td>
<td>Na₂O</td>
<td>NaH</td>
<td>NaOH</td>
<td>Na₂SO₃</td>
<td>Na₂SO₄</td>
</tr>
<tr>
<td>Na₂O₃</td>
<td>Pb</td>
<td>P₄</td>
<td>P₄O₁₀</td>
<td>PO₄</td>
<td>P₄O₁₀</td>
</tr>
<tr>
<td>PbO₂</td>
<td>SO₂</td>
<td>SO₃</td>
<td>Si</td>
<td>Si₃H₄</td>
<td>SiH₄</td>
</tr>
<tr>
<td>Sr</td>
<td>SrO</td>
<td>SrO</td>
<td>SrO₂</td>
<td>SrO₃</td>
<td>SrO₄</td>
</tr>
<tr>
<td>TiO</td>
<td>TiO₂</td>
<td>V</td>
<td>V₂O₃</td>
<td>V₂O₅</td>
<td>V₂O₅</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>Zr</td>
<td>ZrB₂</td>
<td>ZrC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Numbers of reactions and clusters

<table>
<thead>
<tr>
<th>Cluster Reaction</th>
<th>Number of feasible reactions</th>
<th>Reactions in which H2O is a reactant</th>
<th>Reactions in which H2 is a product</th>
<th>Reactions in which O2 is a product</th>
<th>Three reaction clusters</th>
<th>Four reaction clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>11,995</td>
<td>267</td>
<td>434</td>
<td>348</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20,930</td>
<td>470</td>
<td>774</td>
<td>743</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>24,139</td>
<td>558</td>
<td>882</td>
<td>1,041</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>35,836</td>
<td>783</td>
<td>1,336</td>
<td>1,601</td>
<td>2</td>
<td>52</td>
</tr>
</tbody>
</table>

(7) For the reaction of H2O and O2, the maximum number of possible reaction clusters is 52.

Table 3. Feasible clusters for water decomposition

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Reaction</th>
<th>(T)</th>
<th>lnK(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 HNO3 + N2O5 → 2 H2O + 3 N2O3</td>
<td>300</td>
<td>-2.0456E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>5.4563E+00</td>
</tr>
<tr>
<td>2</td>
<td>2 Be(OH)2 + 2 N2O5 → 2 BeO + 4 HNO3</td>
<td>300</td>
<td>-1.3001E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>-8.5548E+00</td>
</tr>
<tr>
<td>3</td>
<td>2 H2O + 2 N2O5 → 3 H2O + 2 N2O3</td>
<td>300</td>
<td>-1.2482E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>5.1926E+00</td>
</tr>
<tr>
<td>4</td>
<td>4 HNO3 + N2O5 → 2 H2O + 3 N2O3</td>
<td>300</td>
<td>-2.0456E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>5.4636E+00</td>
</tr>
<tr>
<td>5</td>
<td>N2O4 → N2O3 + O2</td>
<td>300</td>
<td>-8.5548E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>8.1870E+02</td>
</tr>
<tr>
<td>6</td>
<td>4 CH2O + 2 N2O5 → 2 C2H4O + 4 HNO3</td>
<td>300</td>
<td>-2.0456E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>5.4636E+00</td>
</tr>
<tr>
<td>7</td>
<td>2 C2H4O + H2O → 4 CH2O</td>
<td>300</td>
<td>-1.3673E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>6.7207E+00</td>
</tr>
<tr>
<td>8</td>
<td>4 HNO3 + N2O5 → 2 H2O + 3 N2O3</td>
<td>300</td>
<td>-2.0456E+02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>5.4636E+00</td>
</tr>
<tr>
<td>9</td>
<td>N2O4 → N2O3 + O2</td>
<td>300</td>
<td>-8.5548E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430</td>
<td>8.1870E+02</td>
</tr>
</tbody>
</table>

4. 결 론

대개의 반응으로 구성된 물 분해 반응 클러스터를 형성하는 사전적 편성 및 구성은 계산하고 사전연구를 통해 대개의 반응을 사용할 때에 비해 편리한 클러스터 후보들이 존재함을 확인하였다. 계산내용은 모든 반응에 영향으로 요소로 반응물로 보다 명확히 정정적으로 조립 가능반응들의 집합에 대해 적용하면 효율적인 물 분해 반응 클러스터 후보들을 형성할 수 있으며 구조적으로 경제성이 있는 물 분해 정립을 개발하는데 기여할 수 있는 것으로 기대된다.

참고문헌

