Sol-Gel 공정을 이용한 초고용량 캐패시터용 NiO 나노입자의 합성과 전극 제조

김두현 · 송기찬 1 · 신경희 1 · 김종휘 2

건양대학교 화학공학과
320-030 논산시 대동산 30
1한국에너지기술연구원 에너지저장장치연구센터
305-343 대전시 유성구 장동 71-2
(2002년 11월 26일 접수, 2003년 2월 4일 재택)

Preparation of NiO Electrodes for Supercapacitor by the Sol-Gel Process

Du-Hyun Kim, Ki-Chang Song 1, Kyung-Hee Shin* and Jong-Huy Kim*

Department of Chemical Engineering, Konyang University, San 30, Nae-dong, Nonsan 320-030, Korea
*Energy Storage Research Center, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
(Received 26 November 2002; accepted 4 February 2003)

요 약

Nickel acetate를 증류수로 가수분해 시켜, 적정 50 mm의 Ni(OH)2 나노입자를 합성하였으며, 이 나노입자를 증류수에 분산 시켜 스프링용액을 제조한 후 Ni foam 위에 dip-coating하여는 Sol-Gel 공정에 의해 초고용량 캐패시터용 전극을 제조하였다. 제조된 전극을 여러 온도에서 열처리시킨 결과 전극의 비측면 용량은 열처리 온도에 크게 의존하였고, 250 oC에서 열처리 시 160 F/g의 가장 큰 용량을 보였다. 이 실험에서 200 oC의 온도로 열처리 시에는 전극 위의 분말들이 acetate기약 같은 불순물들에 의한 피질이 약간 낮은 비표면적을 보였으나 250 oC에서 불순물이 제거되면서 피질이 회복되어 가장 큰 비표면적 (177 m²/g)을 보았다로 분석된다.

Abstract – The Ni(OH)2 nanoparticles with average diameter of 50 nm were synthesized by hydrolyzing nickel acetate with water, and were dispersed in the distilled water to prepare the coating solution. The electrodes for supercapacitor were prepared by dip-coating the coating solution on the Ni-foam. The electrodes heat-treated at several temperatures showed the highest specific capacitance, 160 F/g, at 250 oC. It can be explained that the Ni(OH)2 particles heat-treated at 100 and 200 oC on the electrodes contained the impurities such as acetate groups in the pores, and resulted in low specific surface areas. However, as the calcination temperature increases, the impurities incorporated in the pores are removed at 250 oC, and thus, the particles on the electrodes show the highest specific surface area (177 m²/g).

Key words: Ni(OH)2 Nanoparticles, Electrodes, Specific Capacitance, Coating Solution, Specific Surface Area, Dip-Coating, Sol-Gel Process

1. 서 론

각종 전자기기의 소형화가 진행되면서, 소형, 경량, 대용량이 필수적이다. 급속 충전방식이 가능한 에너지 저장장치가 요구되고 있다. 특히 이전의 리튬 이온 전지에 비해 전력소비가 적은 전력의 캐 haci와 이차전지 를 사용하기 어려우므로, 이 분야의 신속한 발전을 위해서는 고성능 에너지 저장장치의 초고용량 캐 haci의 개발이 시급히 요구되고 있다[1-4].

초고용량 캐 haci는 supercapacitor, ultracapacitor 또는 전기 이중 캐 haci라고 불리는 매우 큰 용량을 지닌 캐 haci로 현재 제조되고 있다[5]. 이들은 그 작동원리로 붙 빌 총합적으로 전자기학적 캐 haci라고 불리어질 수 있으며, 전력의 캐 haci 또는 이차전지와는 다른 새로운 별주 의 에너지 저장장치이다. 이 전기화학적 캐 haci는 전기 이중 캐 haci(electric double layer capacitor, 이하 EDLC)와 유사측전기(pseudocapacitor, redox capacitor)로도 불릴 수 있는 두 형태로 분류될 수 있다[4]. 이와 같은 초고용량 캐 haci의 전극소재로 사용되는 것은 EDLC에 사용되는 탄소, 유사측전기로 사용되는 금속산화물과 절도 경고계가서의 서거 형태로 나뉘어진다[5]. EDLC가 전극면에 형성된 이중층매만 전극을 저장하는 데 비해 유사측전기는 전극재료의 표면적인 내부까지 전극을 저장할 수 있으므로, 저작용량의 EDLC에 비해 약 3-4배 정도 크고, 따라서 에너지 밀도도 더 높다고 알려져 있다[6]. 원전 유사측전 기재에서는 전극의 저장용량의 표면적인 계산되므로, EDLC 재료와 마찬 가지로 초고용량은 전극 질점의 비교밀도에 비례하여, 따라서 전극 질점의 크기가 작을수록 비교밀도가 커져, 캐 haci의 용량이 증가하
프로 절화의 저장능력이 큰 유사촉촉성의 개발을 위해서는 전극 활성질의 탄소나노강화가 요구되고 있다[7]. 유사촉촉성의 전극 활성질로는 RuO₄가 보편적으로 많이 사용되고 있으나, RuO₄ 전극은 우수한 전기 화학적 기능을 보이는 반면, 고가의 충전반도로 인하여 경제성이 밀어지는 단점을 보이고 있다[8-10]. 따라서 저작된 비용의 용접을 이용함으로써도 캐세미의 용접을 할산시키는 전극의 제조 방법이 연구되어지고 있는데 이 는 NiO, CoO, MnO₂, TiO₂ 등의 다가 금속을 이용하는 방법이다[11-10].

NiO: Ni(OH)₃의 형태로 현장 상용화되고 있는 NiCd, NiMH 등 Ni 계 이차전지의 전극 활성질로 사용하고 있는 것이다. 특히 최근에는 소형 가전기기 및 휴대용 정보통신기기의 발달로 인해 더욱 그 중요성이 더해지고 있으며 Li 이온을 삽입할 수 있는 능력을 가지고 있으므로 Li계 이차전지의 응용도 가능하다. 또한 여전히 지장장치로 판상이 증가되고 있는 초고전 캐세미의 전극 활성질로 응용될 수 있는 물질이다[11-14].

따라서 본 연구에서는 가격이 저렴하며도, 여전히 지향 능력이 높아서 초고전 캐세미를 개발하기 위해 전극 활성질로서 NiO를 이용하고자 한다. 이를 위해 먼저 역상형태를 이용하여 탄소나노강리기 크기를 조정하는 NiO 분말을 제조한 후 이를 용기 내에 급수 분산시키고, 전극을 기판 Ni foam 위에서 dip-coating 시키는 Sol-Gel 공정을 이용하여 전극을 제조하여 그 전극의 접전화적 특성을 살펴본 내용을 보고하고자 한다.

2. 실험

2.1. NiO 나노강리기의 합성

NiO 탄소강리기의 합성 방식은 Anderson의 방법[8-10]을 따랐다. 우선 충전반도인 Ni(CH₃COO)₂·4H₂O(Aldrich, 98%)를 전극기에서 100°C로 높은 전극물질 후 액화물을 200 mL의 중류수에 응용하면서 0.2 M 농도의 수용액을 제조하였다. 이렇게 제조된 수용액을 상온에서 자세히 고란기를 이용하여 24 hr 동안 가스분리 후 8,500 rpm에서 20min 동안 원심분리시켜서 Ni(OH)₂ 나노강리를 합성하였고 이 나노강리는 중류수 40 mL에 저 분산시켜 코팅용 용액을 제조하였다. 이렇게 합성된 Ni(OH)₂ 나노강리는 전극을 기판 위에 코팅하여 250°C 이상의 온도로 일처리해게 되어 수화물을 제거되면서 NiO 나노강리기를 얻게 된다.

2.2. 전극 제조

먼저 일정밀도로(110 psi) presse하여 제조된 Ni foam 두께 170 μm을 2x2 cm 크기로 절단 전극을 기판으로 사용하였다. 위에서 제조한 코팅액을 dip-coating 방법을 이용하여 10 cm/min의 속도로 Ni foam 위에 5회 코팅하여 총 5회 코팅을 시행하였다. 그 후 전극의 Ni foam을 여러 온도에서 (200-350℃) 일처리하여 전극을 제조하였다. 단위 코팅 시의 경제적 효율은 7.5 M KOH 수용액을 사용하였고, 비측정 용량은 충방전 측정기(General, S-4000)를 사용하여 측정하였다.

2.3. 분석기법

코팅을 하고 난은 수용액은 100°C에서 24hr 동안 전극시킨 후 달걀 사탕으로 분리하여 분말화시킨 후 여러 온도에서 일처리하여 분말의 특성을 분석하였다. 제조된 분말의 여러 화학분석에서의 화학적 구조를 조사하기 위하여 FTIR-Spectroscopy(FTS 155, Bio-Rad)를 사용하여 KBr방식으로 400-4000 cm⁻¹ 범위에서 FT-IR 분광기법하였다. 각 조건에서 형성된 분말의 기록은 Microtrics사의 ASAP 2020 4D BET를 사용하여 150℃에서 degassing 후 N2 가스를 흡합 및 탄마 시계를 기록점과 펌프를 조사하여 분해하며 코팅된 XRD, D/Max-IIIB, Rigaku)를 사용하여 형성 각 30-200 범위에서 X선

Fig. 1. SEM image of Ni(OH)₂ nanoparticles prepared by hydrolyzing nickel acetate with water and dried at 100°C.

Fig. 2. Specific capacitances of NiO powders calcined at several temperatures.

미경 (SEM, XL30SFEG, Philips)를 이용하여 관찰하였다.

3. 결과 및 고찰

Fig. 1은 충방전용 니켈 acetyacetonate를 24 hr 동안 중류수로 가수분해 시킨 후 얻어진 청하물과 100°C에서 전기적 측정을 한 분말과의 SEM 사진으로 빛나는 크기의 크기에 나노강리기의 크기가 섭정되었다. 이에 다항법의 화학적 고정은 뒤의 Fig. 2는 XRD 분석 결과로부터 미세밀도 분석된 Ni(OH)₂를 알 수 있다. 또한 이와 관련된 코팅 전후의 전극을 달성시켜서 코팅 전용액을 제조하였으며, 이 용액을 Ni foam 위에 dip-coating 시키는 상온에서 전극시간 후 여러 온도에서 일처리하여 NiO 전극을 제조하였다.

Fig. 2는 여러 온도에서 일처리하여 제조된 NiO 전극을 7.5 M KOH 전지용액을 사용하여 비측정 용량을 측정한 결과이다. 0.09 V 전압 범위의 측정한 전도계 결과에서 200°C에서 제조된 전극과는 30 F/g의 낮은 비측정 용량을 보였으나, 소형화하도 높아질수록 전극의 비측정 용량이 증가하여 250°C에서 가장 높은 비측정 용량(166 F/g)을 보였고, 300°C 이상의 온도에서는 오히려 감소하는 경향이 관찰되었다. 이 현상은 실험하기 때문에 코팅된 후 난은 수용액과 100°C에서 전극시간 후 분말화된 후 여러 온도에서 일처리하여 분말의 특성을 분석하였다.

Fig. 3은 일처리 온도에 따른 NiO 분말의 비측정 용량 변화를 나타낸 그 래로, 비측정 용량은 100°C와 200°C에서 일처리 시간 10 m²/g의 작은 값을 보이다가, 250°C에서 일처리 시 감가증가 증가하여 177 m²/g의 비측정 용량을 보였다. 반면에 300°C 이상의 온도에서의 오디오 감소하는 경향을 보았다. 이는 뒤의 Fig. 5, 7, 8의 포즈 size distribution.
SEM, XRD, FT-IR 결과에서 알 수 있듯이 100, 200 °C에서 열처리 시
애는 분말들이 acetae가와 같은 불순물에 의해 기공이 덮히는 바람직한 특별
력을 보인다. 250 °C에서 불순물이 제거되면서 기공이 희미하게 보이게 된다. 그런데 250 °C 이상의 온도에서는 바리질 상태
며의 분말의 결정화가 일어나 온도증가에 따라 결정의 크기가 커지므로
다시 비특면적이 작아져며 250 °C의 온도에서 가장 큰 비표면적을 보인 다고 해석할 수 있다. 또한 캐터리의 측면 용량은 극히 불량의 비표
면적에 의존한다고 알려져 있으므로[7]. Fig. 2에서 250 °C에서 열처리
된 전극의 비측면 용량이 가장 큰 현상을 이 온도에서 열처리된 분말의
비표면적이 가장 큰 현상으로 설명할 수 있다.

Fig. 3. Specific surface areas of NiO powders calcined at several tem-
peratures.

Fig. 4. Nitrogen adsorption-desorption isotherms of NiO powders cal-
cined at several temperatures.

SEM, XRD, FT-IR 결과에서 알 수 있듯이 100, 200 °C에서 열처리 시
애는 분말들이 acetae가와 같은 불순물에 의해 기공이 덮히는 바람직한 특별
력을 보인다. 250 °C에서 불순물이 제거되면서 기공이 희미하게 보이게 된다. 그런데 250 °C 이상의 온도에서는 바리질 상태
며의 분말의 결정화가 일어나 온도증가에 따라 결정의 크기가 커지므로
다시 비특면적이 작아져며 250 °C의 온도에서 가장 큰 비표면적을 보인 다고 해석할 수 있다. 또한 캐터리의 측면 용량은 극히 불량의 비표
면적에 의존한다고 알려져 있으므로[7]. Fig. 2에서 250 °C에서 열처리
된 전극의 비측면 용량이 가장 큰 현상을 이 온도에서 열처리된 분말의
비표면적이 가장 큰 현상으로 설명할 수 있다.

Fig. 5. Pore size distributions of NiO powders calcined at several tem-
peratures.

Fig. 6. Schematic representation for the microstructure of the NiO powders.
200-500 nm 크기의 secondary particle로 구성되어 있음을 알 수 있다. 
또한 250 °C로 열처리된 분말의 primary particle 크기는 대략 40 nm이 반면, 300 °C로 열처리된 분말의 primary particle 크기는 대략 70 nm임을 알 수 있는데, 이는 열처리온도가 증가함에 따라 결정의 크기가 성장함으로 설명될 수 있다. 이러한 미세구조의 차이로부터 Fig. 3의 BET 결과에서 250 °C로 열처리된 분말의 비교표적이 가장 크며, Fig. 5의 pore size distribution에서 100 °C와 200 °C로 열처리된 분말들은 정해진 크기 분포를 보이지 못하는 반면, 250 °C와 300 °C로 열처리된 분말들은 정해진 크기 분포를 보이게 됨을 알 수 있다.

Fig. 8은 여러 온도에서 열처리된 NiO 분말의 XRD 결과이다. 100 °C와 200 °C에서 열처리된 분말에서 발견되는 37°와 59°에서의 약한 피크는 Ni(OH)₂를 나타내는 피크로 이 분말들이 비정질임을 의미한다. 반면 250 °C 이상의 온도에서 발견되는 피크는 NiO 결정을 나타내며 250 °C의 온도에서 결정화가 시작하였음을 알 수 있다[8].

Fig. 9는 XRD 결과와 잘 일치하고 있다.

4. 결 론

Nickel acetate를 증발물질로 하여 증류수로 가수분리시켜 Ni(OH)₂ 나노입자를 제조하였으며, 이 나노입자를 증류수에 분산시켜 코팅 용액을 제조한 후 Ni foam에 dip-coating시켜 Sol-Gel 공정에 의해 절 구를 제조하였다.
(1) The yield of NiO product increased with the increase of reaction temperature from 100°C to 250°C, with the maximum yield of 250°C. At 100°C, the yield was 10 m²/g, while at 250°C, the yield reached 177 m²/g.

(2) The reaction temperature had a significant effect on the yield of NiO product. At 100°C, the yield was 10 m²/g, while at 250°C, the yield reached 177 m²/g. The yield increased with increasing reaction temperature.

(3) The reaction temperature had a significant effect on the yield of NiO product. At 100°C, the yield was 10 m²/g, while at 250°C, the yield reached 177 m²/g. The yield increased with increasing reaction temperature.

(4) The reaction temperature had a significant effect on the yield of NiO product. At 100°C, the yield was 10 m²/g, while at 250°C, the yield reached 177 m²/g. The yield increased with increasing reaction temperature.


